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Original Image

e Inject living tissue with radioactive substance (tracer)

e Decaying tracer produces pairs of annihilation photons traveling in
opposite directions

e detector elements (crystals) placed around the object detect lines -
coincidence events

e The scanner can be
e 3D: a tube joining two detector elements is a volume of response
(VOR)
e 2D: the line connecting the detector elements is a /ine of response
(LOR)
e Data are recorded as event histograms (sinograms or projected data)
or as a list of recorded photon-pair events (list-mode data)
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Sinogram (2D)

e Events along lines of response

e Integrate object activity distribution f(z,y) along all parallel LORs at
angle ¢ for 0 < ¢ < 27

e f(x,y) — p(s,d) where s is the distance from the center of the field
of view

e A fixed point traces a sinusoidal path in the projection space

e Sinogram = the superposition of all sine waves for each point of
activity
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Sinogram lllustrated
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A. Alessio, P. Kinahan, “PET Image Reconstruction,” Nuclear medicine, vol. 1, pp. 1-22, 2006.
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Image Reconstruction

Filtered backprojection

e Based on the Fourier-slice (projection-slice) theorem

e Projection data are filtered (pre-corrected for the oversampling of the
Fourier transform), then backprojected, and then inverse Fourier
transformed

e Analytic and fast, but sensitive to noise and errors

Iterative algorithms
e Image is discretized into distinct pixels (voxels) which are then
modeled

e Expectation-maximization algorithms: MLEM, OSEM

e More precise, computationally complex, also require some denoising
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Simulated measurement

e N = 1000 events and K = 3 components: original (unknown) points,
measurements, sinogram, FBP (simplified)
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Gaussian Mixture Models (GMMs)

Used in a wide variety of image classification and reconstruction problems.

e Each component density is an d-variate Gaussian function:

9@l Tp) = T=m e | — 5@ —w) T (@ - ) | (1)

e Observation x is a realization from exactly one of the K Gaussian
mixture components

K

(@7, ks Z) = > 7 (@ ks ), (2)
k=1

e {71} = mixture weights, i.e. the probabilities that & belongs to
corresponding Gaussian components; Z{f:l T = 1.
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Estimating Mixture Parameters

e Existing algorithms (MLEM, OSEM) do not consider spatial
dependence of pixels/voxels, or introduce it later (e.g. by using
Markov random fields)

e "Holistic" approach to modelling the source of emissions - intensity is
proportional to normal distribution density (or their mixtures)
e Main issues:

e emission sources are unknown (latent), and the observations (lines) are
lower-dimensional than the source

e simplifying and accelerating estimation algorithms - faster scanning,
less time in the scanner and less exposure to radiation
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K =1, Mean Vector Estimate

[t = the point "nearest” to all events )

e We define distance using a weight matrix W:
d2(’01,’02) = (’Ul — ’UQ)TW('Ul — ’UQ).

W = I gives Euclidian, W = X! gives Mahalanobis distance.

e For a given u, denote by x!' the point on ith line nearest to it
e i is the solution of

N

min Y (2l — ) W (a! ~ p).
=1

Note: d vs. d? and I vs. 3! yield very similar (good) results!
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K =1, Covariance Matrix Estimate

Suppose d = 2.

> _ [211 Y12

= estimate Y11, 212, 222.
Sy 222] 115 2412, 2422 }

A Gaussian distribution retains properties when rotated

Marginal distributions of a Gaussian are again Gaussian

If an event is at angle v, rotating the coordinate system by
¢ = § — 1 makes it parallel to the y-axis

Integral along line = 1D projection onto the new x-axis

(1, 2) = (R, RSR") = (Rw)1, (RER 1) )
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K =1, Covariance Matrix Estimate

e Lines are given by alxz +1; =0, a; = [tanyy; —1]T,i=1,...,N.
e New z-coordinate of each line is —[; sin ;.

One-dimensional mean and variance are

(Rp)1 = cos ppy — sin ppy,
(RZRT)H = cos? X1 — 2cos psin X + sin? pYgs.

Each line gives a 1D projection whose squared (Euclidian) distance from
the mean, (cos pu, — sin g, + [sinp)? is used to estimate the variance.
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K =1, Covariance Matrix Estimate

Solve As = b, where s = [X11, Y12, Xoo]”. J

cos? 1 —2singicosp;  sin? ¢
A= z o

cos pn —2singcospy  sin? oy

(cos w1ty — sin ity + 1y sin ©1)?
and b = :

(cos pnfiz — sinpnpy + Iy sinpy)?
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Covariance Matrix Estimate, K =1

e Overdetermined system: solve min ||As — b]|.
S

e L; minimization preferred to Ly minimization (more robust and
resistant to gross and systematic errors)®

e One-dimensional variance estimates are from single (or at most
several) points for each ¢ - a corrective factor is needed.

min || As — \b]|1, J

where A = (®(0.75))? ~ 1.48262.

17,1 minimization algorithm proposed by A. Sovi¢ Krzi¢ and D.S. (2018).
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Expectation - Maximization Algorithm

e E step:
e Given the current estimate of parameters, create a function for the
expectation of the log-likelihood function
o GMM: assign each data point its membership probabilities

e M step:
o Compute parameters that maximize the function from the E step

o GMM: estimate parameters of each component using points
"belonging” to that component.

e Start from initial parameters (E step) or initial weights (M step)
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Iterative Algorithms for Mixtures from PET Data

Observations are lines, there are no (proper) max-likelihood estimators!

e STEP 1 (expectation - like)

o Probabilistic approach: weights are calculated using Gaussian densities
from previous iterations.

o Geometric approach: weights are calculated using only geometric
properties of lines (inversely proportional to distance from previously
estimated mean).

e STEP 2 (maximization - like)

e Soft classification: all lines participate in estimation of all components,
proportional to weight.

e Hard classification: lines assigned to the most likely component and
participate only there.
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Simulated Measurements

e K =2 N =4000 (n; = 2500, ny = 1500), 1000 iterations.
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p1 = [ } , 21 = [ } ;
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e Distributions are presented as images (color intensity corresponds to
density)

e Images are compared using the Structural Similarity Index
(http://www.cns.nyu.edu/"lcv/ssim/)
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SSIM Results

min. average | max.
GS 99.03% | 99.33% | 99.59%
GH 99.01% | 99.46% | 99.74%
PS (inc.) | 93.15% | 95.27% | 96.44%
PH (inc.) | 94.65% | 95.87% | 98.82%
FBP 95.81% | 95.82% | 95.82%

e Algorithm iterated & = 10 times, with distance d varying from
Euclidian to Mahalanobis.
e Probabilistic algorithms appeared unstable (near null covariance
matrices), most likely due to poor initial values.
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GH Algorithm, Additional Experiments

e Geometric form of the algorithm is robust regardless of initial parameters.

e Accuracy stabilizes after approximately 10 iterations.
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Alternative models

Observe a sample of specific related measurements:
e line intersections, or
e points (on the lines) nearest to the center(s)
Progress:

e Both sets of points provide (using corrective factors) unbiased
estimators for the single component covariance

e Line intersections present a computationally complex problem - N
sources induce (%)) intersections

e Nearest points give less precise estimates, i.e. more measurements are
needed

e Classification problems in multiple components scenarios (as of now)
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Conclusion

Work in progress:
e Extension to 3D
e Optimal initial values
e Application to real data - detection of K, attenuation, random events
etc.
e Other distributions with suitable properties

Advantages:

e Parametric model (sparse representation)
e Resistance to noise (no need for post-processing)

e Reconstruction from fewer measurements (less exposure)
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