
On the number of cutpoints of the transient NN

random walk on the line

Antónia Földes
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This is joint work with Endre Csáki and Pál Révész. Consider a nearest
neighbor (NN) random walk on the line as follows: let X0 = 0, X1, X2, . . . be a
Markov chain with

P(Xn+1 = i + 1 | Xn = i) = 1−P(Xn+1 = i− 1 | Xn = i)

=

{
1 if i = 0

1/2 + pi if i = 1, 2, . . . ,

where −1/2 < pi < 1/2, i = 1, 2, . . . .
We are interested in this walk in the transient case. (A well-known result of

Chung gives a criteria of transience in terms of the {pi} sequence.)
When pi ≥ 0, i = 1, 2, . . . , the sequence {Xi} describes the motion of a

particle which starts at zero, moves over the nonnegative integers and going away
from 0 with a larger probability than to the direction of 0.

Call the site R a cutpoint if for some k, we have Xk = R and {X0, X1 . . . Xk}
is disjoint from {Xk+1, Xk+2 . . . }, i.e. Xi ≤ R, i = 0, 1, . . . , k, Xk = R and
Xi > R, i = k + 1, k + 2, . . .

Call the site R a strong cutpoint if for some k, we have Xk = R, Xi < R, i =
0, 1, . . . , k−1 and Xi > R, i = k+1, k+2, . . . . Observe that R is a strong cutpoint
if and only if the number of visits at R is exactly 1. Clearly every strong cutpoint
is a cutpoint.

We will present a criteria which determines whether the number of cutpoints
(or strong cutpoints) is finite or infinite almost surely.

This investigation was inspired by a result of James, Lyons and Peres (2008).
They proved that for

pi =
1
4i

+
B

4i log i
, i = 1, 2, . . . , B > 1

the walk is transient and has only finitely many cutpoints.


