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1.1 Practical 1: A simple example using the gamlss packages

The following is an example from Chapter 2 of the book ”Flexible Regression and Smoothing:
Using GAMLSS in R.

Familiarize with the gamlss functions and packages by repeating the commands given below.

The gamlss() function allows modelling of up to four parameters in a distribution family, which
are conventionally called µ, σ, ν and τ . Here we give a simple demonstration using the film90
data set.

R data file: film90 in package gamlss.data of dimension 4015× 4.
variables

lnosc : the log of the number of screens in which the film was played
lboopen : the log of box office opening week revenues
lborev1 : the log of box office revenues after the first week (the response variable

which has been randomized)
dist : a factor indicating whether the distributor of the film was an ”Indepen-

dent” or a ”Major” distributor
purpose: to demonstrate the fitting of a simple regression model in the gamlss pack-

age.

The original data were analysed in Voudouris et al. [2012], where more information about the
data and the purpose of the original study can be found. Here for demonstrating some of
the features of gamlss we analysed only two variables: lborev1 as the response variable, and
lboopen as an explanatory variable.

We start by plotting the data in Figure 1. Two key features are suggested: (i) the relationship
between the response and the explanatory variable is nonlinear, and (ii) the shape of the response
variable distribution changes for different levels of the explanatory variable. As we will see in
Section 1.1.11, a GAMLSS model has the flexibility to model these features.

Figure 1

library(gamlss)
data(film90)
plot(lborev1˜lboopen, data=film90, col="lightblue",
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xlab="log opening revenue", ylab="log extra revenue")
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Figure 1: Scatterplot of the film90 revenues

1.1.1 Fitting a parametric model

Below we fit a simple linear regression model with normal errors. It is clear from Figure 2 that
the model does not fit well, especially for low values of lboopen.

m <- gamlss(lborev1˜lboopen, data=film90, family=NO)

## GAMLSS-RS iteration 1: Global Deviance = 15079.74
## GAMLSS-RS iteration 2: Global Deviance = 15079.74

Figure 2

plot(lborev1˜lboopen, data=film90, col = "lightblue")
lines(fitted(m)˜film90$lboopen)

The problem seems to be the linear term in lboopen, so next we fit a cubic polynomial. One
method of fitting polynomial curves in R is by using the function I(). A different method is by
using the function poly() which fits orthogonal polynomials (see later).

m00 <- gamlss(lborev1˜lboopen+I(lboopenˆ2)+I(lboopenˆ3), data=film90,
family=NO)

## GAMLSS-RS iteration 1: Global Deviance = 14518.26
## GAMLSS-RS iteration 2: Global Deviance = 14518.26

summary(m00)
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Figure 2: Scatterplot of the film90 data with the fitted linear model for the mean.

## ******************************************************************
## Family: c("NO", "Normal")
##
## Call:
## gamlss(formula = lborev1 ˜ lboopen + I(lboopenˆ2) +
## I(lboopenˆ3), family = NO, data = film90)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: identity
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.232e+01 1.271e+00 -17.57 <2e-16 ***
## lboopen 7.147e+00 3.516e-01 20.32 <2e-16 ***
## I(lboopenˆ2) -4.966e-01 3.153e-02 -15.75 <2e-16 ***
## I(lboopenˆ3) 1.270e-02 9.142e-04 13.89 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38189 0.01114 34.29 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## No. of observations in the fit: 4031
## Degrees of Freedom for the fit: 5
## Residual Deg. of Freedom: 4026
## at cycle: 2
##
## Global Deviance: 14518.26
## AIC: 14528.26
## SBC: 14559.77
## ******************************************************************

Note that for large data sets it could be more efficient (and may be essential) to calculate the
polynomial terms in advance prior to using the gamlss() function, e.g.

x2<-xˆ2; x3<-xˆ3

and then use them within the gamlss() function, since the evaluation is then done only once:

film90 <- transform(film90, lb2=lboopenˆ2, lb3=lboopenˆ3)
m002 <- gamlss(lborev1˜lboopen + lb2 + lb3, data=film90, family=NO)

The fitted model is displayed in Figure 3. Although the new model is an improvement, the
polynomial line does not fit well for smaller values of lboopen. This behaviour, i.e. erratic fitting
in the lower or upper end of the covariate, is very common in fitting parametric polynomial
curves.

plot(lborev1˜lboopen, col="lightblue", data=film90)
lines(fitted(m002)[order(film90$lboopen)]˜

film90$lboopen[order(film90$lboopen)])

Using the notation y = lborev1 and x = lboopen, the fitted model m00 is given by

y ∼ N (µ̂, σ̂2)

where

µ̂ = β̂10 + β̂11x+ β̂12x
2 + β̂13x

3

= −22.320 + 7.147x− 0.497x2 + 0.013x3

log(σ̂) = 0.3819 ,

giving σ̂ = exp(0.3819) = 1.465.

The summary() function is useful for providing standard errors for the fitted coefficient parame-
ters. The summary() function has two ways of producing standard errors: (i) type="vcov" (the
default) and (ii) type="qr". The way the standard errors are produced using the vcov method
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Figure 3: Scatterplot of the film90 data with the fitted cubic model for the mean.

is described in detail in Section ??. It starts by defining the likelihood function at the maxi-
mum (using gen.likelihood()) and then obtaining the full (numerical) Hessian matrix of all
the beta coefficient parameters in the model. Standard errors are obtained from the observed
information matrix (the inverse of the Hessian matrix). The standard errors obtained this way
are more reliable than those produced by the qr method, since they take into account the in-
formation about the interrelationship between the distribution parameters, i.e. µ and σ in the
above example. On occasions when the above procedure fails, the standard errors are obtained
from type= "qr", which uses the individual fits of the distribution parameters and therefore
should be used with caution. The summary() output gives a warning when this happens, as the
standard errors produced this way do not take into the account the correlation between the
estimates of the distribution parameters µ, σ, ν and τ . (In the example above the estimates of
µ and σ of the normal distribution are asymptotically uncorrelated.)

Robust (“sandwich” or “Huber sandwich”) standard errors can be obtained using the argument
robust=TRUE of the summary() function. Robust standard errors were introduced by Huber
[1967] and White [1980] and are, in general, more reliable than the usual standard errors when
the variance model is suspected not to be correct (assuming the mean model is correct). The
sandwich standard errors are usually (but not always) larger than the usual ones.

Next we demonstrate how vcov() can be used to obtain the variance-covariance matrix, the
correlation matrix and the (usual and robust) standard errors of the estimated parameters:

# the variance-covariance matrix of the parameters
print(vcov(m00), digit=3)

## (Intercept) lboopen I(lboopenˆ2)
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## (Intercept) 1.61e+00 -4.43e-01 3.90e-02
## lboopen -4.43e-01 1.24e-01 -1.10e-02
## I(lboopenˆ2) 3.90e-02 -1.10e-02 9.94e-04
## I(lboopenˆ3) -1.10e-03 3.15e-04 -2.87e-05
## (Intercept) 2.24e-11 -6.15e-12 5.40e-13
## I(lboopenˆ3) (Intercept)
## (Intercept) -1.10e-03 2.24e-11
## lboopen 3.15e-04 -6.15e-12
## I(lboopenˆ2) -2.87e-05 5.40e-13
## I(lboopenˆ3) 8.36e-07 -1.53e-14
## (Intercept) -1.53e-14 1.24e-04

# the correlation matrix
print(vcov(m00, type="cor"), digit=3)

## (Intercept) lboopen I(lboopenˆ2)
## (Intercept) 1.00e+00 -9.93e-01 9.74e-01
## lboopen -9.93e-01 1.00e+00 -9.94e-01
## I(lboopenˆ2) 9.74e-01 -9.94e-01 1.00e+00
## I(lboopenˆ3) -9.49e-01 9.79e-01 -9.95e-01
## (Intercept) 1.58e-09 -1.57e-09 1.54e-09
## I(lboopenˆ3) (Intercept)
## (Intercept) -9.49e-01 1.58e-09
## lboopen 9.79e-01 -1.57e-09
## I(lboopenˆ2) -9.95e-01 1.54e-09
## I(lboopenˆ3) 1.00e+00 -1.50e-09
## (Intercept) -1.50e-09 1.00e+00

# standard errors
print(vcov(m00, type="se"), digits=2)

## (Intercept) lboopen I(lboopenˆ2) I(lboopenˆ3)
## 1.27058 0.35164 0.03153 0.00091
## (Intercept)
## 0.01114

print(vcov(m00, type="se", robust=TRUE), digits=2)

## (Intercept) lboopen I(lboopenˆ2) I(lboopenˆ3)
## 1.9702 0.5217 0.0446 0.0012
## (Intercept)
## 0.0135

Note that in the final row and/or column of the above output, Intercept refers to the intercept

of the predictor model for σ (β̂20), while the first row and/or column Intercept refers to the

intercept of the predictor for µ (β̂10).

Now we fit the same model as in m00, but using orthogonal polynomials (see Section ??) using
function poly(), i.e. poly(x,3):

m0 <- gamlss(lborev1˜poly(lboopen,3), data=film90, family=NO)
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## GAMLSS-RS iteration 1: Global Deviance = 14518.26
## GAMLSS-RS iteration 2: Global Deviance = 14518.26

It is of some interest to compare the correlations between the parameter estimates for the two
fitted models m00 and m0. Visual representation of the correlation coefficients can be obtained
using the package corrplot.

Figure 4

library(corrplot)
col1 <- colorRampPalette(c("black","grey"))
corrplot(vcov(m00, type="cor"), col=col1(2), outline=TRUE,

tl.col = "black", addCoef.col = "white")
corrplot(vcov(m0, type="cor"), col=col1(2), outline=TRUE,

tl.col = "black", addCoef.col = "white")
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Figure 4: Graphical displays of the correlation coefficient matrices for models m00 (left) and m0
(right)

Figure 4 shows the resulting graphical displays. Because, µ and σ in the normal distribution are
information independent (i.e. asymptotically uncorrelated), the first four estimated parameters
(µ model) are effectively not correlated with the fifth, the constant in the model for log(σ), in
both models m0 and m00. In addition all the parameters of the µ model for m0 are uncorrelated
because we used orthogonal polynomials, but for m00 they are highly correlated.

1.1.2 Fitting a nonparametric smoothing model

In this section, we outline a few of the nonparametric smoothing functions implemented in
GAMLSS. In particular, we discuss the pb() (P-splines), cs() (cubic splines), lo() (locally
weighted regression) and nn() (neural networks) functions. For a comprehensive discussion
(and list of smoothing functions within GAMLSS), see Chapter ??.
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1.1.3 P-splines

Model m0 is a linear parametric GAMLSS model, which we have seen does not fit particularly
well. Another approach is to fit a smooth term to the covariate lboopen. Eilers and Marx
[1996] introduced nonparametric penalized smoothing splines (P-splines), which are described
in Section ??. In order to fit the mean of lborevl with a P-spline for lboopen, use:

m1<-gamlss(lborev1˜pb(lboopen), data=film90, family=NO)

## GAMLSS-RS iteration 1: Global Deviance = 14109.58
## GAMLSS-RS iteration 2: Global Deviance = 14109.58

summary(m1)

## ******************************************************************
## Family: c("NO", "Normal")
##
## Call:
## gamlss(formula = lborev1 ˜ pb(lboopen), family = NO,
## data = film90)
##
## Fitting method: RS()
##
## ------------------------------------------------------------------
## Mu link function: identity
## Mu Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.347147 0.087053 26.96 <2e-16 ***
## pb(lboopen) 0.928889 0.007149 129.93 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## Sigma link function: log
## Sigma Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.33120 0.01114 29.74 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## ------------------------------------------------------------------
## NOTE: Additive smoothing terms exist in the formulas:
## i) Std. Error for smoothers are for the linear effect only.
## ii) Std. Error for the linear terms maybe are not accurate.
## ------------------------------------------------------------------
## No. of observations in the fit: 4031
## Degrees of Freedom for the fit: 12.73672
## Residual Deg. of Freedom: 4018.263
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## at cycle: 2
##
## Global Deviance: 14109.58
## AIC: 14135.05
## SBC: 14215.32
## ******************************************************************

In the smoothing function pb() the smoothing parameter (and therefore the effective degrees
of freedom) are estimated automatically using the default local maximum likelihood method
described in Rigby and Stasinopoulos [2013]. Within the pb() function there are also alternative
ways of estimating the smoothing parameter, such as the local generalized AIC (GAIC), and
the local Generalized Cross Validation (GCV). See Section ?? for details.

The fitted model is displayed in Figure 5:

Figure 5
plot(lborev1˜lboopen, col="lightblue", data=film90)
lines(fitted(m1)[order(film90$lboopen)]˜

film90$lboopen[order(film90$lboopen)])
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Figure 5: P-splines fit: the film90 data with the fitted smooth mean function fitted using pb().

The effective degrees of freedom fitted by the pb() can be obtained using edf():

edf(m1, "mu")

## Effective df for mu model
## pb(lboopen)
## 11.73672
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One of the important things to remember when fitting a smooth nonparametric term in gamlss()
is that the displayed coefficient of the smoothing term and its standard error (s.e.) refer only
to the linear component of the term. For example the coefficient 0.9289 and its s.e. 0.0071 in
the above output should be interpreted with care. They are an artefact of the way the fitting
algorithm works with the pb() function. This is because the linear part of the smoothing is
fitted together with all other linear terms (in the above case only the intercept). One should
try to interpret the whole smoothing function, which can be obtained using term.plot(). The
effect that the smoothing function has on the specific parameters can also be checked using the
function getPEF(), which calculates the partial effect of a continuous variable given the rest
of the explanatory variables are fixed at specified values. The same function can be used to
obtain the first and second derivatives for the partial effects. Significance of smoothing terms
is obtained using the function drop1(), but this may be slow for a large data set with many
fitted smoothing terms.

Important: Do not try to interpret the linear coefficients or the standard errors of the
smoothing terms.

Note also that when smoothing additive terms are involved in the fitting, both methods (default
and robust) used in summary to obtained standard errors are questionable. The reason is that the
way vcov() is implemented effectively assumes that the estimated smoothing terms were fixed at
their estimated values. The functions prof.dev() and prof.term() can be used for obtaining
more reliable individual parameter confidence intervals, by fixing the smoothing degrees of
freedom at their previously selected values.

1.1.4 Cubic Splines

Other smoothers are also available. For details on cubic smoothing splines see Section ??. In
order to fit a nonparametric smoothing cubic spline with 10 effective degrees of freedom in
addition to the constant and linear terms, use

m2<-gamlss(lborev1˜cs(lboopen,df=10), data=film90, family=NO)

## GAMLSS-RS iteration 1: Global Deviance = 14107.72
## . . .
## GAMLSS-RS iteration 2: Global Deviance = 14107.72

The effective degrees of freedom used in the fitting of µ in the above model are 12 (one for the
constant, one for the linear and 10 for smoothing). Note that the gamlss() notation is different
from the gam() notation in S-PLUS where the equivalent model is fitted using s(x,11).

The total degrees of freedom used for model m2 is 13, i.e. 12 for µ and 1 for σ. The fitted values
of µ for models m1 and m2 are displayed in Figure 6:

Figure 6
plot(lborev1˜lboopen, col="lightblue", data=film90)
lines(fitted(m1)[order(film90$lboopen)]˜

film90$lboopen[order(film90$lboopen)])
lines(fitted(m2)[order(film90$lboopen)]˜

film90$lboopen[order(film90$lboopen)],
col="red", lty=2, lwd=2)
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Figure 6: P-splines and cubic splines fits: plot of the film90 data together with the fitted
smooth mean functions of model m1 fitted by pb() (continuous line) and model m2 fitted by
cs() (dashed line).
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legend("topleft",legend=c("m1: P-splines","m2: cubic splines"),
lty=1:2,col=c("black","red"),cex=1)

1.1.5 loess

Locally weighted scatterplot smoothing [Cleveland and Devlin, 1988], or loess, is described in
Section ??. Loess curves are implemented as

m4 <- gamlss(lborev1˜lo(˜lboopen,span=.4), data=film90, family=NO)

1.1.6 Neural Networks

Neural networks can be considered as another type of smoother. For details see Section ??.
Here a neural network smoother is fitted using an interface of gamlss with the nnet package
[Venables and Ripley, 2002]. The additive function to be used with gamlss() is nn(), which is
part of the package gamlss.add. The following example illustrates its use.

library(gamlss.add)
mnt <- gamlss(lborev1˜nn(˜lboopen,size=20,decay=0.1), data=film90,

family=NO)
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Figure 7: Neural network fit: a plot of the film90 data together with the fitted smooth mean
functions of model m1 fitted by pb() (black continuous line) and the neural network model mnt
fitted by nn() (red dashed line).
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## GAMLSS-RS iteration 1: Global Deviance = 14186.98
## . . .
## GAMLSS-RS iteration 4: Global Deviance = 14125.05

This fits a neural network model with one covariate and 20 hidden variables. The decay argu-
ment is used for penalizing the fitted coefficients. The fitted values of models mnt and m1 are
displayed in Figure 7.

Figure 7

plot(lborev1˜lboopen, col="lightblue", data=film90)
lines(fitted(m1)[order(film90$lboopen)]˜

film90$lboopen[order(film90$lboopen)])
lines(fitted(mnt)[order(film90$lboopen)]˜

film90$lboopen[order(film90$lboopen)],
col="red", lty=2, lwd=2)

legend("topleft",legend=c("m1: P-splines","mnt: neural network"),
lty=1:2,col=c("black","red"),cex=1)

The function getSmo() is used to get more information about the fitted neural network model.
This function retrieves the last fitted object within the backfitting GAMLSS algorithm (in this
case a "nnet" object). Reserved methods such as print(), summary() or coef() can be used to
get information for the objects. Here we retrieve its 61 coefficients. (There are 40 parameters
from the relationship between the 20 hidden variables and the explanatory variable (constant
and slope parameters), together with 21 parameters from the relationship between the response
variable and the 20 hidden variables (constant and 20 slope parameters).)

coef(getSmo(mnt))

## b->h1 i1->h1 b->h2 i1->h2 b->h3
## 0.71711189 -0.13290196 6.78268584 -0.76164048 3.08247814
## . . .

1.1.7 Extracting fitted values

Fitted values of the distribution parameters of a GAMLSS model (for all cases) can be obtained
using the fitted() function. For example

plot(lboopen, fitted(m1,"mu"))

will plot the fitted values of µ distribution parameter against x (lboopen). The constant esti-
mated scale parameter (the standard deviation of the normal distribution in this case) can be
obtained:

fitted(m1,"sigma")[1]

## 1
## 1.392632

where [1] indicates the first element of the vector. The same value can be obtained using the
more general function predict():

13



predict(m1,what="sigma", type="response")[1]

## 1
## 1.392632

The function predict() can also be used to predict the response variable distribution parameters
for both old and new data values of the explanatory variables. This is explained in Section ??.

One of the flexibilities offered by GAMLSS is the modelling of all the distribution parameters
(rather than just µ). This means that the scale and shape of the distribution can vary as a
(linear or smooth) function of explanatory variables. Below, we show how to model both µ and
σ of a normal response distribution. Figure 1 suggests that this flexibility of a GAMLSS model
might be required.

1.1.8 Modelling both µ and σ

To model the predictors of both the mean µ and the scale parameter σ as nonparametric
smoothing P-spline functions of lboopen (with a normal response distribution) use:

m3 <- gamlss(lborev1˜pb(lboopen),sigma.formula=˜pb(lboopen),
data=film90, family=NO)

edfAll(m3)

## GAMLSS-RS iteration 1: Global Deviance = 12263.21
## . . .
## GAMLSS-RS iteration 4: Global Deviance = 12263.54
## $mu
## pb(lboopen)
## 12.1442
##
## $sigma
## pb(lboopen)
## 10.67769

The function edfAll() is used to obtain the effective degrees of freedom for all parameters.
These are 12.14 and 10.68 for µ and σ respectively. The fitted model for µ is displayed in
Figure 8.

Figure 8
plot(lborev1˜lboopen, col="lightblue", data=film90)
lines(fitted(m3)[order(film90$lboopen)]˜

film90$lboopen[order(film90$lboopen)])

1.1.9 Diagnostic plots

Once a GAMLSS model is fitted, it is important to assess the adequacy of the fitted model
by examining the model residuals. See Chapter ?? for more details. The function resid() (or
residuals()) can be used to obtain the fitted (normalized randomized quantile) residuals of a
model, referred to as residuals throughout this book. See Dunn and Smyth [1996] and Chapter
?? for more details. Residual plots are graphed using plot():

Figure 9
14
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Figure 8: The film90 data with the fitted smooth mean function of model m3, in which both
the mean and variance models are fitted using pb(lboopen).

plot(m3)

## ******************************************************************
## Summary of the Quantile Residuals
## mean = 0.0006979142
## variance = 1.000248
## coef. of skewness = 0.5907226
## coef. of kurtosis = 3.940587
## Filliben correlation coefficient = 0.9909749
## ******************************************************************

Figure 9 shows plots of the residuals: (top left) against the fitted values of µ; (top right) against
an index (i.e. case number); (bottom left) a nonparametric kernel density estimate; (bottom
right) a normal Q-Q plot. Note that the plot() function does not produce additive term plots
(as it does, for example, in the gam() function of mgcv). The function which does this in the
gamlss package is term.plot().

The worm plot (see Section ??) is a de-trended normal Q-Q plot of the residuals. Model
inadequacy is indicated when many points plotted lie outside the (dotted) point-wise 95%
confidence bands. The worm plot is obtained using wp():

Figure 10
wp(m3)

## Warning in wp(m3): Some points are missed out
## increase the y limits using ylim.all
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Figure 9: Residual plots from the fitted normal model m3, using pb(lboopen) for both µ and
log(σ).
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Figure 10: Worm plots from model m3.
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To include all points in the worm plot, change the “Deviation” axis range by increasing the
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value of ylim.all until all points are included in the plot (avoiding a warning message):

Figure 10
wp(m3, ylim.all=3)
title("(b)")

Since there is no warning message, all points have been included in the worm plot. Model
inadequacy is indicated by the fact that many points lie outside the 95% confidence bands.

1.1.10 Fitting different distributions

One of the most important modelling decisions for a GAMLSS model is the choice of the
distribution for the response variable. See Chapter ?? for a discussion of available distributions
in GAMLSS. To use a distribution other than the normal (the default), use the family option
of gamlss(). For example, to fit the Box-Cox-Cole-Green (BCCG), a three-parameter continuous
distribution, use:

m5 <-gamlss(lborev1˜pb(lboopen), sigma.formula=˜pb(lboopen),
nu.formula=˜pb(lboopen), data=film90, family=BCCG)

## GAMLSS-RS iteration 1: Global Deviance = 11888.56
## . . .
## GAMLSS-RS iteration 5: Global Deviance = 11809.64

To fit the Box-Cox power exponential (BCPE) distribution, a four-parameter continuous distri-
bution:

m6 <-gamlss(lborev1˜pb(lboopen), sigma.formula=˜pb(lboopen),
nu.formula=˜pb(lboopen), tau.formula=˜pb(lboopen),
data=film90, start.from=m5, family=BCPE)

## GAMLSS-RS iteration 1: Global Deviance = 11738.54
## . . .
## GAMLSS-RS iteration 20: Global Deviance = 11733.63

Note that we have used the argument start.from=m5 to start the iterations from the previous
fitted m5 model. The details of all the distributions currently available in gamlss() are given in
Rigby et al. [in press].

1.1.11 Selection between models

Once different models in GAMLSS have been fitted (either by using different distributions
and/or smoothing terms), models may be selected by using, for example, an information crite-
rion. See Chapter ?? for model selection techniques in GAMLSS.

For example, different models can be compared by a test based on their global deviances:
GDEV = −2ˆ̀ (if they are nested), or by selecting the model with lowest generalized Akaike

information criterion: GAIC = −2ˆ̀+κ ·df, where ˆ̀ is the fitted log-likelihood function and κ is
a required penalty, e.g. κ = 2 for the AIC, κ = log n for the SBC, or κ = 3.84 (corresponding to
a Chi-squared test with one degree of freedom for a single parameter). The function deviance()
provides the global deviance of the model.

17



Note that the gamlss() global deviance is different from the deviance provided by glm() and
gam(), see Section ??. The global deviance is exactly minus twice the fitted log-likelihood
function, including all constant terms in the log-likelihood. The glm() deviance is calculated
as a deviation from the saturated model. It does not include ‘constant’ terms (which do not
depend on the mean of distribution but do depend on the scale parameter) in the fitted log-
likelihood, and so cannot be used to compare different distributions. The functions AIC() or
GAIC() (which are identical) are used to obtain the generalized Akaike information criterion.
For example to compare the models m0 to m6:

GAIC(m0,m1,m2,m3,m4,m5,m6)

## df AIC
## m6 44.97879 11823.59
## m5 36.06436 11881.77
## m3 22.82189 12309.19
## m2 12.99817 14133.72
## m1 12.73672 14135.05
## m4 10.08556 14139.34
## m0 5.00000 14528.26

GAIC() uses default penalty κ = 2, resulting in the AIC. Hence according to the AIC model m6
is selected as best (smallest value of AIC). To change the penalty in GAIC() use the argument
k:

GAIC(m0,m1,m2,m3,m4,m5,m6, k=log(4031))

## df AIC
## m6 44.97879 12107.03
## m5 36.06436 12109.04
## m3 22.82189 12453.00
## m4 10.08556 14202.89
## m1 12.73672 14215.32
## m2 12.99817 14215.63
## m0 5.00000 14559.77

In this case with GAIC (κ = log n) we have the SBC. Models selected using SBC are generally
simpler than those selected using AIC. This is the case here, where model m5 is selected.

Other model selection criteria based on training, validation and test samples are discussed on
Chapter ??.

Chosen Model

Using the AIC, model m6 is selected with Y = lborev ∼ BCPE(µ, σ, ν, τ) where each of µ, σ, ν
and τ are modelled as smooth functions of x = lboopen. The fitted smooth functions for both
m5 and m6 models are shown in Figure 11.

Figure 11

fittedPlot(m5, m6, x=film90$lboopen, line.type = TRUE)

Since, in this example, only one explanatory variable is used in the fit, centile estimates for the
fitted distribution can be shown using the functions centiles() or centiles.fan().

Figure 12
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Figure 11: A plot of the smooth fitted values for all the parameters (a) µ, (b) σ, (c) ν and (d) τ
from models m5 (dashed line) and m6 (continuous line). The distribution for model m5, BCCG,
has only three parameters so does not appear in panel (d).

centiles.fan(m6, xvar=film90$lboopen, cent=c(3,10,25,50,75,90,97),
colors="terrain",ylab="lborev1", xlab="lboopen")

Figure 12 shows centile curves for lborev1 against lboopen from the fitted model m6. For
example the lowest curve is the fitted 3% centile curve, defined by 3% of the values of lborev1
lying below the curve for each value of lboopen, for the fitted model m6 if it was the correct
model. For more details on centile curves see Chapter ??. Figure 13 also shows how the
fitted conditional distribution for the response variable lborev1 changes according to variable
lboopen. The function plotSimpleGamlss() from the package gamlss.util is used here.

Figure 13

library(gamlss.util)
library(colorspace)
plotSimpleGamlss(lborev1,lboopen, model=m6, data=film90,

x.val=seq(6,16,2), val=5, N=1000, ylim=c(0,25),
cols=heat_hcl(100))

## new prediction
## new prediction
## new prediction
## new prediction

Figure 13 highlights how the fitted conditional distribution of lborev1 changes with lboopen.
This is the essence of GAMLSS modelling.
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Figure 12: Centile fan plot for the m6 model showing the 3%, 10%, 25%, 50%, 75%, 90% and
97% centiles for the fitted BCPE distribution.
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Figure 13: Fitted conditional distribution of the response variable lborev1, showing how it
changes for different values of the covariate lboopen.
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Important: Within GAMLSS, the shape of the conditional distribution of the response
variable can vary according to the values of the explanatory variables.

1.2 Practical 2: The abdom data

Information on the abdominal data is given on page ??. Fit different response distributions
and choose the ‘best’ model according to the GAIC criterion:

1. Load the abdom data and print the variable names.

2. Fit the normal distribution model, using pb() to fit P-spline smoothers for the predictors
for µ and σ with automatic selection of smoothing parameters:

mNO<- gamlss(y˜pb(x), sigma.fo=˜pb(x), data=abdom, family=NO)

3. Try fitting alternative distributions:

(a) two-parameter distributions: GA, IG, GU, RG, LO,

(b) three-parameter distributions: PE, TF, BCCG,

(c) four-parameter distributions: BCT, BCPE.

Apply pb() to all parameters of each distribution. Make sure to use different model names.

4. Compare the fitted models using GAIC with each of the penalties k=2, k=3 and k=log(length(abdom$y)),
e.g.

GAIC(mNO,mGA,mIG,mGU,mRG,mLO,mPE,mTF,mBCCG,mBCT,mBCPE,k=2)

5. Check the residuals for your chosen model, say m, by plot(m) and wp(m).

6. For a chosen model, say m, look at the total effective degrees of freedom edfAll(m), plot the
fitted parameters, fittedPlot(m,x=abdom,$x), and plot the data by plot(y∼x,data=abdom),
and fitted µ against x, lines(fitted(m)∼x, data=abdom).

7. For a chosen model, examine the centile curves using centiles(m,abdom$x).

2 Day 1 Afternoon

2.1 Practical 3: Use the gamlss.demo package to plot distributions.

Use the gamlss.demo package to plot distributions.

library(gamlss.demo)
gamlss.demo()

Investigate how the following distributions change with their parameters:

1. Continuous distributions

(a) Power exponential distribution (PE) for −∞ < y <∞

21



(b) Gamma distribution (GA) for 0 < y <∞

(c) Beta distribution (BE) for 0 < y < 1

2. Discrete distributions

(a) Negative binomial type I (NBI) for y = 0, 1, 2, 3, . . .

(b) Beta binomial (BB) for y = 0, 1, 2, 3, ..., n

3. Mixed distributions

(a) Zero adjusted gamma (ZAGA) for 0 ≤ y <∞

(b) Beta inflated (BEINF) for 0 ≤ y ≤ 1

2.2 Practical 4: plotting different distributions

The gamlss.dist package (which is downloaded automatically with gamlss) contains many dis-
tributions. Typing

?gamlss.family

will show all the available distributions in the gamlss packages. You can also explore the shape
and other properties of the distributions. For example the following code will produce the pdf,
cdf, inverse cdf and a histogram of a random sample generated from a gamma distribution:

PPP <- par(mfrow=c(2,2))
plot(function(y) dGA(y, mu=10 ,sigma=0.3),0.1, 25) # pdf
plot(function(y) pGA(y, mu=10 ,sigma=0.3), 0.1, 25) #cdf
plot(function(y) qGA(y, mu=10 ,sigma=0.3), 0, 1) # inverse cdf
hist(rGA(100,mu=10,sigma=.3)) # randomly generated values
par(PPP)

Note that the first three plots above can also be produced by using the function curve(), for
example

curve(dGA(x=x, mu=10, sigma=.3),0, 25)

To explore discrete distributions use:

PPP <- par(mfrow=c(2,2))
plot(function(y) dNBI(y, mu = 10, sigma =0.5 ), from=0, to=40,

n=40+1, type="h", main="pdf", ylab="pdf(x)")
cdf <- stepfun(0:39, c(0, pNBI(0:39, mu=10, sigma=0.5 )), f = 0)
plot(cdf,main="cdf", ylab="cdf(x)", do.points=FALSE )
invcdf <-stepfun(seq(0.01,.99,length=39), qNBI(seq(0.01,.99,

length=40), mu=10, sigma=0.5 ), f = 0)
plot(invcdf,main="inverse cdf",ylab="inv-cdf(x)",do.points=FALSE)
tN <- table(Ni <- rNBI(1000,mu=5, sigma=0.5))
r <- barplot(tN, col='lightblue')
par(PPP)
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Note that to find moments or to check if a distribution integrates or sums to one, the functions
integrate() or sum() can be used. For example

integrate(function(y) dGA(y, mu=10, sigma=.1),0, Inf)

will check that the distribution integrates to one, and

integrate(function(y) y*dGA(y, mu=10, sigma=.1),0, Inf)

will give the mean of the distribution.

The pdf of a GAMLSS family distribution can also be plotted using the gamlss function
pdf.plot(). For example

pdf.plot(family=GA, mu=10, sigma=c(.1,.5,1,2), min=0.01,max=20,
step=.5)

will plot the pdf’s of four gamma distributions GA(µ, σ), all with µ = 10, but with σ = 0.1, 0.5, 1
and 2, respectively.

Try plotting other continuous distributions, e.g. IG (inverse Gaussian), PE (power exponen-
tial) and BCT (Box-Cox t); and discrete distributions, e.g. NBI (negative binomial type I) and
PIG (Poisson inverse Gaussian). Make sure you define the values of all the parameters of the
distribution.

2.3 Practical 5: Turkish stock exchange

Turkish stock exchange: the tse data. The data are for the eleven-year period 1 January
1988 to 31 December 1998. Continuously compounded returns in domestic currency were cal-
culated as the first difference of the natural logarithm of the series. The objective is to fit a
distribution to the Turkish stock exchange index.

R data file: tse in package gamlss.data of dimensions 2868× 6.

variables

year

month

day

ret : day returns ret[t]=ln(currency[t])-ln(currency[t-1])

currency : the currency exchange rate

tl : day return ret[t]=log10(currency[t])-log10(currency[t-1])

purpose: to show the gamlss family of distributions.

1. Input the data and plot the returns sequentially using

with(tse, plot(ret,type="l"))

2. Fit continuous distributions on (−∞ < y < ∞) to ret. Automatically choose the best
fitting distribution according to AIC. Show the AIC for the different fitted distributions.
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Do any of the fits fail?

mbest<-fitDist(tse$ret,type="realline",k=2)
mbest
mbest$fits
mbest$fails

Repeat with k=3.84 and k=log(length(tse$ret)) (corresponding to criteria χ2
1,0.05 and

SBC respectively).

3. For the chosen distribution, plot the fitted distribution using histDist(). Refit the model
using gamlss() in order to output the parameter estimates using summary().

4. An alternative approach is to manually fit each of the following distributions for ret using
histDist() (and using different model names for later comparison):

(a) two-parameter: normal NO(µ, σ),

mNO<-histDist(tse$ret,"NO",nbins=30, n.cyc=100)

(b) three-parameter: t family TF(µ, σ, ν) and power exponential PE(µ, σ, ν)

(c) four-parameter: Johnson Su JSU(µ, σ, ν, τ), skew exponential power type 1 to 4, e.g.
SEP1(µ, σ, ν, τ), skew t type 1 to 5, e.g. ST1(µ, σ, ν, τ) and sinh arc-sinh SHASH(µ, σ, ν, τ).

(Note that histDist() has as default nbins=30, to provide a detailed histogram.)

5. Use GAIC() with each of the penalties κ = 2, 3.84 and 7.96 = log(2868) (corresponding
to criteria AIC, χ2

1,0.05 and SBC respectively), in order to select a distribution model.
Output the parameter estimates for your chosen model using the function summary().

2.4 Practical 6: The stylometric data

R data file: stylo in package gamlss.data of dimensions 64× 2

variables

word : number of times a word appears in a single text

freq : frequency of the number of times a word appears in a text

purpose: to demonstrate the fitting of a truncated discrete distribution.

Note that the response variable word is (left) truncated at 0.

1. Load the data and plot them.

2. Create different truncated at zero count data distributions (PO, NBII, DEL, SICHEL), for
example:

gen.trun(par = 0, family = PO, type = "left")

3. Fit the different truncated distributions, for example:

mPO <- gamlss(word ˜ 1, weights = freq, data = stylo,
family = POtr, trace = FALSE)
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4. Compare the distributions using GAIC.

5. Check the residuals of the chosen model using plot() and wp().

6. Plot the fitted distributions using histDist.

3 Day 2 Morning

3.1 Practical 7: Victims of crime

The VictimsOfCrime data were introduced on page ??.

R data file: VictimsOfCrime in package gamlss.data of dimensions 10590× 2

variables

reported : whether the crime was reported in local media (0 =no, 1 =yes)

age : age of the victim

purpose: to demonstrate binary data smoothing.

1. Load the data and plot reported against age.

data(VictimsOfCrime)
plot(reported˜age, data=VictimsOfCrime, pch="|")

2. Now use the different smoothers investigated in this chapter to fit smooth curves for age.
Note that the response is binary and therefore the binomial distribution (BI) is used in
the family argument. For example:

# P-splines
m1<- gamlss(reported˜pb(age), data=VictimsOfCrime, family=BI)

The smoothers include pb, pbm, cy, scs, lo, nn and tr.

3. Compare the results using AIC and SBC.

4. Plot the different fitted µ (probability of a crime being reported in local media) for com-
parison. First study the behaviour of the P-spline based curves, i.e. pb(), pbm() and
cy(), e.g.

plot(reported˜age, data=VictimsOfCrime, type="n")
with(VictimsOfCrime, lines(fitted(m1)[order(age)]˜

age[order(age)],col="red", lwd=2))

5. Compare the fitted curves of the P-splines and cubic splines.

6. Compare the fitted curves of the P-splines and the neural network.

7. Compare the P-splines with the decision trees fitted curves.

8. Check the residuals of model m1. Note that for binary responses, the function rqres.plot()
returns multiple realizations of the residuals.
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rqres.plot(m1, ylin.all=.6)

9. Obtain a multiple worm plot of the residuals.

wp(m1, xvar=age, n.inter=9)

3.2 Practical 8: The Film data analysis

The film revenue data from the 1990s were analysed in Chapter 2. The data are an anonymized
and randomized version of the data used by Voudouris et al. [2012] and are used here for demon-
strating some of the features of GAMLSS, and in particular for exploring smooth interactions
of explanatory variables. Information about the data can be found in Section ??.

3.2.1 Preliminary analysis

Here we demonstrate how the data can be plotted in two- and three-dimensional plots. In
Figure 14 we plot the response variable against (a) the log of the number of screens and (b)
the log of box office opening revenues. The major and independent distributors are represented
with different symbols.

Figure 14
data(film90)
names(film90)

## [1] "lnosc" "lboopen" "lborev1" "dist"

with(film90, plot(lnosc,lborev1,pch=c(21,24)[unclass(dist)],
bg=c("red","lightgray")[unclass(dist)],
xlab="log no of screens", ylab="log extra revenue", main="(a)"))

legend("bottomright",legend=c("Independent","Major"),pch=c(21,24),
pt.bg=c("red","lightgray"),cex=1.5)

with(film90, plot(lboopen,lborev1,pch=c(21,24)[unclass(dist)],
bg=c("red","lightgray")[unclass(dist)],
xlab="log opening revenue", ylab="log extra revenue", main="(b)"))

legend("bottomright",legend=c("Independent","Major"),pch=c(21,24),
pt.bg=c("red","lightgray"),cex=1.5)

A good way of inspecting the data in three dimensions is with the package rgl. The following
commands show how this can be done. The user may increase the size (by clicking and expanding
the border), and rotate the figure:

library(rgl)
with(film90, plot3d(lboopen, lnosc, lborev1,

col=c("red","green3")[unclass(dist)]))

To show a linear least squares fit to the data, the rpanel package may be used:

library(rpanel)
with(film90, rp.regression(cbind(lboopen, lnosc), lborev1))
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Figure 14: Showing (a) lborev1 against lnosc (b) lborev1 against lboopen.

3.2.2 Modelling the data using the normal distribution

To start the analysis we assume a normal distribution for the response variable and check
whether the mean model needs:

• a simple linear interaction model for the two explanatory variables lboopen and lnosc,

• an additive smoothing model for each of lboopen and lnosc or

• a fitted smooth surface model (using a tensor product spline) for lboopen and lnosc.

We also check whether we should include or exclude the factor dist in the mean model. Note
that in order to fit a smooth surface to the data, we use the function ga() which is an interface
to gam() from the mgcv package [Wood, 2001]. Note that te() gives a tensor product spline
with five knots for each variable (which may need to be increased). For more details about the
interface see Section ??.

library(gamlss.add)
# linear interaction model
m1 <- gamlss(lborev1˜lboopen*lnosc, data=film90, trace=FALSE)
m2 <- gamlss(lborev1˜lboopen*lnosc+dist, data=film90, trace=FALSE)

# additive model using the pb() function
m3 <- gamlss(lborev1˜pb(lboopen) +pb(lnosc), data=film90,

trace=FALSE)
m4 <- gamlss(lborev1˜pb(lboopen) +pb(lnosc)+dist, data=film90,

trace=FALSE)
# fitting a surface using ga()
m5 <- gamlss(lborev1˜ga(˜te(lboopen,lnosc)), data=film90,

trace=FALSE)
m6 <- gamlss(lborev1˜ga(˜te(lboopen,lnosc))+dist, data=film90,
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trace=FALSE)

GAIC(m1, m2, m3, m4, m5, m6)

## df AIC
## m6 16.01650 11779.76
## m4 18.53520 11828.59
## m5 15.91276 11843.78
## m3 18.12674 11908.73
## m2 6.00000 12080.99
## m1 5.00000 12226.84

GAIC(m1, m2, m3, m4, m5, m6, k=log(4031))

## df AIC
## m6 16.01650 11880.69
## m5 15.91276 11944.06
## m4 18.53520 11945.39
## m3 18.12674 12022.96
## m2 6.00000 12118.80
## m1 5.00000 12258.35

The best model appears to be m6, which fits a surface for lboopen and lnosc and an additive
term for dist. Unfortunately a look at its residuals reveals that the normal distribution model
fits very badly. The following worm plot shows this clearly, since most of the points lie outside
the approximate pointwise 95% confidence interval bands (shown as dashed elliptical curves).

Figure 15wp(m6, ylim.all=1.1)

Note that in order to visualize the fitted surface, plot() or vis.gam() of mgcv may be used.
The gam object fitted within the backfitting algorithm is saved under the name g4$mu.coefSmo
and is retrieved using the function getSmo():

Figure 16

library(mgcv)
plot(getSmo(m6))
vis.gam(getSmo(m6),theta = 0, phi = 30)

To check whether we need to model σ as a function of the explanatory variables:

m7<- gamlss(lborev1˜ga(˜te(lboopen,lnosc))+dist,
sigma.fo=˜ga(˜te(lboopen,lnosc))+dist,
data=film90, trace=FALSE)

AIC(m6, m7)

## df AIC
## m7 27.64729 10043.89
## m6 16.01650 11779.76

AIC(m6, m7, k=log(4031))

## df AIC
## m7 27.64729 10218.12
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Figure 15: The worm plot from the normal distribution model m6, in which a fitted surface was
used for µ.
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Figure 16: The fitted contour and surface plot from model m6.
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## m6 16.01650 11880.69

We find that model m7 is superior to m6, using either AIC or SBC. A worm plot of the residuals
(Figure 17) is used to check the adequacy of the model. This indicates that model m7, while an
improvement compared to m6, still does not adequately explain the response variable.

Figure 17wp(m7, ylim.all=1.1)
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Figure 17: The worm plot from the normal distribution model m7, in which a fitted surface is
used for both µ and σ.

3.2.3 Modelling the data using the BCPE distrbution

Next we model the response variable using the BCPE distribution [Rigby and Stasinopoulos,
2004], which is a four-parameter distribution defined on the positive real line. Model m8 fits
additive terms using pb(), while model m9 fits smooth surfaces using ga() for all four distribution
parameters.

m8 <- gamlss(lborev1 ˜ pb(lboopen)+pb(lnosc) + dist,
sigma.fo = ˜ pb(lboopen)+pb(lnosc) + dist,

nu.fo = ˜ pb(lboopen)+pb(lnosc) + dist,
tau.fo = ˜ pb(lboopen)+pb(lnosc) + dist,

family = BCPE, data = film90, trace=FALSE)
m9 <- gamlss(lborev1 ˜ ga(˜te(lboopen,lnosc)) + dist,

sigma.fo = ˜ ga(˜te(lboopen,lnosc)) + dist,
nu.fo = ˜ ga(˜te(lboopen,lnosc)) + dist,
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tau.fo = ˜ ga(˜te(lboopen,lnosc)) + dist,
family = BCPE, data = film90, n.cyc=20, trace=FALSE)

AIC(m6, m7, m8, m9)

## df AIC
## m9 41.83029 9836.412
## m8 44.95828 9980.948
## m7 27.64729 10043.889
## m6 16.01650 11779.759

AIC(m6, m7, m8, m9, k=log(4031))

## df AIC
## m9 41.83029 10100.02
## m7 27.64729 10218.12
## m8 44.95828 10264.26
## m6 16.01650 11880.69

The model m9 seems superior according to AIC and SBC, but it is more complicated (using far
more degrees of freedom) and may be overfitting the data. Next we plot the worm plots for m8
and m9.

31



Figure 18wp(m8, ylim.all=0.5)
wp(m9, ylim.all=0.5)
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Figure 18: Worm plots from the BCPE distribution models. Left: m8, right: m9.

The worm plot of m8 (left panel of Figure 18) looks slightly better than that of m9 (on the right),
but it is hard to decide. We can get a better idea of how the model fits in the joint ranges of
the two explanatory varibles lboopen and lnosc by using a worm plot with two explanatory
variables:

Figure 19
wp(m9, xvar=˜lboopen+lnosc, ylim.worm=1)

In the resulting worm plot given in Figure 19, the four columns correspond to the four ranges
of lboopen displayed above the plot, and the four rows correspond to the four ranges of lnosc
displayed to the right of the plot. Within the plot there are 16 individual worm plots of the
residuals corresponding to the 16 joint ranges of lboopen and lnosc. Some joint ranges have no
observations within them. The worm plots generally indicate an adequate fit within the joint
ranges.

The fitted smooth surfaces for µ, σ, ν and τ for model m9 are plotted in Figure 20 by using the
following commands:

Figure 20

vis.gam(getSmo(m9,what="mu"), theta=30, phi=10)
title("mu")
vis.gam(getSmo(m9,what="sigma"), theta=30, phi=15)
title("sigma")
vis.gam(getSmo(m9,what="nu"), theta=30, phi=15)
title("nu")
vis.gam(getSmo(m9,what="tau"), theta=30, phi=15)
title("tau")

We leave further simpification of the model to the reader.
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Figure 19: The worm plot for model m8, by lboopen and lnosc.
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Figure 20: The fitted smooth surfaces for µ, σ, ν and τ of model m9.
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4 Day 2 Afternoon

4.1 Practical 9: The LGA Claims data

The LGAclaims data set [de Jong and Heller, 2008] contains the number of third party claims in
a twelve month period between 1984-1986 in each of 176 geographical areas (local government
areas) in New South Wales, Australia. Areas are grouped into thirteen statistical divisions (SD).
Other recorded variables are the number of accidents, the number of people killed or injured and
population in each area. The number of claims (Claims) is analyzed as the response variable.

R data file: LGAclaims in package gamlss.data of dimensions 176× 11

var LGA : local government area name

SD : statistical division (1,2,...,13)

Claims : number of third party claims

Pop density : population density

KI : number of people killed or injured

Accidents : number of accidents

Population : population size

L Population : log population

L Accidents : log number of accidents

L KI : log KI

L Popdensity : log population density

purpose: to demonstrate selection of variables.

This exercse explores the use of stepGAIC() for the selection of terms for particular distribution
parameters. Exercise ?? explores the automated function stepGAICAll.A() for selecting terms
for all the distribution parameters.

1. Input the data and plot them.

2. Check whether a Poisson or negative binomial model for Claims (using the explanatory
variables) is appropriate for the data.

3. The function dropterm() provides a single term deletion facility in gamlss. Check whether
any of the linear terms can be deleted from the model.

4. The function addterm() provides the facility of adding single terms in the model. Use
the function to check whether a two-way interaction is needed (from the model with the
linear terms).

5. The fuction stepGAIC() provides a mechanism for stepwise selection of appropriate linear
terms for any of the parameters of the distribution. Use it here to select a model for µ.
Note that the argument gd.tol=Inf is crucial for some of the fitting at later stages since
it prevents the algorithm from stopping if the deviance increases in any of the iterations.
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6. Use the function stepGAIC() to select an appropriate model for σ, given the model for µ.

7. Conditional on the selected model for σ, explore if the model for µ can be simplified.

8. Plot the fitted terms for µ and σ respectively, using term.plot().

9. Use diagnostics to assess whether the model residuals are supportive of the assumed model
(see Chapter ?? for details).

4.2 Practical 10: The Dutch boys head circumference data

The Fourth Dutch Growth Study [Fredriks et al., 2000a,b] also recorded head circumference.
In the data file db from gamlss.data, we have head circumference and age of the Dutch boys.
Cases with missing values have been removed. There are 7,040 observations.

R data file: db in package gamlss.data of dimensions 7040× 2

variables

head : head circumference in cm

age : age in years

purpose: to demonstrate centile estimation.

Familiarize with centile estimation by repeating the R commands given in this chapter, using
the Dutch boys head circumference against age.

1. Input and plot the data.

data(db)
names(db)
plot(head˜age,data=db)

2. To obtain centile curves for head circumference (head) against age, use the automated
function lms(). This function performs the following:

(a) first chooses an appropriate power transformation of age, u = ageξ, by default
trans.x=TRUE;

(b) fits each of a list of families of distributions to the response variable head. Each pa-
rameter of a distribution is fitted locally using the P-spline smoothing function pb()
in the transformed explanatory variable. pb() automatically chooses the smoothing
parameter;

(c) chooses the best distribution from the list of families according to criterion GAIC(κ).

m0<-lms(head,age,families=c("BCCGo","BCPEo","BCTo"),data=db,
k=4,calibration=F, trans.x=T)

m0$family
m0$power

This function takes a few minutes, so read on while you wait.
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Note that the best distribution family, according to GAIC(4), is stored in m0$family, i.e.
BCTo. The power transformation chosen for age is stored in m0$power, i.e. u = agem0$power.

3. You can refit the chosen model using the gamlss function:

db$Tage<-(db$age)ˆ(m0$power)
m1<-gamlss(head˜pb(Tage),sigma.fo=˜pb(Tage),nu.fo=˜pb(Tage),

tau.fo=˜pb(Tage), family=BCTo,data=db)

Alternatively use

m2<-gamlss(head˜pb(ageˆm0$power),sigma.fo=˜pb(ageˆm0$power),
nu.fo=˜pb(ageˆm0$power), tau.fo=˜pb(ageˆm0$power),
family=BCTo,data=db)

GAIC(m0,m1,m2,k=4)

The alternative method is not recommended for large data since the calculation agem0$power

is performed at each iteration of the gamlss fitting algorithm.

4. The centile curves are given by

centiles(m0,xvar=db$age)
centiles.fan(m0,xvar=db$age)

To split the centile plot at age = 3 (in order to see the centiles for age < 3 more clearly):

centiles.split(m0,xvar=db$age,xcut.points=c(3))

A plot showing the distribution of head circumference (vertically) for specific values of
age is given by

library(gamlss.util)
plotSimpleGamlss(head,age,m0,data=db,x.val=seq(5,20,5),

xlim=c(-3,23))
plotSimpleGamlss(head,age,m0,data=db,x.val=seq(1,22,7),

xlim=c(-8,23))

5. Look at the fitted parameters µ (the approximate median), σ (the approximate coefficient
of variation), ν (the skewness parameter) and τ (the kurtosis parameter) of the BCTo
distribution plotted against age.

fittedPlot(m0,x=db$age)

6. Check the residuals of the model to see if the model is adequate. The function plot()
gives a QQ plot of the residuals, and wp() gives a worm plot. Approximately 95% of the
residuals should be between the 95% pointwise interval bands in the worm plot.

plot(m0)
wp(m0,ylim.all=1)

Looking at the single worm plot, we find seven outliers in the upper tail. Now split the
range of age into 16 intervals and obtain a QQ plot of the residuals within each age range.
This allows the identification of any regions of age where the model is inadequate.
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wp(m0,xvar=db$age,ylim.worm=1.5,n.inter=16)

Now obtain Q statistics for the 16 regions of age. This also allows the identification of
any regions of age where the model is inadequate.

Q.stats(m0,xvar=db$age,n.inter=20)

7. The centiles values can be calculated and plotted for new values of age:

nage<-seq(0,20,0.1)
centiles.pred(m0,xname="age",xvalues=nage,plot=T,ylab="head",

xlab="age",legend=F)

Also the z-scores for three new people with (head, age)=(45,5), (50,10) and (60,15)
respectively is obtained by:

newhead<- c(45,50,60)
newage<-c(5,10,15)
centiles.pred(m0,xname="age",xvalues=newage,yval=newhead,

type="z-scores",plot=T, ylab="head",xlab="age")

A individual with a z-score < −2 indicates the person has an unusually low head circum-
ference for his age, while a z-score > 2 indicates the person has an unusually high head
circumference for his age.

8. Remove (or weight out) extreme outliers in head circumference (given age) as follows
below.

From the worm plot of the residuals from model m0 there are seven extreme outliers in
the upper tail, with residuals greater than 3.5. There are also two cases with residuals
less than −3.5. They are causing a distortion in the worm plot, resulting in a distortion
in the fitted model as seen by the Q statistics and hence a distortion in the centile curves.

One solution to the distorted centile percentages (i.e. a difference between the nomi-
nal model percentages and the sample percentages below the centile curves) is to use
calibration.

calibration(m0,xvar=db$age)

An alternative, possibly better, approach is to remove these outliers, i.e. seven extreme
outliers in the upper tail and two in the lower tail.

which(resid(m0)>3.5)
which(resid(m0)< -3.5)
dbsub <- subset(db, (resid(m0)> -3.5)&(resid(m0)< 3.5))

Refit the model.

m3<-gamlss(head˜pb(ageˆm0$power),sigma.fo=˜pb(ageˆm0$power),
nu.fo=˜pb(ageˆm0$power),tau.fo=˜pb(ageˆm0$power),
family=BCTo,data=dbsub)

wp(m3,ylim.all=1)

The resulting fit to the data, worm plot and Q statistics are substantially improved. If the
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nine outliers are believed to be errors in the data set, then centile curves can be obtained
directly from m3. However if the outliers are believed to be genuine observations, then
centile curves should be obtained for the full data set db. The centile curve percentages
from m3 need to be adjusted for the cases removed from each tail. To obtain centile curves
for the full data set db at centiles given by cent use the following:

cent<- c(0.4,2,10,25,50,75,90,98,99.6)
a<- (2/7040)*100 # lower percentage removed
b<- (7/7040)*100 # upper percentage removed
newcent<-(cent-a)/(1-(a+b)/100)
centiles(m3,xvar=dbsub$age,cent=newcent, legend=FALSE)

4.3 Practical 11: The Global Lung Function Initiative data, males

This analysis finds centiles of a response variable dependent on two quantitative explanatory
variables. The data are provided by the Global Lung Function Initiative, and are accessed at
www.ers-education.org/guidelines/global-lung-function-initiative/
statistics.aspx
The response variable is the forced expired volume (fev) and the explanatory variables are
height and age.

1. (a) Input the data into data frame lung and select the males into data frame dm.

dm<-subset(lung, sex==1)
dim(dm)

The number of male cases is n = 5, 723.

(b) Obtain a scatterplot of fev against height and age and both.

plot(fev˜height,data=dm)
plot(fev˜age,data=dm)
height <-dm$height
age <- dm$age
fev <- dm$fev
library(lattice)
cloud(fev˜height*age)
# or more detailed
library(rgl)
plot3d(height,age,fev)
library(car)
scatter3d(dm$height,dm$age,dm$fev,xlab="height",ylab="age",

zlab="fev",ticktype="detailed")

(c) Following Cole et al. [2009] and Quanjer et al. [2012], apply a log transformation to
height and age.

dm <- transform(da, la= log(age),lh=height)

2. Use stepGAICAll.A() to search for a suitable model for fev using the BCTo distribution
(starting from a model m1 with constant parameters). Use a local SBC to choose the
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effective degrees of freedom for smoothing in the smoothing functions pb. Also use a
global SBC criterion to select terms in the stepGAICAll.A procedure. The reason for
using SBC (i.e. κ = log(5723)) is to achieve smooth centiles. A lower value of κ (e.g.
κ = 4) would result in less smooth centiles but a better fit to the data, while a higher
value of κ would result in even smoother centiles, but a worse fit to the data.

m1<-gamlss(fev˜1,sigma.fo=˜1,nu.fo=˜1,tau.fo=˜1, family=BCTo,
data=dm,n.cyc=100)

k1<-log(5723)
m2<-stepGAICAll.A(m1,scope=list(lower=˜1,upper=˜pb(lh,

method="GAIC",k=k1) + pb(la,method="GAIC",k=k1)), k=k1)

This will take about five minutes to complete. See the chosen model by

summary(m2)

3. (a) Refit the chosen model, but replacing lh and la by log(height) and log(age) in
order to use predictAll() in (f) below.

m3<-gamlss(fev˜pb((log(height)),method="GAIC",k=k1)+
pb((log(age)),method="GAIC",k=k1),

sigma.fo=˜pb((log(height)),method="GAIC",k=k1)+
pb((log(age)),method="GAIC",k=k1),

nu.fo=˜1,tau.fo=˜1, family=BCTo,data=dm, n.cyc=100)

(b) Amend model m3 to fit distribution BCCGo and then BCPEo and show that m3 has the
lowest SBC.

(c) Check the adequacy of model m3 using residual diagnostics.

plot(m3)
wp(m3,ylim.all=0.6)
wp(m3, xvar=˜age, n.inter=9, ylim.worm=0.8)
wp(m3, xvar=˜height, n.inter=9, ylim.worm=0.8)
wp(m3, xvar=˜age+height, n.inter=4, ylim.worm=1)
Q.stats(m3,xvar=dm$height,n.inter=25)

(d) Output the effective degrees of freedom (including 2 for the constant and linear
terms) used for each smoothing function in model m3.

edfAll(m3)

(e) Look at the fitted smooth functions in model m3.

term.plot(m3,what="mu", pages=1)
term.plot(m3,what="sigma", pages=1)

4. An alternative method of choosing the effective degrees of freedom for the smoothing func-
tions is by minimizing a global SBC, instead of a local SBC in (c), using the find.hyper()
function. This should use cubic splines instead of penalized splines. This takes about 60
minutes.

mod<-quote(gamlss(fev˜cs((log(height)),df=p[1])+
cs((log(age)),df=p[2]),sigma.fo=˜cs((log(height)),
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df=p[3])+cs((log(age)),df=p[4]),nu.fo=˜1,tau.fo=˜1,
family=BCTo,data=dm, control=gamlss.control(trace=FALSE,

n.cyc=100)))

best<-find.hyper(model=mod,par=c(6,6,3,3),
lower=c(0.01,0.01,0.01,0.01),
steps=c(0.1,0.1,0.1,0.1), k=k1)

best

The resulting effective degrees of freedom are very similar to model m3.

5. (a) Now fit a model for height against age. The purpose of this is to find lower and
upper centile limits (0.1% and 99.9%) of height for each age (to be used for the
contour plot of the 5% centile of fev against height and age. in (f) below.

mh<-gamlss(height˜pb(log(age),method="GAIC",k=k1),
sigma.fo=˜pb(log(age),method="GAIC",k=k1),
nu.fo=˜pb(log(age),method="GAIC",k=k1),
tau.fo=˜pb(log(age),method="GAIC",k=k1),
family=BCTo, data=dm)

Plot the centiles for height against age for model mh.

centiles(mh,xvar=dm$age,cent=c(0.1,0.4,2,10,25,50,75,90,
98,99.6,99.9),ylab="height",xlab="age",legend=FALSE)

(b) Now find lower (0.1%) and upper (99.9%) limits for height given age, stored in
maty[,2] and maty[,4].

newage<- seq(5,90,0.1)
newcent<- c(0.1,50,99.9)
maty<-centiles.pred(mh,xname="age",xvalues=newage,

cent=newcent,plot=TRUE)
maty[1:10,]

6. Construct a contour plot of the 5th centile of fev against height and age:

(a) Expand a grid of values of age from 5 to 90 years and height from 100 to 210 cm to
cover the limits of height in (e)(ii) above.

newdata<-expand.grid(age=seq(5,90,0.1),
height=seq(100,210,1))

(b) Use the chosen model m3 for fev to predict all the parameters µ, σ, ν and τ of the
distribution BCTo for the values of age and height in newdata.

m3p<-predictAll(m3, newdata=newdata, type="response")

(c) Calculate the 5th centile of fev for all cases in newdata.

fev5<-qBCPE(0.05,m3p$mu,m3p$sigma,m3p$nu,m3p$tau)

(d) For all cases of newdata with values of height outside the lower (0.1%) and upper
(99.9%) bounds for height, replace the value of fev5 with a missing value (NaN).
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lower<-rep(maty[,2],111)
upper<-rep(maty[,4],111)
fev5a<-ifelse(((newdata$height<lower)|

(newdata$height>upper)),NaN,fev5)

(e) Obtain a contour plot of the 5th centile of fev against height and age.

newheight<-seq(100,210,1)
newage<-seq(5,90,0.1)
mfev5<-matrix(data=fev5a,nrow=851,ncol=111)
contour(newage,newheight,mfev5,nlevels=40,

xlab="age(years)",ylab="height(cm)")
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