
11. Qualitative Predictor Variables

Example: For the last 100 UF football games we have:

Yi = #points scored by UF football team in game i
Xi1 = #games won by opponent in their last 10 games

Distinguish between home (4) and away (◦) games.
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Q: How can we incorporate “ho-
me” and “away” into the SLR ?

A: An indicator variable:

Xi2 =
{

1 home game
0 otherwise
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New model
E(Yi) = β0 + β1Xi1 + β2Xi2

For home games:

E(Yi) = β0 + β1Xi1 + β2(1) = (β0 + β2) + β1Xi1

For away games:

E(Yi) = β0 + β1Xi1 + β2(0) = β0 + β1Xi1
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same slope β1 but

different intercepts
β0 + β2 and β0

How would you decide if a different
intercept is necessary?
Test: H0 : β2 = 0 vs. HA : not H0

t-test:

t∗ = b2/
√

MSE · [(X′X)−1]3,3

F-test:
F ∗ = SSR(X2|X1)/MSE(X1, X2)
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Why not using two indicators ?

X∗
i2 =

{
1 home game
0 otherwise

X∗
i3 =

{
1 away game
0 otherwise

and considering the model

E(Yi) = β0 + β1Xi1 + β∗2X∗
i2 + β∗3X∗

i3

Note, X∗
i2 + X∗

i3 = 1, the respective intercept in the ith row of X. Hence, the
columns of X are no longer linearly independent.

General Rule: A qualitative variable with c classes will be represented by c − 1
indicator variables, each taking on the values 0 and 1.

Question: How realistic are parallel lines ?
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That is, how realistic is it to assume that “UF will score β2 more points at home
than away, regardless of the strength of the opponent”?

How can we make the model more flexible ?
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Answer: Add the interaction term

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2

For home games: E(Yi) = (β0 + β2) + (β1 + β3)Xi1

For away games: E(Yi) = β0 + β1Xi1

Q: How would you answer the question “Is a single line sufficient”?

A: Test: H0 : β2 = β3 = 0 vs. HA : not H0

Test Statistic:

F ∗ =
SSR(X1X2, X2|X1)/2
MSE(X1, X2, X1X2)

Rejection rule: reject H0, if F ∗ > F (1− α; 2, n− p).

Q: How would you make sure this extra sum of squares is available in R?

A: Fit the model with the interaction term last !
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More Complex Models

More than two classes

Example: Yi = gas mileage
Xi1 = age of vehicle
we further have domestic, foreign, and trucks

Remember General Rule: The number of indicators that you need is one fewer
than the number of levels.

Here we need two such indicators:

Xi2 =
{

1 domestic
0 otherwise

Xi3 =
{

1 foreign
0 otherwise

Model:
E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3
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Xi2 =
{

1 domestic
0 otherwise

Xi3 =
{

1 foreign
0 otherwise

Model: E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3

domestic: E(Yi) = (β0 + β2) + β1Xi1

foreign: E(Yi) = (β0 + β3) + β1Xi1

trucks: E(Yi) = β0 + β1Xi1

> attach(car); car
milage age type

1 388 2.1 domestic
:
90 277 5.7 truck
> x2 <- rep(0, 90) + (type=="domestic")
> x3 <- rep(0, 90) + (type=="foreign")
> lm(milage ~ age + x2 + x3, data=car)
(Intercept) age x2 x3

287.638 -8.088 85.986 133.384
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FAQ: Why couldn’t we use 1 indicator with 3 values:

X∗
i2 =





0 trucks
1 domestic
2 foreign

Model: E(Yi) = β0 + β1Xi1 + β∗2X∗
i2

> x2star <- x2 + 2*x3
> lm(milage ~ age + x2star, data=car)
(Intercept) age x2star

295.737 -8.394 66.653
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Q: How would we allow each type of vehicle to have its own intercept and slope?

A: Add Interactions!

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi1Xi2 + β5Xi1Xi3

> lm(milage ~ age + x2 + x3 + x2:age + x3:age)
Coefficients:
(Intercept) age x2 x3 age:x2 age:x3

302.58 -10.75 88.99 83.60 -0.93 9.17
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foreign:
E(Yi) = (β0 + β3) + (β1 + β5)X1

domestic:
E(Yi) = (β0 + β2) + (β1 + β4)X1

truck:
E(Yi) = β0 + β1X1
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More than 1 Qualitative Predictor Variable:

Example: 100 UF football games

Yi = #points scored by UF football team in game i
Xi1 = #games won by opponent in their last 10 games

Distinguish between home/away and day/night games.

Xi2 =
{

1 home
0 away

Xi3 =
{

1 day
0 night

Model: E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3

away/day: E(Yi) = (β0 + β3) + β1Xi1

away/night: E(Yi) = β0 + β1Xi1

We score β3 more points during the day than at night for away games.
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home/day: E(Yi) = (β0 + β2 + β3) + β1Xi1

home/night: E(Yi) = (β0 + β2) + β1Xi1

We also score β3 more points during the day than at night for home games.

Additional interactions are also possible!

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi1Xi2 + β5Xi1Xi3 + β6Xi2Xi3
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Example – House Data:

Yi = price/1000
Xi1 = square feet/1000

Xi2 =
{

1 new
0 used

A model that allows new and used houses to have their own slope and intercept
is

E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2

Submodels:

New: E(Yi) = (β0 + β2) + (β1 + β3)Xi1

Used: E(Yi) = β0 + β1Xi1

How would you test that the regression lines have the same slope?
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H0 : β3 = 0 vs. HA : β3 6= 0

F ∗ =
SSR(area*new|area, new)/1
MSE(area, new, area*new)

t∗ =
b3√

MSE · [(X′X)−1]4,4
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> attach(houses)
> hm <- lm(price ~ area+new+area:new); summary(hm)
Coefficients:

Estimate Std.Error t value Pr(>|t|)
(Intercept) -16.600 6.210 -2.673 0.008944 **
area 66.604 3.694 18.033 < 2e-16 ***
new -31.826 14.818 -2.148 0.034446 *
area:new 29.392 8.195 3.587 0.000547 ***
---
Sig.codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Residual std. error: 16.35 on 89 degrees of freedom
Mult.R-Squared: 0.8675, Adjusted R-squared: 0.8631
F-stat: 194.3 on 3 and 89 df, p-value: 0
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> anova(hm)
Analysis of Variance Table

Response: price
Df Sum Sq Mean Sq F value Pr(>F)

area 1 145097 145097 542.722 < 2.2e-16 ***
new 1 7275 7275 27.210 1.178e-06 ***
area:new 1 3439 3439 12.865 0.0005467 ***
Residuals 89 23794 267
---
Sig.codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
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Let’s compare two models:

Model 1: E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2

where Xi2 =
{

1 new
0 used

Model 2: E(Yi) = β∗0 + β∗1Xi1 + β∗2X∗
i2 + β∗3Xi1X

∗
i2

where X∗
i2 =

{
1 used
0 new

parameter model 1 model 2
intercept for new β0 + β2 β∗0
intercept for used β0 β∗0 + β∗2
slope for new β1 + β3 β∗1
slope for used β1 β∗1 + β∗3
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Thus, we should have

b∗0 = b0 + b2

b∗1 = b1 + b3

b∗2 = −b2

b∗3 = −b3

Let’s show that this is indeed the case:

Xn×4 = design matrix for model 1
X∗

n×4 = design matrix for model 2
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We want to find M4×4, such that X∗ = XM



1 X11 0 0
1 X21 1 X21

1 X31 1 X31
... ... ... ...
1 Xn1 0 0




=




1 X11 1 X11

1 X21 0 0
1 X31 0 0
... ... ... ...
1 Xn1 1 Xn1







1 0 1 0
0 1 0 1
0 0 −1 0
0 0 0 −1




b∗ = (X∗′X∗)−1X∗′Y

= ((XM)′(XM))−1 (XM)′Y

= (M′X′XM)−1 M′X′Y

=
(
M−1(X′X)−1(M′)−1

)
M′X′Y

= M−1(X′X)−1X′Y

= M−1b
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It’s easy to show that M = M−1, so




b∗0
b∗1
b∗2
b∗3


=




1 0 1 0
0 1 0 1
0 0 −1 0
0 0 0 −1







b0

b1

b2

b3


=




b0 + b2

b1 + b3

−b2

−b3



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Piecewise Linear Regressions

Example:
Yi = weight of a dog
Xi1 = age in months

We expect a different weight gain when the dog is a puppy and when it’s fully
grown. A scatter plot would look like
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12 = 1 year

How would we model this type of data ?

E(Yi) = β0 + β1Xi1

+β2(Xi1 − 12)Xi2

where

Xi2 =
{

1 Xi1 > 12
0 Xi1 < 12

The age of 12 months is called change-
point.

28



Derivation: We want
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Xi1 < 12:

E(Yi) = β0 + β1Xi1

Xi1 ≥ 12:

E(Yi) = β̃0 + (β1 + β2)Xi1
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But, has to be the same at the changepoint:

β0 + β1(12) = β̃0 + (β1 + β2)(12)

β̃0 = β0 − 12β2

Thus we want:

For Xi1 < 12: E(Yi) = β0 + β1Xi1

For Xi1 ≥ 12: E(Yi) = β0 + β1Xi1 + β2Xi1 − 12β2
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