
6. Multiple Linear Regression

SLR: 1 predictor X, MLR: more than 1 predictor

Example data set:
Yi = #points scored by UF football team in game i
Xi1 = #games won by opponent in their last 10 games
Xi2 = #healthy starters for UF (out of 22) in game i

i points Xi1 Xi2

1 47 6 18
2 24 9 16
3 60 3 19
... ... ... ...
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Simplest Multiple Linear Regression (MLR) Model:

Yi = β0 + β1Xi1 + β2Xi2 + εi, i = 1, 2, . . . , n

• εi
iid∼ N(0, σ2)

• β0, β1, β2, and σ2 are unknown parameters
• Xij’s are known constants.

SLR: E(Y ) = β0 + β1X
β1 is the change in E(Y ) corresponding to a unit increase in X.

MLR: E(Y ) = β0 + β1X1 + β2X2

When we have more than 1 predictor, we have to worry about how they affect
each other.
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Suppose we fix Xi1 = 5 (games won by ith opponent):

E(Yi) = β0 + β1(5) + β2Xi2

= (β0 + β1(5)) + β2Xi2

Suppose we fix Xi1 = 7:

E(Yi) = β0 + β1(7) + β2Xi2

= (β0 + β1(7)) + β2Xi2

We’ve got SLR models with different intercepts but equal slopes.

Plot of E(Y ) vs X2 for fixed values of X1
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By this model, we assumed that,
for any fixed value of Xi1 (oppo-
nent wins), the change in E(Y )
corresponding to the addition of
1 healthy starter is β2 for all ga-
mes.
Is this reasonable?
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Suppose AU is winless in their last 10 games. Our model says that if we add 1
healthy starter, we expect that UF scores β2 more points.

Suppose BU won their last 10 games. Again, if we add 1 healthy starter, we
expect to score β2 more points.

Starters probably won’t play against AU, so we expect to gain nothing if a starter
becomes healthy.

Maybe the plot should look like:
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Smaller slope since starters are
less important against bad teams.

Q: How can we change our model
to allow for this?

A: Add an interaction term
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E(Yi) = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2

This function is not a simple plane any more!

When Xi1 = 5:
E(Yi) = (β0 + β1(5)) + (β2 + β3(5))Xi2

When Xi1 = 7:
E(Yi) = (β0 + β1(7)) + (β2 + β3(7))Xi2
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Now the gain in expected points
corresponding to the addition of
1 healthy starter depends on Xi1

as it should.

β1 < 0,
β2 > 0, β3 > 0
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General Linear Regression Model

Data (Xi1, Xi2, . . . , Xi,p−1, Yi), i = 1, 2, . . . , n

Model Equation and Assumptions

Yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βp−1Xi,p−1 + εi

• εi
iid∼ N(0, σ2)

• β0, β1, β2, . . . , βp−1 and σ2 are unknown param’s
• Xij’s are known constants.
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Two cases:

1. p− 1 different predictors

2. some of the predictors are functions of the others

(a) polynomial regression

Yi = β0 + β1Xi + β2X
2
i + εi

Let Zi1 = Xi and Zi2 = X2
i then

Yi = β0 + β1Zi1 + β2Zi2 + εi

(b) interaction effects

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

Let Xi3 = Xi1Xi2 and we’re back to the general linear regression model
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(c) both of (a) and (b)

Yi = β0 + β1Xi1 + β2Xi2 + β3X
2
i1 + β4X

2
i2 + β5Xi1Xi2 + εi

With Zi1 = Xi1, Zi2 = Xi2, Zi3 = X2
i1, Zi4 = X2

i2, Zi5 = Xi1Xi2 this
transforms to the general linear regression model

Yi = β0 + β1Zi1 + β2Zi2 + β3Zi3 + β4Zi4 + β5Zi5 + εi
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General Linear Model in Matrix Terms

Yn×1 =




Y1

Y2
...

Yn


 Xn×p =




1 X11 X12 . . . X1,p−1

1 X21 X22 . . . X2,p−1
... ... ... . . . ...
1 Xn1 Xn2 . . . Xn,p−1




βp×1 =




β0

β1
...

βp−1


 εn×1 =




ε1
ε2
...
εn




12



Model:
Y = Xβ + ε

Assumptions:

• ε ∼ N(0, σ2I)

• β and σ2 are unknown parameters

• X is a (n× p) matrix of fixed known constants
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Least Squares Estimates:

bp×1 =




b0

b1
...

bp−1


 = (X′X)−1X′Y

Fitted Values:

Ŷn×1 =




Ŷ1

Ŷ2
...

Ŷn


=




b0 + b1X11 + . . . + bp−1X1,p−1

b0 + b1X21 + . . . + bp−1X2,p−1
...

b0 + b1Xn1 + . . . + bp−1Xn,p−1




= Xb

14



Residuals:

en×1 = Y − Ŷ = Y −Xb = Y −X(X′X)−1X′Y

= (I−H)Y

with the (n× n) hat matrix H = X(X′X)−1X′
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ANalysis Of VAriance

Formulas are exactly the same. Remember

SSTO = SSR + SSE
n∑

i=1

(Yi − Ȳ )2 =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

(Yi − Ŷi)2

but their degrees of freedom (df) change:
• SSTO still has n− 1 df
• SSR now has p− 1 because of the p param’s in Ŷi

• SSE therefore has n− p df
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ANOVA Table for MLR:

Source
variat. Sum of Squares (SS) df mean SS

Regr. SSR =
∑

i(Ŷi − Ȳ )2 p− 1 SSR
p−1

Error SSE =
∑

i(Yi − Ŷi)2 n− p SSE
n−p

Total SSTO =
∑

i(Yi − Ȳ )2 n− 1
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Overall F-Test for Regression Relation

H0 : β1 = β2 = · · · = βp−1 = 0

HA : not all βj (j = 1, . . . , p− 1) equal zero.

H0 states that all predictors X1, . . . , Xp−1 are useless (no relation between Y
and the set of X variables), whereas HA says that at least one is useful.

Test Statistic

F ∗ =
MSR

MSE

Rejection Rule: reject H0, if F ∗ > F (1− α; p− 1, n− p)

Note: when p− 1 = 1, this is the F-test for H0 : β1 = 0 in the SLR.
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Coefficient of Multiple Determination: it’s the same as in SLR’s,

R2 =
SSR

SSTO
= 1− SSE

SSTO

It measures the relative reduction in the total variation (SSTO) due to the MLR.
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Inferences about Regression Parameters

Since with Cp×n = (X′X)−1X′ we can write

b = (X′X)−1X′Y =




c11 . . . c1n
... ... ...

cp1 . . . cpn







Y1
...

Yn




Thus, every element of b is a linear combination of the Y ’s and is therefore a
normal r.v.

Again

E(b) = (X′X)−1X′ E(Y) = β

Thus b is an unbiased estimator for β. Moreover

Var(b) = σ2(X′X)−1
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This means that for any k = 0, 1, . . . , p− 1 we have

bk ∼ N

(
βk, σ

2 ·
[
(X′X)−1

]
k+1,k+1

)

where [·]jj is the jth diagonal element of the matrix.
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Thus
bk − βk√

σ2 ·
[
(X′X)−1

]
k+1,k+1

∼ N(0, 1)

and because the MSE now has df = n− p

bk − βk√
MSE ·

[
(X′X)−1

]
k+1,k+1

∼ t(n− p)

Using this we can construct tests and CI’s for each individual βk

Test Statistic:

t∗ =
bk√

MSE ·
[
(X′X)−1

]
k+1,k+1

Rejection Rule: reject H0 if t∗ > t(1− α/2; n− p)
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• (1− α)100% CI for the parameter βk

bk ± t(1− α/2; n− p)
√

MSE ·
[
(X′X)−1

]
k+1,k+1

• (1− α)100% CI for the mean of Y at Xh = (1 Xh1 Xh2 . . . Xh,p−1)′

Say we want a CI for the mean #points scored by UF when the opponent win
90% (Xh1 = 9) and there are 20 healthy starters (Xh2 = 20). So Xh = (1 9 20)′

The point estimate of E(Yh) = X′
hβ is

Ê(Yh) = Ŷh = X′
hb

Because this equals X′
h(X′X)−1X′

hY, it is a linear combination of normals and
is thus normal with

E(Ê(Yh)) = X′
h E(b) = X′

hβ
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(unbiased) and

Var(Ê(Yh)) = X′
h Var(b) Xh = σ2X′

h(X′X)−1Xh

Thus
Ê(Yh)−X′

hβ√
σ2 ·X′

h(X′X)−1Xh

∼ N(0, 1)

and
Ê(Yh)−X′

hβ√
MSE ·X′

h(X′X)−1Xh

∼ t(n− p)

The CI for X′
hβ is constructed in the usual manner.

• (1 − α)100% Prediction Interval for a New Observation at Xh =
(1 Xh1 Xh2 . . . Xh,p−1)′
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Call the new observation Yh(new) and use

Yh(new) − Ê(Yh(new))√
MSE ·

{
1 + X′

h(X′X)−1Xh

} ∼ t(n− p)

with
Ê(Yh(new)) = X′

hb
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House Price Example using R

> houses <- read.table("houses.dat", col.names =
+ c("price", "area", "bed", "bath", "new"))
> attach(houses)
> plot(area, price); plot(bed, price)
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> model <- lm(price ~ area + bed)
> model
Coefficients:
(Intercept) area bed

-22.393 76.742 -1.468

> model.i <- lm(price ~ area + bed + area*bed)
> summary(model.i, corr=T)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.549 26.577 0.698 0.48704
area 47.595 18.037 2.639 0.00982 **
bed -13.416 8.379 -1.601 0.11292
area:bed 8.270 4.903 1.687 0.09515 .
---
Residual standard error: 19.37 on 89 df Multiple R-Squared: 0.814,
Adjusted R-squared: 0.8078 F-statistic: 129.9 on 3 and 89 df,
p-value: 0
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> anova(model.i)
Analysis of Variance Table
Response: price

Df Sum Sq Mean Sq F value Pr(>F)
area 1 145097 145097 386.6340 < 2e-16 ***
bed 1 40 40 0.1076 0.74371
area:bed 1 1068 1068 2.8453 0.09515 .
Residuals 89 33400 375
---
Sig.codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
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