6. Multiple Linear Regression

SLR: 1 predictor X, MLR: more than 1 predictor

Example data set:

Y, = #points scored by UF football team in game ¢
X,;1 = Fgames won by opponent in their last 10 games
X2 = #healthy starters for UF (out of 22) in game i

1 points  X;1 X9
1 47 §) 18
2 24 0 16
3

60 3 19



Simplest Multiple Linear Regression (MLR) Model:

Yi=0o+ 61 Xi1 + B2 Xia+¢€, 1=1,2,...,n
1id 2
® c; N(0,0‘ )
e 39, 31, B2, and o2 are unknown parameters
e X,,'s are known constants.

SLR: E(Y) = (o + 51 X
B is the change in E(Y') corresponding to a unit increase in X.

MLR E(Y) = 60 + ﬁle + 52X2
When we have more than 1 predictor, we have to worry about how they affect
each other.



Suppose we fix X;; =5 (games won by ith opponent):

E(Y;)) = 0Bo+ 01(5) + B2X50
= (Bo+ B1(5)) + B2Xiz
Suppose we fix X;1 =
E(Y;) = Bo+ Bi(7) + B2Xio
= (Bo+ B1(7)) + B2 Xi2

We've got SLR models with different intercepts but equal slopes.
Plot of E(Y') vs X5 for fixed values of X3



E(poInts)

Bo+B1(7)

0

5 6
#healthy starters

By this model, we assumed that,
for any fixed value of X;; (oppo-
nent wins), the change in E(Y)
corresponding to the addition of
1 healthy starter is (35 for all ga-
mes.

Is this reasonable?



Suppose AU is winless in their last 10 games. Our model says that if we add 1
healthy starter, we expect that UF scores (35 more points.

Suppose BU won their last 10 games. Again, if we add 1 healthy starter, we
expect to score (35 more points.

Starters probably won't play against AU, so we expect to gain nothing if a starter
becomes healthy.

Maybe the plot should look like:



E(poINnts)

5 6
#healthy starters

Smaller slope since starters are
less important against bad teams.

Q: How can we change our model
to allow for this?

A: Add an interaction term



E(Y:) = Bo + 81 Xi1 + B2 Xip + B3 X1 Xio
This function is not a simple plane any more!

When X;; = 5:

E(Y:) = (Bo + 51(5)) + (B2 + B5(5)) Xiz
When X;1 = T7:

E(Y;) = (Bo + B1(7)) + (B2 + B5(7)) Xiz



E(poINnts)

Bo+B1(7)

0

5 6
#healthy starters

Now the gain in expected points
corresponding to the addition of
1 healthy starter depends on X4
as it should.

B1 <0,
52>0,ﬁ3>0



General Linear Regression Model

Data (Xi17Xi2, c. ,Xz'7p_1,Y;;), 1= 1,2, e

Model Equation and Assumptions

Yi= 0o+ 61 Xi1 + BaXio+ - 4+ Bp_1Xip—1 + €
11d 2
ec, ~ N(0,0°)
e 5o, 051,02, --,0p—1 and o are unknown param’s
e X;,'s are known constants.



Two cases:

1. p — 1 different predictors

2. some of the predictors are functions of the others

(a) polynomial regression
Y, = Bo+ 01X, + 32X7 + ¢
Let Z’il = Xz and ZZ'Q = Xz2 then

Y = Bo+ b1Zis + PaZia + €

(b) interaction effects

Yi = 6o+ 51Xi1 + BoXio + B3 X1 X2 + €

Let X,;3 = X;1X,2 and we're back to the general linear regression model
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(c) both of (a) and (b)
Y; = Bo + 51X + BoXio + B3 X2 + BaX5 + B Xi1 Xio + €

With Zin = X1, Zio = Xio, Zis = X3, Zin = X3, Zis = XXy this
transforms to the general linear regression model

Yi = Po+ 0141 + BoZio + B3Zi3 + BaZia + B5Zi5 + €;

11



General Linear Model in Matrix Terms

Ynxl —

Xn><p —

_1X11 X12

1X21 X22
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1 X Xog

€Enxl1l =

€1
€2




Model:
Y =X3+¢€

Assumptions:
e e~ N(0,0°T)
e 3 and o2 are unknown parameters

e X is a (n X p) matrix of fixed known constants
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Least Squares Estimates:

Fitted Values:

Ynxl —

bo
b:l _ (X/X)_1X,Y
byt
I bo + b1 X911+ ...+ bp—le,p—l |
bo + b1 Xo1 + ...+ bp_lXQ,p_l
i bo + 01 X,,1 + ...+ bp—an,p—l |
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Residuals:

enx1 = Y-Y=Y-Xb=Y - XXX)"'XY
= I-H)Y

with the (n x n) hat matrix H = X(X'X)~1X’
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ANalysis Of VAriance

Formulas are exactly the same. Remember

SSTO = SSR + SSE
dW-Y)? = ) M-YV)P+) (V-
1=1

1=1 1=1

but their degrees of freedom (df) change:

e SSTO still hasn — 1 df

e SSR now has p — 1 because of the p param’s in Y;
e SSE therefore has n — p df
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ANOVA Table for MLR:

Source
variat. | Sum of Squares (SS) df  mean SS
. SS
Regr. | SSR=>.(Y;-Y)? »p-—-1 o1
_ V)2 _ SSE
Error | SSE=>".(V; - Y)) n—p —
Total | SSTO=Y (V;-Y)? n-1
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Overall F-Test for Regression Relation
Hy:ph=0r==06,_1=0
Hy:notall B, (=1,...,p—1) equal zero.

Hj states that all predictors Xi,...,X,_1 are useless (no relation between Y
and the set of X variables), whereas H 4 says that at least one is useful.

Test Statistic

MSR

Ff=—+—
MSE

Rejection Rule: reject Hy, if F* > F(1 —a;p—1,n —p)
Note: when p — 1 =1, this is the F-test for Hy : 31 = 0 in the SLR.
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Coefficient of Multiple Determination: it's the same as in SLR’s,

SSR _ . SSE

2 __
R = SSTO SSTO

It measures the relative reduction in the total variation (SSTO) due to the MLR.
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Inferences about Regression Parameters

Since with C,x,, = (X'X) !X’ we can write

b=(XX)"'XY =

Thus, every element of b is a linear combination of the Y's and is therefore a
normal r.v.

Again
E(b) = (X'X)'X'E(Y) =3

Thus b is an unbiased estimator for 3. Moreover
Var(b) = o*(X'X)~!
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This means that for any k =10,1,...,p — 1 we have

oo~ NV (6k’ a [(X,X)_l} k41 k:+1)

where [-];; is the jth diagonal element of the matrix.
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Thus

b —
k — Bk ~ N(0,1)
\/02- (xX)]
k+1,k+1
and because the MSE now has df =n —p
b —
O ~ t(n —p)

\/MSE ' {(X/X)_l} k+1,k+1

Using this we can construct tests and Cl's for each individual (G

Test Statistic:
b

e (e~ L

Rejection Rule: reject Hy if t* > t(1 — a/2;n — p)

t* =
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e (1 —a)100% CI for the parameter

br £ (1 — /20 — p)\/MSE ' {(X,X)_l} k+1,k+1

° (1 — 04)100% Cl for the mean of Y at Xy = (1 Xn1 Xpo ... Xh,p—1>,

Say we want a Cl for the mean #points scored by UF when the opponent win
90% (Xn1 = 9) and there are 20 healthy starters (X2 = 20). So X, = (1 9 20)’

The point estimate of E(Y}) = X 3 is
E(Y,) =Y, =X,b

Because this equals X/ (X'X)"'X/7Y, it is a linear combination of normals and
is thus normal with

E(E(Ys)) = X}, E(b) = X},
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(unbiased) and

Var(E(Y3,)) = X, Var(b) X, = 02X/, (X'X) "X,

Thus R

E(Y,) — X},8
Jo? - X (X'X) X,

~ N(0,1)

and

AN

E(Yn) — X3,8
J/MSE - X, (X'X)—1X},

The Cl for X 3 is constructed in the usual manner.

~ t(n - p)

e (1 — a)100% Prediction Interval for a New Observation at X; =
(1 Xhl th ce Xh7p_1)/
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Call the new observation Y}, (pe.) and use

P

Yh(new) - E(Yh(new))

~ t(n —p)
\/I\/ISE - {1 + X’h(X’X)—th}

with

AN

E(Yh(new)> — %b
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House Price Example using R

> houses <- read.table("houses.dat", col.names =

+ c("price", uarean, "bed", "bath", "new"))
> attach(houses)

> plot(area, price); plot(bed, price)
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> model <- 1lm(price ~ area + bed)

> model

Coefficients:

(Intercept) area bed
-22.393 76.742 -1.468

> model.i <- 1lm(price ~ area + bed + areaxbed)
> summary(model.i, corr=T)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.549 26.577 0.698 0.48704
area 47 .595 18.037 2.639 0.00982 *x
bed -13.416 8.379 -1.601 0.11292
area:bed 8.270 4.903 1.687 0.09515 .

Residual standard error: 19.37 on 89 df Multiple R-Squared: 0.814,
Adjusted R-squared: 0.8078 F-statistic: 129.9 on 3 and 89 df,
p-value: O
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> anova(model.i)
Analysis of Variance Table
Response: price
Df Sum Sq Mean Sq F value Pr(>F)

area 1 145097 145097 386.6340 < 2e-16 **x*
bed 1 40 40 0.1076 0.74371
area:bed 1 1068 1068 2.8453 0.09515 .
Residuals 89 33400 375

Sig.codes: O “*xx’ 0.001 ‘xx’ 0.01 ‘x’ 0.05 ‘.’ 0.1
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