
5. Matrix Algebra
A Prelude to Multiple Regression

Matrices are arrays of numbers and are denoted by boldface (capital) symbols.

Example: a 2× 2 matrix (always #rows × #columns)

A =
[

2 3
0 1

]

Example: a 4× 2 matrix B, and a 2× 3 matrix C

B =




4 6
1 10
5 7

12 2


 , C =

[
1 1 4
2 4 3

]
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In general, an r × c matrix is given by

Ar×c =




a11 a12 · · · a1j · · · a1c

a21 a22 · · · a2j · · · a2c
... ... ... ... ... ...

ai1 ai2 · · · aij · · · aic
... ... ... ... ... ...

ar1 ar2 · · · arj · · · arc




or in abbreviated form

Ar×c = [aij], i = 1, 2, . . . , r, j = 1, 2, . . . , c

1st subscript gives row#, 2nd subscript gives column#

Where is a79 or a44 ?
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A matrix A is called square, if it has the same # of rows and columns (r = c).

Example:

A2×2 =
[

2.7 7.0
1.4 3.4

]

Matrices having either 1 row (r = 1) or 1 column (c = 1) are called vectors.

Example:
column vector A (c = 1) and row vector C′ (r = 1)

A =




4
7

13


 , C′ =

[
c1 c2 c3 c4

]

Row vectors always have the prime!
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Transpose: A′ is the transpose of A where

A =




3 1 5 6
2 4 3 7

10 0 1 2


 , A′ =




3 2 10
1 4 0
5 3 1
6 7 2




A′ is obtained by interchanging columns & rows of A

aij is the typical element of A
a′ij is the typical element of A′

aij = a′ji (a12 = a′21)
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Equality of Matrices: Two matrices A and B are said to be equal if they are
of the same dimension and all corresponding elements are equal.

Ar×c = Br×c means aij = bij, i = 1, . . . , r, j = 1, . . . , c.

Addition and Subtraction: To add or subtract matrices they must be of the
same dimension. The result is another matrix of this dimension. If

A3×2 =




4 6
1 10
5 7


 , B3×2 =




2 3
0 1
7 5


 ,

then its sum and its difference is calculated elementwise

C = A + B =




4 + 2 6 + 3
1 + 0 10 + 1
5 + 7 7 + 5


 =




6 9
1 11

12 12



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D = A−B =




4− 2 6− 3
1− 0 10− 1
5− 7 7− 5


 =




2 3
1 9

−2 2


 .
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Regression Analysis

Remember, we had (X1, Y1), (X2, Y2), . . . , (Xn, Yn) and wrote the SLR as

Yi = E(Yi) + εi, i = 1, 2, . . . , n.

Now we are able to write the above model as

Yn×1 = E(Yn×1) + εn×1

with the n× 1 column vectors

Y =




Y1

Y2
...

Yn


 , E(Y) =




E(Y1)
E(Y2)

...
E(Yn)


 , ε =




ε1
ε2
...
εn



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Matrix Multiplication:

(1) by a scalar, which is a (1× 1) matrix. Let

A =




5 2
3 4
1 7




If the scalar is 3, then 3 ∗A = A + A + A or

3 ∗A =




3 ∗ 5 3 ∗ 2
3 ∗ 3 3 ∗ 4
3 ∗ 1 3 ∗ 7


 =




15 6
9 12
3 21



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Generally, if λ denotes the scalar, we get

λ ∗A =




5λ 2λ
3λ 4λ
λ 7λ


 = A ∗ λ

We can also factor out a common factor, e.g.

[
15 5
10 0

]
= 5 ∗

[
3 1
2 0

]

(2) by a matrix: we write the product of two matrices A and B as AB. For
AB to exist, the #col’s of A must be the same as the #rows of B.

A3×2 =




2 5
4 1
3 2


 , B2×3 =

[
4 6 −1
0 5 8

]
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Let C = AB. You get cij by taking the inner product of the ith row of A and
the jth column of B, that is

cij =
#col’s in A∑

k=1

aikbkj

Since i = 1, . . . , #rows in A, j = 1, . . . , #col’s in B the resulting matrix C has
dimension:

(#rows in A)×(#col’s in B).

For C to exist, (#col’s in A)=(#rows in B).
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Hence, for A3×2B2×3 we get the 3× 3 matrix

C =




2 ∗ 4 + 5 ∗ 0 2 ∗ 6 + 5 ∗ 5 2 ∗ (−1) + 5 ∗ 8
4 ∗ 4 + 1 ∗ 0 4 ∗ 6 + 1 ∗ 5 4 ∗ (−1) + 1 ∗ 8
3 ∗ 4 + 2 ∗ 0 3 ∗ 6 + 2 ∗ 5 3 ∗ (−1) + 2 ∗ 8


 =




8 37 38
16 29 4
12 28 13




Note, this is different to D2×2 = B2×3A3×2 which gives the 2× 2 matrix

D =
[

4 ∗ 2 + 6 ∗ 4− 1 ∗ 3 4 ∗ 5 + 6 ∗ 1− 1 ∗ 2
0 ∗ 2 + 5 ∗ 4 + 8 ∗ 3 0 ∗ 5 + 5 ∗ 1 + 8 ∗ 2

]
=

[
29 24
44 21

]

For AB we say, B is premultiplied by A or A is postmultiplied by B.
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Regression Analysis

Remember our SLR with all means on the straight line

E(Yi) = β0 + β1Xi, i = 1, 2, . . . , n

With

Xn×2 =




1 X1

1 X2
... ...
1 Xn


 , β2×1 =

[
β0

β1

]

we get

E(Y) = Xβ =




1 X1

1 X2
... ...
1 Xn




[
β0

β1

]
=




β0 + β1X1

β0 + β1X2
...

β0 + β1Xn




Thus we rewrite the SLR as
Y = Xβ + ε.
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Important Matrices in Regression:

Y′Y =
[

Y1 Y2 . . . Yn

]



Y1

Y2
...

Yn


 =

n∑

i=1

Y 2
i

X′X =
[

1 1 . . . 1
X1 X2 . . . Xn

]



1 X1

1 X2
... ...
1 Xn


 =

[
n

∑
i Xi∑

i Xi

∑
i X

2
i

]

X′Y =
[

1 1 . . . 1
X1 X2 . . . Xn

]



Y1

Y2
...

Yn


 =

[ ∑
i Yi∑
i XiYi

]
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Special Types of Matrices:

Symmetric Matrix, if A = A′, A is said to be symmetric, e.g.

A =




2 5 8
5 1 3
8 3 2


 , A′ =




2 5 8
5 1 3
8 3 2




A symmetric matrix necessarily is square! Any product like Z′Z is symmetric.
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Diagonal Matrix is a square matrix whose off-diagonal elements are all zeros

A =




7 0 0
0 −3 0
0 0 2


 , B =




b11 0 0 0
0 b22 0 0
0 0 b33 0
0 0 0 b44




Identity Matrix I is a diagonal matrix whose elements are all 1s, e.g. B above
with bii = 1, i = 1, 2, 3, 4.

Pre- and postmultiplying by I does not change a matrix, A = IA = AI.
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Vector and matrix with all elements Unity

A column vector with all elements 1 is denoted by 1, a square matrix with all
elements 1 is denoted by J,

1 =




1
...
1


 , J =




1 . . . 1
... ...
1 . . . 1




Note that for an n× 1 vector 1 we obtain

1′1 =
[

1 . . . 1
]



1
...
1


 = n
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and

11′ =




1
...
1


 [

1 . . . 1
]

=




1 . . . 1
... ...
1 . . . 1


 = Jn×n

Zero vector A column vector with all elements 0

0 =




0
...
0



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Linear Dependence and Rank of Matrix

Consider the following matrix

A =




1 2 5 1
2 2 10 6
3 4 15 1




Think of A as being made up of 4 column vectors

A =







1
2
3







2
2
4







5
10
15







1
6
1






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Notice that the third column is 5 times the first




5
10
15


 = 5




1
2
3




We say the columns of A are linearly dependent (or A is singular). When no
such relationships exist, A’s columns are said to be linearly independent.

The rank of a matrix is the number of linearly independent columns (in the
example, its rank is 3).
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Inverse of a Matrix

Q: What’s the inverse of a number (6)?
A: Its reciprocal (1/6)!

A number multiplied by its inverse always equals 1

Generally, for the inverse 1/x of a scalar x

x
1
x

=
1
x
x = x−1x = xx−1 = 1

In matrix algebra, the inverse of A is the matrix A−1, for which

A−1A = AA−1 = I

In order for A to have an inverse:
• A must be square,
• col’s of A must be linearly independent.
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Example: Inverse of a matrix

A2×2 =
[

2 4
3 1

]
, A−1

2×2 =
[ −0.1 0.4

0.3 −0.2

]

AA−1 =
[

2 4
3 1

] [ −0.1 0.4
0.3 −0.2

]
=

[
1 0
0 1

]

A−1A =
[ −0.1 0.4

0.3 −0.2

] [
2 4
3 1

]
=

[
1 0
0 1

]
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Example: Inverse of a diagonal matrix

D =




d1 0 0
0 d2 0
0 0 d3


 , D−1 =




1/d1 0 0
0 1/d2 0
0 0 1/d3




e.g.,

D =
[

3 0
0 4

]
, D−1 =

[
1/3 0
0 1/4

]

DD−1 =
[

3 0
0 4

] [
1/3 0
0 1/4

]
=

[
1 0
0 1

]
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Finding the Inverse: The 2× 2 case

A =
[

a b
c d

]
, A−1 =

1
D

[
d −b
−c a

]

where D = ad− bc denotes the determinant of A. If A is singular then D = 0
and no inverse would exist.

AA−1 =
[

a b
c d

]
1
D

[
d −b
−c a

]

=
1
D

[
ad− bc −ab + ba
cd− dc −cb + da

]
=

1
D

[
D 0
0 D

]

=
[

1 0
0 1

]
= I
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Example:

A =
[

2 4
3 1

]

Determinant D = ad− bc = 2 ∗ 1− 4 ∗ 3 = −10

A−1 = − 1
10

[
1 −4

−3 2

]
=

[ −0.1 0.4
0.3 −0.2

]
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Regression Analysis

Principal inverse matrix in regression is the inverse of

X′X =
[

n
∑

i Xi∑
i Xi

∑
i X

2
i

]
=

[
a b
c d

]

Its determinant is

D = n
∑

i

X2
i −

( ∑

i

Xi

)2

= n

(∑

i

X2
i −

1
n

(
nX

)2
)

= n

(∑

i

X2
i − nX

2

)
= n

(∑

i

(Xi −X)2
)

= nSXX 6= 0.
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Thus

(X′X)−1 =
1

nSXX

[ ∑
i X

2
i −∑

i Xi

−∑
i Xi n

]
=

1
SXX

[ 1
n

∑
i X

2
i −X

−X 1

]

Uses of Inverse Matrix

• In ordinary algebra, we solve an equation of the type

5y = 20

by multiplying both sides by the inverse of 5

1
5
(5y) =

1
5
20

and obtain y = 4.
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• System of equations:

2y1 + 4y2 = 20
3y1 + y2 = 10

With matrix algebra we rewrite this system as

[
2 4
3 1

] [
y1

y2

]
=

[
20
10

]

Thus, we have to solve

AY = C

Premultiplying with the inverse A−1 gives

A−1AY = A−1C

Y = A−1C
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The solution of these equations then is

[
y1

y2

]
=

[
2 4
3 1

]−1 [
20
10

]

=
[ −0.1 0.4

0.3 −0.2

] [
20
10

]

=
[

2
4

]
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Some Basic Matrix Facts

1. (AB)C = A(BC)

2. C(A + B) = CA + CB

3. (A′)′ = A

4. (A + B)′ = A′ + B′

5. (AB)′ = B′A′

6. (AB)−1 = B−1A−1

7. (A−1)−1 = A

8. (A′)−1 = (A−1)′

9. (ABC)′ = C′B′A′
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Random Vectors and Matrices

A random vector is a vector of random variables, e.g. Y = [Y1, Y2, . . . , Yn]′.

The expected value of Y is the vector E(Y) = [E(Y1), E(Y2), . . . , E(Yn)]′.

Regression Example:

ε =




ε1
ε2
...
εn


 ; E(ε) =




E(ε1)
E(ε2)

...
E(εn)


 = 0n×1
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The usual rules for expectation still work:

Suppose V and W are random vectors and A, B, and C are matrices of
constants. Then

E(AV + BW + C) = AE(V) + BE(W) + C

Regression Example: Find E(Y) = E(Xβ + ε)

E(Xβ + ε) = E(Xβ) + E(ε) = Xβ + 0 = Xβ
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Variance-Covariance Matrix of a Random Vector

For a random vector Zn×1 define var(Z) =




var(Z1) cov(Z1, Z2) . . . cov(Z1, Zn)
cov(Z2, Z1) var(Z2) . . . cov(Z2, Zn)

... ... . . . ...
cov(Zn, Z1) cov(Zn, Z2) . . . var(Zn)




where cov(Zi, Zj) = E
[
(Zi−E(Zi))(Zj−E(Zj))

]
= cov(Zj, Zi). It is a symmetric

(n× n) matrix.

If Zi and Zj are independent, then cov(Zi, Zj) = 0.
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Regression Example: because we assumed n independent random errors εi, each
with the same variance σ2, we have

var(ε) =




σ2 0 . . . 0
0 σ2 . . . 0
... ... . . . ...
0 0 . . . σ2


 = σ2In×n
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Rules for a Variance-Covariance Matrix

Remember: if V is a r.v. and a, b are constant terms, then

var(aV + b) = var(aV ) = a2var(V )

Suppose now that V is a random vector and A, B are matrices of constants.
Then

var(AV + B) = var(AV) = Avar(V)A′

Regression Analysis: Find var(Y) = var(Xβ + ε)

var(Xβ + ε) = var(ε) = σ2In×n

Off-diagonal elements are zero because the εi’s, and hence the Yi’s, are indepen-
dent.
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SLR in Matrix Terms

Now we can write the SLR in matrix terms compactly as

Y = Xβ + ε

and we assume that

• ε ∼ N(0, σ2I)

• β and σ2 are unknown parameters

• X is a constant matrix

Consequences: E(Y) = Xβ and var(Y) = σ2I.

In the next step we define the Least Squares (LS) estimators (b0, b1) using matrix
notation.
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Normal Equations: Remember the LS criterion

Q =
n∑

i=1

(Yi − (β0 + β1Xi))2 = (Y −Xβ)′(Y −Xβ)

Recall that when we take derivatives of Q w.r.t. β0 and β1 and set the resulting
equations equal to zero, we get the normal equations

nb0 + nXb1 = nY

nXb0 +
∑

i

X2
i b1 =

∑

i

XiYi

Let’s write these equations in matrix form

[
n nX

nX
∑

i X
2
i

] [
b0

b1

]
=

[
nY∑
i XiYi

]

36



But with b2×1 = (b0 b1)′, this is exactly equivalent to

(X′X)b = (X′Y)

Premultiplying with the inverse (X′X)−1 gives

(X′X)−1(X′X)b = (X′X)−1(X′Y)

b = (X′X)−1X′Y
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Fitted Values and Residuals

Remember Ŷi = b0 + b1Xi. Because




Ŷ1
...

Ŷn


 =




1 X1
... ...
1 Xn




[
b0

b1

]
=




b0 + b1X1
...

b0 + b1Xn




we write the vector of fitted values as

Ŷ = Xb

With b = (X′X)−1X′Y we get

Ŷ = Xb = X(X′X)−1X′Y
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We can express this by using the (n× n) Hat Matrix

H = X(X′X)−1X′

(it puts the hat on Y) as
Ŷ = HY.

H is symmetric (H = H′) & idempotent (HH = H)

Symmetric:

H′ =
(
X(X′X)−1X′

)′ 9.= X
(
(X′X)−1

)′
X′

8.= X
(
(X′X)′

)−1

X′ 5.= X
(
X′X

)−1

X′ = H
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Idempotent: because (X′X)−1X′X = I we have

HH =
(
X(X′X)−1X′

)(
X(X′X)−1X′

)

= XI(X′X)−1X′ = H

With these results we get (HX = X) (HIH = H)

E(Ŷ) = E(HY) = HXβ = Xβ

var(Ŷ) = var(HY) = H σ2I H = σ2H.

Residuals: e = Y − Ŷ = IY −HY = (I−H)Y.

Like H, also I−H is symmetric and idempotent.

E(e) = (I−H)E(Y) = 0

var(e) = var((I−H)Y) = σ2(I−H)
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Inferences in Regression Analysis

Distribution of LS Estimates

b = (X′X)−1X′Y = CY =
[

c11 . . . c1n

c21 . . . c2n

] 


Y1
...

Yn




with C = (X′X)−1X′ a 2× n matrix of constants. Thus, each element of b is a
linear combination of independent normals, Yi’s, and therefore a normal r.v.

E(b) = E
(
(X′X)−1X′Y

)
= (X′X)−1X′E(Y) = (X′X)−1X′Xβ = Iβ = β
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var(b) = var
(
(X′X)−1X′Y

)
= (X′X)−1X′ var(Y)

(
(X′X)−1X′

)′

= (X′X)−1X′ σ2I X(X′X)−1

= σ2(X′X)−1X′X(X′X)−1 = σ2I(X′X)−1 = σ2(X′X)−1

With the previous result we have

var(b) = σ2(X′X)−1 =
σ2

SXX

[ 1
n

∑
i X

2
i −X

−X 1

]

Its estimator is

v̂ar(b) =
MSE

SXX

[ 1
n

∑
i X

2
i −X

−X 1

]
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As covariance/correlation between b0 and b1 we get

cov(b0, b1) = − σ2

SXX
X

cor(b0, b1) =
cov(b0, b1)√
var(b0)var(b1)

=
−X√

1
n

∑
i X

2
i

b0, b1 are not independent! Together we have

b ∼ N
(
β, σ2(X′X)−1

)

This is used to construct CI’s and tests regarding β as before.
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Estimate the Mean of the Response at Xh

Recall our estimate for E(Yh) = β0 + β1Xh is

Ŷh = b0 + b1Xh = X′
hb,

where X′
h = (1, Xh). The fitted value is a normal r.v. with mean and variance

E(Ŷh) = E(X′
hb) = X′

hE(b) = X′
hβ

var(Ŷh) = var(X′
hb) = X′

hvar(b)Xh = X′
hσ2(X′X)−1Xh = σ2X′

h(X′X)−1Xh.

Thus,

Ŷh −X′
hβ√

σ2 ·X′
h(X′X)−1Xh

∼ N(0, 1) ⇒ Ŷh −X′
hβ√

MSE ·X′
h(X′X)−1Xh

∼ t(n− 2)
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What is X′
h(X′X)−1Xh ?

=
[

1 Xh

] 1
SXX

[ 1
n

∑
i X

2
i −X

−X 1

] [
1

Xh

]

=
1

SXX

[
1
n

∑
i X

2
i −XXh −X + Xh

] [
1

Xh

]

=
1

SXX

(
1
n

∑

i

X2
i −XXh −XXh + X2

h

)

=
1

SXX

(
1
n

(
SXX + nX

2
)
− 2XXh + X2

h

)

=
1
n

+
1

SXX
(Xh −X)2

by applying SXX =
∑

i X
2
i − nX

2
.
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Matrix Algebra with R: Whiskey Example

> one <- rep(1,10); age <- c(0,.5,1,2,3,4,5,6,7,8)
> y <- c(104.6, 104.1, 104.4, 105.0, 106.0,
+ 106.8, 107.7, 108.7, 110.6, 112.1)
> X <- matrix(c(one, age), ncol=2)
> XtX <- t(X) %*% X; XtX

[,1] [,2]
[1,] 10.0 36.50
[2,] 36.5 204.25
> solve(XtX)

[,1] [,2]
[1,] 0.28757480 -0.05139036
[2,] -0.05139036 0.01407955
> b <- solve(XtX) %*% t(X)%*%y; b

[,1]
[1,] 103.5131644
[2,] 0.9552974
> H <- X %*% solve(XtX) %*% t(X)
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> e <- y - H %*% y; SSE <- t(e) %*% e; SSE
[,1]

[1,] 3.503069
> as.numeric(SSE/8) * solve(XtX)

[,1] [,2]
[1,] 0.12592431 -0.022502997
[2,] -0.02250300 0.006165205
> summary(lm(y ~ age))
Coefficients:

Estimate Std.Error t value Pr(>|t|)
(Intercept) 103.51316 0.35486 291.70 < 2e-16 ***
age 0.95530 0.07852 12.17 1.93e-06 ***
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