5. Matrix Algebra
A Prelude to Multiple Regression

Matrices are arrays of numbers and are denoted by boldface (capital) symbols.

Example: a 2 x 2 matrix (always #rows X #columns)

St

Example: a 4 X 2 matrix B, and a 2 x 3 matrix C

4 6
1 10 1 1 4
B=1 5 7 ’C_[243]
12 2



In general, an r X ¢ matrix is given by

A?“Xc —

or in abbreviated form

Ar><c —

1st subscript gives row#, 2nd subscript gives column£

Where is a79 or aqq 7

aii
a1

aig),

ai2
a2

i=1,2,...




A matrix A is called square, if it has the same # of rows and columns (r = ¢).

Example:

Matrices having either 1 row (r = 1) or 1 column (¢ = 1) are called vectors.

Example:
column vector A (¢ = 1) and row vector C’' (r = 1)

y C/:[Cl Cy C3 64]

Row vectors always have the primel



Transpose: A’ is the transpose of A where

I
S oW
O
— o O
D~ O
I
S T = W

A’ is obtained by interchanging columns & rows of A

a;; is the typical element of A
a;; is the typical element of A’

a;;=aj  (a12 = ay)

N W e N

N = OO




Equality of Matrices: Two matrices A and B are said to be equal if they are
of the same dimension and all corresponding elements are equal.

ArXc:Brxc means aij:bij,izl,...,r,j: 1,...,(3.

Addition and Subtraction: To add or subtract matrices they must be of the
same dimension. The result is another matrix of this dimension. If

Aszyo = Bsyxo =

CU = A
}—\
O o
- O
Ot = W

then its sum and its difference is calculated elementwise

[ 44+2 6+3 6 9
C=A+B=| 140 10+1 | = 1 11
5+7 T+5 12 12
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1-0 10-1

A-B



Regression Analysis

Remember, we had (X1, Y1), (X5, Y3),...,(X,, Y,) and wrote the SLR as
Y; = E(Y;) + €, 1 =1,2,...,n.
Now we are able to write the above model as
Y,x1 = E(Ynx1) + €nx1

with the n x 1 column vectors

Yl E(Yl) €1
Y — 1?2 , E(Y) — E(YQ) : € — €2
Y, | E(Y,) | €n




Matrix Multiplication:

(1) by a scalar, which is a (1 x 1) matrix. Let

>

I
—_ o O
~ N

If the scalar is 3, then 3*x A=A+ A + A or

[ 3%x5 3%x2 ] 15 6 |
3x A=\ 3x3 3x4 | = 9 12
_3>|<1 3*7_ I 3 21_
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Generally, if A denotes the scalar, we get

[ 5\ 2)\ ]
Ax A= 3\ 4\ | = A x )\
I A 7)\_

We can also factor out a common factor, e.g.
15 5| - 3 1
10 0| 2 0

(2) by a matrix: we write the product of two matrices A and B as AB. For
AB to exist, the #col's of A must be the same as the #rows of B.

4 6 —1
A3><2: ]

) B2X3:[O 5 8

W = N
DO — Ot




Let C = AB. You get c¢;; by taking the inner product of the ith row of A and
the jth column of B, that is

#col'sin A

Cij = E ik

k=1

Since v =1,...,#rows in A, j =1,...,#col's in B the resulting matrix C has
dimension:

(#rows in A)x(#col's in B).

For C to exist, (#col's in A)=(#rows in B).
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Hence, for A3, 2Boy3 we get the 3 X 3 matrix

C 2%4+5%x0 2x6+5%x5 2x(—=1)+5x8 ] [ 8 37 38°
C=| 4%44+1%x0 4%x6+1%x5 4x(—-1)+1%x8 | =| 16 29 4
| 3%4+2%0 3%6+2%5 3% (—1)+2%8 | 12 28 13

Note, this is different to Doys = Boy3As3«o which gives the 2 X 2 matrix

D

[ 4%246%4—1%3 4%5+6+1—-1x27] [29 24
|l 0%x24+5%4+8%x3 0x5+5x14+8x2 | | 44 21

For AB we say, B is premultiplied by A or A is postmultiplied by B.
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Regression Analysis

Remember our SLR with all means on the straight line

E(Y:) = Bo + 51.X5,

With
Xnx2 =
we get
E(Y) = X8 =

Thus we rewrite the SLR as

1=1,2,...,n

X, |

Xo _[ﬁo]

: ) 2x1 — 61

Xn |

X1 [ o+ 51 X1 ]
X9 Bo _ Bo + B1X2

: 01 :

Xn_ _ﬁO"’ﬁan_
Y = X3 +e.
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Important Matrices in Regression:

_Yl_
Y'Y = [vi Vo ... V]| 2=y
_Yn_ 1=1
_1 Xl_
~ 1 1 1 1 Xy | [ =n
XX = [Xl X2 Xn] : _[ZZXZ
1 X,
_Yl_
p B 1 1 1 Yo | | DY
Yy
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Special Types of Matrices:

Symmetric Matrix, if A = A’, A is said to be symmetric, e.g.

2 5 8 [ 2 5 8 ]
A=|513]|, A'=|51 3
'8 3 2 '8 3 2

A symmetric matrix necessarily is square! Any product like Z'Z is symmetric.
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Diagonal Matrix is a square matrix whose off-diagonal elements are all zeros

oo [
A=|0 -3 0|, B= 22
0 0 9 0 0 by3 O
: - 0 0 0 by

Identity Matrix I is a diagonal matrix whose elements are all 1s, e.g. B above
with b;; =1,1=1,2,3,4.

Pre- and postmultiplying by I does not change a matrix, A = IA = Al
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Vector and matrix with all elements Unity

A column vector with all elements 1 is denoted by 1, a square matrix with all
elements 1 is denoted by J,

Note that for an n x 1 vector 1 we obtain

1'1=[1 ... 1 || : |=n
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and

1= :|[1 ... 1]=]": | =J,xn
1 1 ... 1

Zero vector A column vector with all elements O
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Linear Dependence and Rank of Matrix

Consider the following matrix

= DN DN

10

15




Notice that the third column is 5 times the first

D 1
10 | =5 2
15 | 3

We say the columns of A are linearly dependent (or A is singular). When no
such relationships exist, A's columns are said to be linearly independent.

The rank of a matrix is the number of linearly independent columns (in the
example, its rank is 3).
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Inverse of a Matrix

Q: What's the inverse of a number (6)?
A: Its reciprocal (1/6)!

A number multiplied by its inverse always equals 1

Generally, for the inverse 1/x of a scalar x

1 1 1 1
r—=—x=x x=xxr =1
A

In matrix algebra, the inverse of A is the matrix A1 for which
ATA=AA =1

In order for A to have an inverse:
e A must be square,
e col's of A must be linearly independent.
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Example: Inverse of a matrix

2 4 _ -0.1 04
AM:[:’) 1]’ A2X12:[ 0.3 —0.2]
4 2 41 -01 041 [1 0
AAT =13 03 =02 | |0 1
1. [ -01 0402 4] [1 0
ATA=T 03 02|31 101
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Example: Inverse of a diagonal matrix

e.g.,

o[ 4]

d; 0 0

0 do O
0 0 ds

3
-
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Finding the Inverse: The 2 X 2 case

|l a b 1 d —b
A_[c d]’ A _5[—0 a]

where D = ad — bc denotes the determinant of A. If A is singular then D = 0
and no inverse would exist.
d —b
—Cc a

_i ad—bc —ab+ba | 1| D 0
- D|ced—de —cb+da | D| O D

o1

AAL =

23



Example:

S H

Determinant D = ad —bc=2%1—-4%x3 = —10

Al _ L[ 1 4] _[-01 04
10| -3 2 | 0.3 —0.2
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Regression Analysis

Principal inverse matrix in regression is the inverse of

ex=[ o Ea -0 h]

lts determinant is

D= n3 XP- (;Xi):” (;Xf‘i(”Xf)
- n (Z X2 - nX2> =n (Z(Xz- - X>2>

— TLSXX 75 0.
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Thus

xx) [ 2 R [%Zi_XE X

_nSXX _ZZX% n SXX —X 1

Uses of Inverse Matrix

e In ordinary algebra, we solve an equation of the type
by = 20
by multiplying both sides by the inverse of 5
1 1
—(by) = =20
(5y) = ¢

and obtain y = 4.
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e System of equations:

20
10

2y1 + 4yo
3y1 + Yo

With matrix algebra we rewrite this system as
2 4 v || 20

AY =C

Thus, we have to solve

Premultiplying with the inverse A~! gives

ATTAY = A-C
Y = A 'C
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The solution of these equations then is

Y1 _ [ 2
Y2 |3
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Some Basic Matrix Facts

1. (AB)C = A(BC)
2. C(A+B)=CA +CB
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Random Vectors and Matrices

A random vector is a vector of random variables, e.g. Y = [Y7,Ys, ..., Y,]"
The expected value of Y is the vector E(Y) = [E(Y7),E(Y2),...,E(Y,)].

Regression Example:

[ € | E(e1)
e=| 2 |: Eo=| " | =0,
| €n | | E(en) |
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The usual rules for expectation still work:

Suppose V and W are random vectors and A, B, and C are matrices of
constants. Then

E(AV+BW + C) = AE(V) + BE(W) + C
Regression Example: Find E(Y) = E(X3 + €)

E(XB+€) =E(XB) +E(e) =XB+0=Xp3
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Variance-Covariance Matrix of a Random Vector

For a random vector Z,,«1 define var(Z) =

var(Z1) cov(Zi,Z5) ... cov(Zy,Zy,) |
cov(Za, Z1) var(Zs) ... cov(Za, Zy)
I cov(Zn, Z1) cov(Zy, Zs) ... var(Zy,) _

where cov(Z;, Z;) = E|(Z;—E(Z,;))(Z;,—E(Z;))| = cov(Z;, Z;). It is a symmetric
(n X n) matrix.

If Z; and Z,; are independent, then cov(Z;, Z;) = 0.
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Regression Example: because we assumed n independent random errors ¢;, each

with the same variance o2, we have
o2 0 ... 0 |
0 o2 ... 0
var(e) = | S
| 0 0 ... o2 ]
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Rules for a Variance-Covariance Matrix

Remember: if V is a r.v. and a, b are constant terms, then

var(aV +b) = var(aV) = a?var(V)

Suppose now that V is a random vector and A, B are matrices of constants.

Then
var(AV + B) = var(AV) = Avar(V)A’

Regression Analysis: Find var(Y) = var(X3 + €)
var(X3 + €) = var(e) = oI, xn,

Off-diagonal elements are zero because the ¢;'s, and hence the Y;’s, are indepen-
dent.
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SLR in Matrix Terms

Now we can write the SLR in matrix terms compactly as
Y =X03+¢€

and we assume that

e e~ N(0,0%)

e 3 and ¢ are unknown parameters

e X Is a constant matrix
Consequences: E(Y) = X3 and var(Y) = ¢°I.

In the next step we define the Least Squares (LS) estimators (bg, b1) using matrix
notation.
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Normal Equations: Remember the LS criterion

n

Q= (Yi— (Bo+ 5:X,)* = (Y - XB)'(Y - XB)

1=1

Recall that when we take derivatives of () w.r.t. 5y and (3; and set the resulting
equations equal to zero, we get the normal equations

nb() -+ RYbl = nY
nXbo+ Y Xb = > XY,

Let's write these equations in matrix form

i s L= s

36



But with bay; = (bg b1)’, this is exactly equivalent to
(X'X)b = (X'Y)
Premultiplying with the inverse (X’X) ™! gives

(X'X) "' X'’X)b = (X'X)"'(X'Y)
b = (XX)"'X'Y
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Fitted Values and Residuals

Remember f/z = bg + b1 .X;. Because

p— A — p— —

Yl 1 Xl [ bO ] i bO"‘lel |

Y, 1 Xn | Do + 01Xy,

we write the vector of fitted values as
Y = Xb
With b = (X’X)"!1X"Y we get

Y = Xb = X(X'X)"!X'Y
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We can express this by using the (n x n) Hat Matrix
H=X(X'X)"'X'

(it puts the hat on Y) as

Y = HY.
H is symmetric (H = H') & idempotent (HH = H)
Symmetric:
/ /
H = (X(X’X)—lx’) % X((X’X)—l) X'

|9

X((X’X)’) Txr s X(X’X) X —H
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ldempotent: because (X'X) " !X’'X =TI we have
HH = (X(X’X)—lx’) (X(X’X)—lx’)
= XIX'X)"'X'=H
With these results we get (HX = X) (HIH = H)
E(Y) = E(HY)=HXg=X3

Y
Y) = var(HY)=H ¢’I H = ¢°H.

var(

Residuals: e =Y - Y =IY -HY = (I-H)Y.
Like H, also I — H is symmetric and idempotent.
E(e) = (I-H)E(Y)=0
var(e) = var(I-H)Y)=0*1-H)

40



Inferences in Regression Analysis

Distribution of LS Estimates

b= (X'X)"'X'Y =CY = [ (1L Gn ]
C21 ... Con

with C = (X'X)~!X’ a 2 x n matrix of constants. Thus, each element of b is a
linear combination of independent normals, Y;'s, and therefore a normal r.v.

E(b) = E((X’X)—lx’Y) — (X'X)"IXE(Y) = (X'X)"IX'X3 =18 = 8
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var(b) = var((X'X)7'X'Y ) = (X'X) X var(Y) ((X'X)7'X')’
= (X’X)—lxl O_2I X(X/X)—l
— O.Q(X/X)—1X/X(X/X)—1 _ O_QI(X/X)—l _ O_Q(X/X)_l

With the previous result we have

2 Tisv x2 _X
var(b) = o*(X'X) ™" = sa [ : ZZY o ]
XX —

lts estimator is

arb) = ex

MSE [ 15,X7 -X
~—X 1
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As covariance/correlation between by and b; we get

0'2—

X

COV(bo,bl) = _SXX

COV(bQ, bl)

cor(bg,b1) =

by, b1 are not independent! Together we have

b ~ N(ﬂ, 02(X’X)—1)

-X

\/var(bo)var(bl) - \/% Zz Xz2

This is used to construct Cl's and tests regarding 3 as before.
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Estimate the Mean of the Response at X,

Recall our estimate for E(Y}) = By + 81X}, is
Vi, = bo + by X, = 1D,

where X = (1, X},). The fitted value is a normal r.v. with mean and variance

E(Ys) = E(Xjb)=X},E(b) =X}
var(Yy) = var(X)b) = X}var(b)X, = X}, o?(X'X) 71X, = 02X/ (X'X)"1X,,.
Thus,
Y, — X, Y, — X,

~ t(n —2)

N(0,1)

Jo? X (X'X) X, V/MSE - X (X'X) X,
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What is X/} (X'X)"1X}, ?

- [1 Xh]ﬁli%y&? —17”

- splima-xn xen | g
_ lex(izi:XfXXhXXthX;%)

— é (%(SXX +ny2) —2X X}, +Xi2z>

— %—F@(Xh_yy

by applying Sxx =, X7 — nX .
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Matrix Algebra with R: Whiskey Example

> one <- rep(1,10); age <- c(0,.5,1,2,3,4,5,6,7,8)
>y <- c(104.6, 104.1, 104.4, 105.0, 106.0,
+ 106.8, 107.7, 108.7, 110.6, 112.1)
> X <- matrix(c(one, age), ncol=2)
> XtX <- t(X) %*% X; XtX
[,1] [,2]
[1,] 10.0 36.50
[2,] 36.5 204.25
> solve(XtX)
[,1] [,2]
[1,] 0.28757480 -0.05139036
[2,] -0.05139036 0.01407955
> b <- solve(XtX) %*% t(X)%*%y; b
[,1]
[1,] 103.5131644
[2,] 0.9552974
> H <= X %x*x% solve(XtX) %*% t(X)
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> e <-y - H %*% y; SSE <- t(e) %*% e; SSE
[,1]

[1,] 3.503069
> as.numeric(SSE/8) * solve(XtX)

[,1] [,2]
[1,] 0.12592431 -0.022502997
[2,] -0.02250300 0.006165205
> summary(1lm(y ~ age))
Coefficients:

Estimate Std.Error t value Pr(>|t])
(Intercept) 103.51316 0.35486 291.70 < 2e-16 **x
age 0.95530 0.07852 12.17 1.93e-06 *x*x*
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