
3. Diagnostics and Remedial Measures

So far, we took data (Xi, Yi) and we assumed

Yi = β0 + β1Xi + εi i = 1, 2, . . . , n,

where

• εi
iid∼ N(0, σ2),

• β0, β1 and σ2 are unknown parameters,

• Xi’s are fixed constants.

Question:
What are the possible mistakes or violations of these assumptions?
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1. Regression function is not linear (E(Y ) 6= β0 + β1X)

2. Error terms do not have a constant variance (var(εi) 6= σ2, i = 1, . . . , n)

3. Error terms are not independent (cor(εi, εi′) 6= 0, i 6= i′)

4. Model fits all but one or a few outlying observations

5. The error terms are not normally distributed

6. Simple linear regression is not reasonable (model should have more predictors)

We will use Residual Plots to diagnose the problems

Residuals: ei = Yi − Ŷi = Yi − (b0 + b1Xi)

Sample Mean: ē = 1
n

∑
i ei = 0
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Sample Variance 1
n−1

∑
i(ei − ē)2 = 1

n−1

∑
i e

2
i ≈ MSE

We will sometimes use standardized (semistudentized) residuals

e∗i =
ei − ē√
MSE

=
ei√
MSE
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Nonlinearity of Regression Function (1.)

Residual plot against the predictor variable, X.

Or use a residual plot against the fitted values, Ŷ .

Look for systematic tendencies!

Example:

Xi = amount of water/week

Yi = plant growth in first 2 months
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Nonconstancy of Error Variance (2.)

We diagnose nonconstant error variance by observing a residual plot against X
and looking for structure.

Example:

Xi = salary

Yi = money spent on entertainment
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Nonindependence of Error Terms (3.)

We diagnose nonindependence of errors over time or in some sequence by
observing a residual plot against time (or the sequence) and looking for a trend.

Example:

Xi = #hours worked

Yi = #parts completed
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But, if the data is like

day 1: (X1, Y1)
day 2: (X2, Y2)

...
day n: (Xn, Yn)

then we can see the effect of learning.
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Model fits all but a few observations (4.)

Example: LS Estimates with 2 outlying points (solid) and without them (dashed).

Rule of Thumb: If |e∗i | > 3, then check data point (ensure that it was not
recorded incorrectly)!

Do not throw points away simply because they are outliers (relative to the assumed
SLR)!

Outliers are detected by observing a plot of e∗i vs. Xi.
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Errors not normally distributed (5.)

We assumed ε1, . . . , εn iid N(0, σ2) but we can’t observe these error terms!

We will be convinced that this assumption is reasonable, if e1, . . . , en appear to
be iid N(0, MSE).

Fact: If e1, . . . , en iid N(0, MSE), then one can show that the expected value of
the ith smallest is

√
MSE

[
z

(
i− 3/8
n + 1/4

)]
, i = 1, 2, . . . , n
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Then we have pairs

residual expected residual

emin

√
MSE

[
z

(
1−0.375
n+0.25

)]

e2nd smallest

√
MSE

[
z

(
2−0.375
n+0.25

)]

... ...

emax
√

MSE
[
z

(
n−0.375
n+0.25

)]
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Notice: If Y1, . . . , Y4 iid N(0, σ2), then E(Y1) = · · · = E(Y4) = 0, and E(Ȳ ) = 0,

but

E(Ymin) = σ
[
z

(
1−0.375
4+0.25

)]
= σz(0.147) = −1.05σ,

E(Y2nd) = σ
[
z

(
2−0.375
4+0.25

)]
= σz(0.382) = −0.30σ,

E(Y3rd) = σ
[
z

(
3−0.375
4+0.25

)]
= σz(0.618) = +0.30σ,

E(Ymax) = σ
[
z

(
4−0.375
4+0.25

)]
= σz(0.853) = +1.05σ,

Thus, we plot e∗i against their expected values (Normal Probability Plot) to
detect departures from normality.
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Omission of important predictors (6.)

Example:

Xi = #years of education

Yi = salary

Suppose we also have: Zi = #years at current job
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Means, that a better model would be (Multiple Regression Model)

E(Yi) = β0 + β1Xi + β2Zi
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Lack of Fit Test

Formal Test for: H0 : E(Y ) = β0 + β1X
HA : Not H0

We can’t use this test unless there are multiple Y ’s observed at at least 1 value
of X.

Motivation: SLR restricts the means to be on a line! How much better could we
do without this restriction?
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The less restricting model puts no structure on the means at each level of X.

New Notation: Y values are observed at c different levels of X, say
X1, X2, . . . , Xc.

nj such Y values, say Y1j, Y2j, . . . , Ynjj, are observed at level Xj, j = 1, 2, . . . , c,
nj ≥ 1.

Let Ȳj = 1
nj

∑
i Yij be the average of the Y ’s at Xj and Ŷj = b0 + b1Xj the fitted

mean under the SLR.

The data now look like

at X1 : (Y11, X1), (Y21, X1), . . . , (Yn11, X1) ⇒ Ȳ1

at X2 : (Y12, X2), (Y22, X2), . . . , (Yn22, X2) ⇒ Ȳ2

...

at Xc : (Y1c, Xc), (Y2c, Xc), . . . , (Yncc, Xc) ⇒ Ȳc
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Note, that
Yij − Ŷj = (Yij − Ȳj) + (Ȳj − Ŷj)

Let’s partition the SSE into 2 pieces

SSE = SSPE + SSLF

where

c∑

j=1

nj∑

i=1

(Yij − Ŷj)2 =
c∑

j=1

nj∑

i=1

(Yij − Ȳj)2 +
c∑

j=1

nj∑

i=1

(Ȳj − Ŷj)2

• If SSPE ≈ SSE, it says that the means (4) are close to the fitted values (¤).
That is, even if we fit a less restrictive model, we can’t reduce the amount of
unexplained variability.

• If SSLF ≈ SSE, the means (4) are far away from the fitted values (¤) and the
(linear) restriction seems unreasonable.
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Thus,
SSTO = SSE + SSR = SSLF + SSPE + SSR

Formal Test for: H0 : E(Y ) = β0 + β1X
HA : E(Y ) 6= β0 + β1X

Define

MSLF =
SSLF

c− 2
and MSPE =

SSPE

n− c

Test Statistic: F ∗ = MSLF
MSPE

Rejection Rule: reject if F ∗ > F (1− α; c− 2, n− c)
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This fits nicely into our ANOVA Table:

Source of
variation SS df MS

Regression SSR 1 MSR

Error SSE n− 2 MSE

Lack of Fit SSLF c− 2 MSLF

Pure Error SSPE n− c MSPE

Total SSTO n− 1
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Example: Suppose that the house prices follow a SLR in #bedrooms. The
estimated regression function is

Ê(price/1,000) = −37.2 + 43.0(#bedrooms)

Variation SS df MS
Regression 62,578 1 62,578
Error 117,028 91 1,286

Lack of Fit 4,295 3 1,432
Pure Error 112,733 88 1,281

Total 179,606 92

Because F ∗ = MSLF/MSPE = 1, 432/1, 281 = 1.12 < F (0.95; 3, 88) = 2.71 we
do not reject H0.
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Remedies for Problems 1. to 6.

Many of the remedies rely on more advanced material, so we won’t see them until
later.

Transformations are one way to fix problem 1. (nonlinear regression function)
and a combination of problems 1. and 2. (nonconstant error variances).
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Motivation: Consider the function y = x2

x y
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If you have (x1, y1), (x2, y2), . . . , (xn, yn) and you know y = f(x), then
(f(x1), y1), (f(x2), y2), . . . , (f(xn), yn) will be on a straight line.
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Two situations in which transformations may help.

Situation 1: nonlinear regression function with constant error variances (1.)

Note that E(Y ) doesn’t appear to
be a linear function of X, that is,
the points do not seem to lie on a
line. The spread of the Y ’s at each
level of X appears to be constant,
however.

X

Y

X vs. Y

0 4 8 12 16
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Remedy – Transform X

We consider
√

X

Do not transform Y because this
will disturb the spread of the Y ’s
at each level X.

sqrt(X)
Y

sqrt(X) vs. Y

0 2 8 12 4
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Situation 2: nonlinear regression function with nonconstant error variances (1.
with 2.)

Note that E(Y ) isn’t a linear func-
tion of X.
The variance of the Y ’s at each
level of X is increasing with X.
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Remedy – Transform Y
(or maybe X and Y )

We consider
√

Y

And hope that both problems are
fixed.

X
sq

rt
(Y

)

X vs. sqrt(Y)
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Prototypes for Transforming Y

X

Y

X

Y

X

Y

Try
√

Y , log10 Y , or 1/Y
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Prototypes for Transforming X

X

Y

X

Y

X

Y

Use
√

X or log10 X (left); X2 or exp(X) (middle); 1/X or exp(−X) (right).
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