2. Inference in Regression Analysis

If Y; ~ N(u;,0?), Y;'s are independent, and a1, ..., a, are known constants then
mn mn mn
2 2
> i N (3 Yoot
i=1 i=1 i=1

Thus, a linear combination of independent normal random variables is itself a
normal random variable.

Theorem: by and b; are linear combinations of the Y;'s. That is, we can write

bl = ik/’zy@ and bo = ilﬁfz
1=1 1=1

where k1,...,k, and [, ...,[, are known constants.
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Proof: Recall Sxx =1 (X; — X)?. So

by = @;(Xi—X)(Y;—Y)
R _ _
= SXX[;(XZ—XM—YZ(XZ—X)
1 < _
= @Z(JQ—X)Y@

1=1

= ikZYZ with k; =

1=1




n -
1=1 1=1
n 1 ~
= (k)
n
=1
n 1 ~
— sz with [, = — — kX
=1 n

Thus, by and by are linear combinations of the Y;'s and, hence, they are normal
variates. What about their means and variances?



Theorem: Under SLR model with normal errors:

0.2

bl ~ N (617

25" X2
) and bowj\f@o,"zz )

Sy x n Sxx

We are first interested in . k;, >_. k; X; and > k2.

n n XZ—X 1 n -
Sr - B s

ikiXi — ZX“XXZ:LSXX —1
1=1

ikf - i(Xi—XP:L-
=1



Proof: Since by =Y | k;Y;, we get

Because > . k; =0 and ) . k;X; =1, this is

= 5ozki+51zkin‘ = b1.
i=1 i=1

With > .k =1/Sxx , we get

var(by) = Var (i kﬂ@) Z k2Va7“ — g2 Z k2 o
i=1

Sxx
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2

Showing by ~ N (ﬁo, %2%) is basically the same.



Example: 93 house prices in G'ville sold Dec. 1995.
Y = selling price (in 1,000%), X = area (1,000 sq.feet)

Assume the SLR model holds
E(Y;) = Bo + 51.X;
LS estimators are by = —25.2 and b; = 75.6. We are interested in testing

Hy : 81 = 0 (no linear relation between area and price) Ha : 31 # 0

Since 75.6 # 0, can we conclude that H4 is true?
Recall: bl ~ N(51,0'2/Sxx>, where SXX = Zz(X’L — X)2 = 25.38.

Consider 2 different scenarios:

Scenario 1: 02/Sxx = 2,500 = \/02/Sxx = 50
Scenario 2: 02/Sxx = 100 = y/02/Sxx = 10
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Remember, if Z ~ N(u,0?), then

%

95%

dist'n of Z

&

u-1.96/0?

u

W+ 1.96/0?




For the 2 scenarios we have:

Scenario 1: \/02/SXX = 50 Scenario 2: \/02/SXX = 10

B1—-20 B1 B1+20

B, - 100 B, B, +100



Scenario 1: If 5, = 0 (H true) then there is a 95% chance that b falls between
—100 and 100.

by = 75.6 is consistent with Hy: 81 =0

Scenario 2: If 31 = 0 (Hj true) then there is a 95% chance that b; falls between
—20 and 20.

by = 75.6 suggests that Hy : 51 = 0 is false.

Conclusion: if we know \/O'Q/SX)(, we know how likely the value by = 75.6 is
under Hy, and we can decide if b; = 75.6 is more consistent with Hy : 51 = 0 or

HA . 61 7é O
Last time we showed that

by ~ N(B1,0%/Sxx) = b N(0,1)

V?/Sxx
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That means that

b _
Pl—-1.96<—2 Gl <1.96 | =0.95
V0?/Sxx
o2 g2
Plb —1.96 < By < by +1.96 — 0.95
SXX SXX

So, a 95% confidence interval for 3 is

o2

b1 £ 1.96

SXX

Is this a useful confidence interval ? NO!
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We have to estimate o2 under the SLR model. Remember, the mean squared

error
1 n
2 = Y; — by — b1.X;)* = MSE
? n—QZZ:;( 0 1)

is an unbiased estimate of o2. So we have all we need!

What’s next?

1. tests and confidence intervals for (3;

2. confidence intervals for the mean of Y at some value of X, say X*, that is, for

Bo + 51 X"

3. prediction intervals for the next random variable observed with X = X*
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Confidence Intervals and Tests for 3;

The key IS bl ~ N(ﬁl,gz/SXx). Thus

b1 — 51
V?/Sxx

~ N(0,1)

But this is not useful because we don't know o2

If we replace o2 with our estimate of o2, MSE, we get
P

b1 — 3
/MSE/Sx x

~ t(n —2).

Everything is based on this!
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In what follows, « is:

e the type 1 error probability = P(reject Hy | Hy true)
e always between 0 and 1 (it's a probability)

e usually set at 0.01, 0.05 or 0.10
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(1 — «)100% Confidence Interval for 3

With probability 1 — «

—t(1 —a/2;n—2) < b — <t(l—a/2;n—2)

~ VMSE/Sxx

Thus, the (1 — a) * 100% confidence interval for (31 is

by +t(1 —a/2;n — 2)\/MSE/Sxx
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Don’t confuse t(n — 2) with t(1 — a/2;n — 2):
e t(n — 2): denotes the type of distribution (¢) and its parameter (n — 2)

e t(1 — a/2;n — 2): denotes the 1 — /2 percentile of the t(n — 2) distribution
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a Level Hypothesis Tests concerning (3,

A Two-Sided Test Hy: B1 =c, Ha: 01 # ¢
B One-Sided Test Hy: 51 > ¢, Ha: 01 < ¢
C One-Sided Test Hy: 01 <c¢, Hy: (81 > ¢

Test Statistic:
bl — C

~ /MSE/Sxx

*k

Rejection Rules:

A: reject Hy if |t*] > t(1 — a/2;n — 2)
B: reject Hy if t* < —t(1 — a;n — 2)
C: reject Hy if t* > t(1 — a;n — 2)
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P-Value: This is the probability of a more extreme t* value than the one we got,
given that Hy is true.

t(n-2)

~[t* 0 It]
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t(n-2)
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Example of how to do Hypothesis Tests:

Question: Test Hy : f1 =0 vs. Hy : 81 # 0 at level a = 0.05 for the house
prices data. What is the p-value?

by = 75.6, Sxx = 25.38, MSE = 379.21
If Hy is true, then there is no linear relationship between E(Y') and square footage.
Answer: Hy: 51 =0, Hy : 81 #0, a =0.05

Test Statistic:
-0 756
VMSE/Sxx  /379.21/25.38

*

19.56

Rejection Rule: Reject Hy if [t*] > t(1 — «/2;n — 2) = £(0.975;91) = 1.99.

Conclusion: Reject Hj since 19.56 = [t*| > t(0.975;91) = 1.99. There is a
significant linear relationship between mean house price and square footage.
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Example cont’ed: What'’s the picture?

~1.99 0 1.99
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Reconsider rejection rule:

P(reject Ho|Hg true) = P(|t"| > 1.99|H true)
= 1-095 =0

Where is t* on this picture?
| would have rejected Hj for any [t*| > 1.99 !

P-Value: Prob of a more extreme t* is almost 0.
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Extrapolation is Bad!

Never use estimated regression function E(Y) = bp + b1 X outside the range of
X values in the data!

Remember the math class/hours on papers example

23



70

N
N

60

#nours
50
1

40

30

20

1 2 3 4 5
#math classes

My friend is taking 7 math classes next semester. How many hours will he spend
writing papers?

80— 11.7(7) = —1.9 = Nice concept, but wrong!
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Confidence Intervals for Mean Response

Let X, denote the level of X for which we wish to estimate the mean response

E(Yn) = Bo + B1X».
X may be a value which occurred in the sample, or some other value within the

scope of the model.

Point estimator Y}, of E(Y3,) is
Yy, = bg + b1 X},

NOtify that with by = Zz [;Y; and by = Zz k;Y; we get

¥, = ;ZY +Xh§;km =S (1 + Xoks ) Vi

1=1
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Thus Y}, is normally dist'd and we can figure out its mean and variance:

E(Yn) = Bo+ BiXn
%\2
var(Yy,) = o? {% + (XingXX) }

Together we have

}A/h ~ N (60+61Xh702{%+ (Xh_X)Q})

Sxx

or )
Yy, — (Bo + B1Xh)

\/02 {14 00
n SxXx
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Plug in MSE for the unknown o2 gives

Y, — (Bo + 51.Xn)
1 (Xp—X)2
s {3+ 2455

Just like for 31, a (1 — «)100% ClI for Gy + 51 X}, is

~ t(n — 2)

n SXX
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Example: Recall for the house data
E(price) = —25.2 + 75.6(area)

Sxx = 25.38, MSE = 379.21, X = 1.65

Suppose you are thinking of constructing several 2,000 sq.ft. homes in G'ville and
you want to know about how much these houses will sell for.

Point estimate is E(pm'ce) = —25.2+ 75.6(2) = 126
A 95% ClI for By + (1(2) is

1 n (2 —1.65)2
93 25.38

126 + £(0.975; 91)\/379.21 { } — 126 + 4.86 ~ (121, 131).

Thus, we are 95% confident that the mean selling price of 2,000 sq.ft. houses is
between 121,000$% and 131,000%. (Cl for E(Y},) is smallest for X, = X)
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Prediction Interval for Y}, (;,cw)

After we collect the data, we might be interested in predicting a new observation
whose X value is X},.

Before, we estimated the mean of the distribution of Y. Now we predict an
individual outcome drawn from the distribution of Y.

Example: There is a 2,000 sqg.ft. house about to be put up for sale. Its price is a
V. Yi(new) and Xy = 2.

Suppose that Gy and 57 are known.

Question: What do we expect Y}, (pew) to be?
Answer: Yh(new) = Bo + 01 Xn + €h(new)
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So E(Yh(new)) = By + 1 X, var(Yh(new)) = 02 and

Yh(new) ~ N(ﬁO + 51Xh7 02)

Thus the 1 — « prediction limits for Y}, (e, are:

E(Yh(new)) + Z(l _ O‘/2)0-'

Anyway, we don't know the parameters. But we have a (1 — a) * 100% CI for
Bo + b1 Xn:

(bo + b1Xp) £ (1 — o/2;m — 2)\/MSE {% i (Xg;jy}

Dist'ns of Y}, (new) at the upper and lower Cl limit.
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Prediction Limits for Yy,

v v
Confidence Limits for E(Y},)
v v
pred. limits pred. limits
if E(Yp,) here if E(Yp) here

A NN

leftmost E(Y},) J: rightmost E(VYp)
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The (1 — «) * 100% Prediction Interval for Y} ,cq) is slightly wider than the
(1 — ) x100% CI for By + 51 Xp.

We consider the difference

n

Yh(new) - Yh — Yh(new) - Z(lz =+ thz)}/z
=1

where Yh = bog + b1.X}, is indep. of Y}, (,,ey). Because it's a linear combination, it's
a normal variate with

A

E<Yh(new) - }A/h) — E(Yh(new)) - E<Yh) =0
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and

var(Vi(new) — Yn) = var(Yi(new)) + var(¥s)

= 02+02{l+ (Xh_X)Q}

— 02{1+ +(Xh_X)2}

SXX
Thus (Yh(new) - )A/h)/ Var(Yh(new) - ?h) ~ N(Ov 1)

S|

Yh(new) — Y
\/MSE{l + 14 SRR
n SXX
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and a (1 — ) * 100% Pl for Y} (e is given by:

)A/h:tt(l—oz/Z;n—Q)\/MSE{l+1+ (Xh—X)Q}

n SXX

Example: A 95% Prediction Interval for Y} ey, the price of the 2,000 sq.ft.
house is

1 (2—1.65)
93 25.38

126¢(0.975; 91)\/379.21 {1 + } — 126438.5 ~ (87.5, 164.5).

Thus, there is a 95% probability that the price of the house will be between
87,500% and 164,500%.
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ANalysis Of Variance: ANOVA

Nothing new, just a different way of looking at what we have already done.

Say we have the LS estimates of (y, 51
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(XZ’YZ)
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Consider the linear relationship (Y; —Y) = (Y; = Y) + (V; - Y))
Is there a quadratic analogue?
Total Sum of Squares: the variation in the Y's if we forget about X

SSTO =) (Y;-Y)’
1=1

Regression Sum of Squares: the variation in Y's explained at X

SSR=) (V;-Y)’
1=1

Error Sum of Squares: the variation in Y's around the regression line
n

SSE=) (¥i—Y))’

1=1
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Does the partition SSTO = SSR + SSE hold? Yes!

n n

D (VY= (Vi-¥)*+ ) (¥ - Vi)’

Generally, in ANOVA methods, the SSTO is partitioned into several sums of
squares which each have an associated degrees of freedom (df).

ANOVA Table for SLR:

Source
variat. | Sum of Squares (SS) df  mean SS
Regr. | SSR=3_ (Y; — Y)? 1 SSTR

~ SS
Error | SSE=5".(Y; - Y;)? n—2 n—2

Total | SSTO=>.(V;-Y)> n-—1
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Another way to test Hy: 31 =0vs. Ha: 31 # 0

Test statistic:
MSR

="
MSE

Rejection rule: reject Hy if F* > F(1 — a;1,n — 2)
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Fact: F-test and t-test are equivalent; that is the F-test rejects if and only if the
t-test rejects.
Notice: using by = Y — b1 X results in

n n n

SSR = Z(i}; _ }_/')2 — Z(bo + b1 .X; — Y)2 — Z(Y — b1X + b1 .X; — Y)Q

= B> (=X +X,)® =biSxx

1=1

Thus

2
P — blsXX _ b% _ b1 _ (t*)2
MSE MSE/SXX \/MSE/SXX

Generally, if T ~ t(n — 2) then T? ~ F(1,n — 2)
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Coefficient of Determination, 72

Question: How strong is the linear relationship between Y and X7
Remember: SSTO = SSR + SSE
Define:

SSR SSTO — SSE SSE
2 — _ I < 2 <
SSTO SSTO 1 SSTO with 0 4 L

T

The higher the 72, the stronger the linear relationship!

Extrgme cases:
e Y, =Y then SSE=0=r*=1
e H=0=Y,=Y:thenSSR=0=12=0

BUT: r? ~ 0 does not always mean that there is no relationship at all between
Y and X! It only means that the relationship is not linear!
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