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1. Simple Linear Regression

Suppose that we are interested in the average height of male undergrads at
UF. We put each guy’s name (population) in a hat and randomly select 100
(sample). Here they are: Y1, Y2, . . . , Y100.

Suppose, in addition, we also measure their weights and the number of cats
owned by their parents. Here they are: W1,W2, . . . ,W100 and C1, C2, . . . , C100.

Questions:

1. How would you use this data to estimate the average height of a male
undergrad?

2. male undergrads who weigh between 200-210?

3. male undergrads whose parents own 3 cats?
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Answers:

1. Ȳ = 1
100

∑100
i=1 Yi, the sample mean.

2. average the Yi’s for guys whose Xis are between 200-210.

3. average the Yi’s for guys whose Cis are 3? No!
Same as in 1., because height certainly do not depend on the number of cats.

Intuitive description of regression:
(height) Y = variable of interest = response variable = dependent variable
(weight) X = explanatory variable = predictor variable = independent variable

Fundamental assumption of regression

1. For each particular value of the predictor variable X, the response variable Y
is a random variable whose mean (expected value) depends on X.

2. The mean value of Y , E(Y ), can be written as a deterministic function of X.
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Example: E(heighti) = f(weighti)

E(heighti) =

 β0 + β1(weighti)
β0 + β1(weighti) + β2(weight

2
i )

β0 exp[β1(weighti)],

where β0, β1, and β2 are unknown parameters!
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Scatterplot weight versus height and
weight versus E(height):
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Simple Linear Regression (SLR)

A scatterplot of 100 (Xi, Yi) pairs (weight, height) shows that there is a linear
trend.

Equation of a line: Y = b+m ·X (slope and intercept)
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Y=b+mX

1

m

b

X* X*+1

At X∗: Y = b+mX∗

At X∗ + 1: Y = b+m(X∗ + 1)
Difference is: (b+m(X∗ + 1))− (b+mX∗) = m
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Is: height = b+m · weight ? (functional relation)

No! The relationship is far from perfect (it’s a statistical relation)!

We can say that: E(height) = b+m · weight

That is, height is a random variable, whose expected value is a linear
function of weight.

Distribution of height for a person who is 180lbs, i.e. Mean E(height) = b+m·180.
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Formal Statement of the SLR Model

Data: (X1, Y1), (X2, Y2), . . . , (Xn, Yn)

Equation:
Yi = β0 + β1Xi + ϵi, i = 1, 2, . . . , n

Assumptions:

• Yi is the value of the response variable in the ith trial

• Xi’s are fixed known constants

• ϵi’s are uncorrelated and identically distributed random errors with E(ϵi) = 0
and var(ϵi) = σ2.

• β0, β1, and σ2 are unknown parameters (constants).
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Consequences of the SLR Model

• The response Yi is the sum of the constant term β0 + β1Xi and the random
term ϵi. Hence, Yi is a random variable.

• The ϵi’s are uncorrelated and since each Yi involves only one ϵi, the Yi’s are
uncorrelated as well.

• E(Yi) = E(β0 + β1Xi + ϵi) = β0 + β1Xi.
Regression function (it relates the mean of Y to X) is

E(Y ) = β0 + β1X.

• var(Yi) = var(β0 + β1Xi + ϵi) = var(ϵi) = σ2.
Thus var(Yi) = σ2 (same constant variance for all Yi’s).
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Why is it called SLR?

Simple: only one predictor Xi

Linear: regression function, E(Y ) = β0 + β1X, is linear in the parameters.

Why do we care about the regression model?

If the model is realistic and we have reasonable estimates of β0 and β1 we have:

1. The ability to predict new Yi’s given a new Xi

2. An understanding of how the mean of Yi, E(Yi), changes with Xi
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Repetition – The Summation Operator:

Fact 1: If X̄ = 1
n

∑n
i=1Xi then

n∑
i=1

(Xi − X̄) = 0

Fact 2:

n∑
i=1

(Xi − X̄)2 =

n∑
i=1

(Xi − X̄)Xi =

n∑
i=1

X2
i − nX̄2
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Least Squares Estimation of regression parameters β0 and β1

Xi = #math classes taken by ith student in spring
Yi = #hours student i spends writting papers in spring

Randomly select 4 students
(X1, Y1) = (1, 60), (X2, Y2) = (2, 70),
(X3, Y3) = (3, 40), (X4, Y4) = (5, 20)
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If we assume a SLR model for these data, we are assuming that at each X,
there is a distribution of #hours and that the means (expected values) of these
responses all lie on a line.
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We need estimates of the unknown parameters β0, β1, and σ2. Let’s focus on
β0 and β1 for now.

Every (β0, β1) pair defines a line β0 + β1X. The Least Squares Criterion says
choose the line that minimizes the sum of the squared vertical distances from
the data points (Xi, Yi) to the line (Xi, β0 + β1Xi).

Formally, the least squares estimators of β0 and β1, call them b0 and b1, minimize

Q =

n∑
i=1

(Yi − (β0 + β1Xi))
2

which is the sum of the squared vertical distances from the points to the line.
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Instead of evaluating Q for every possible line β0 + β1X, we can find the best β0

and β1 using calculus. We will minimize the function Q with respect to β0 and β1

∂Q

∂β0
=

n∑
i=1

2(Yi − (β0 + β1Xi))(−1)

∂Q

∂β1
=

n∑
i=1

2(Yi − (β0 + β1Xi))(−Xi)

Set it to 0 (and change notation) yields the normal equations (very important)!

n∑
i=1

(Yi − (b0 + b1Xi)) = 0

n∑
i=1

(Yi − (b0 + b1Xi))Xi = 0
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Solving these equations simultaneously yields

b1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2

b0 = Ȳ − b1X̄

This result is even more important! Use second derivative to show that a
minimum is attained.

A more efficient formula for the calculation of b1 is

b1 =

∑n
i=1XiYi − 1

n(
∑n

i=1Xi)(
∑n

i=1 Yi)∑n
i=1X

2
i − 1

n(
∑n

i=1Xi)2

=

∑n
i=1XiYi − nX̄Ȳ

SXX

where SXX =
∑n

i=1(Xi − X̄)2.
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Example:
Let us calculate the estimates of slope and intercept of our example:∑

iXiYi = 60 + 140 + 120 + 100 = 420∑
iXi = 11,

∑
i Yi = 190,

∑
iX

2
i = 39

b1 =

∑n
i=1XiYi − 1

n(
∑n

i=1Xi)(
∑n

i=1 Yi)∑n
i=1X

2
i − 1

n(
∑n

i=1Xi)2

=
420− 1

4(11)(190)

39− 1
4(11)

2
=

−102.5

8.75
= −11.7

b0 = Ȳ − b1X̄ =
1

4
190− (−11.7)(

1

4
11) = 80.0
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Estimated regression function

Ê(Y ) = 80− 11.7X

At X = 1: Ê(Y ) = 80− 11.7(1) = 68.3

At X = 5: Ê(Y ) = 80− 11.7(5) = 21.5
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Properties of Least Squares Estimators

An important theorem, called the Gauss Markov Theorem, states that the
Least Squares Estimators are unbiased and have minimum variance among all
unbiased linear estimators.

Point Estimation of the Mean Response:
Under the SLR model, the regression function is

E(Y ) = β0 + β1X.

We use our estimates of β0 and β1 to construct the estimated regression
function

Ê(Y ) = b0 + b1X
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Fitted Values: Define

Ŷi = b0 + b1Xi, i = 1, 2, . . . , n

Ŷi is the fitted value at Xi.

Residuals: Define

ei = Yi − Ŷi, i = 1, 2, . . . , n

ei is called ith residual. The vertical distance between the ith Y value and the line.
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Properties of Fitted Regression Line

• The sum of the residuals is zero:

n∑
i=1

ei = 0.

• The sum of the squared residuals,
∑n

i=1 e
2
i , is a minimum.

• The sum of the observed values equals the sum of the fitted values:

n∑
i=1

Yi =

n∑
i=1

Ŷi.
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• The sum of the residuals weighted by Xi is zero:

n∑
i=1

Xiei = 0.

• The sum of the residuals weighted by Ŷi is zero:

n∑
i=1

Ŷiei = 0.

• The regression line always goes through the point (X̄, Ȳ ).
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Errors versus Residuals

ei = Yi − Ŷi

= Yi − b0 − b1Xi

ϵi = Yi − β0 − β1Xi

So ei is like ϵ̂i, but ϵi is not a parameter!
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Estimation of σ2 in SLR:

Motivation from iid (independent & identically distributed) case, where Y1, . . . , Yn

iid with E(Yi) = µ and var(Yi) = σ2.

Sample variance (two steps)

1. find
n∑

i=1

(Yi − Ê(Yi))
2 =

n∑
i=1

(Yi − Ȳ )2.

Square the difference between each observation and the estimate of its mean.

2. divide by degrees of freedom

s2 =
1

n− 1

n∑
i=1

(Yi − Ȳ )2.

Lost 1 degree of freedom, because we estimated 1 parameter, µ.
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SLR model with E(Yi) = β0 + β1Xi and var(Yi) = σ2, independent but not
identically distributed.

Let’s do the same two steps.

1. find
n∑

i=1

(Yi − Ê(Yi))
2 =

n∑
i=1

(Yi − (b0 + b1Xi))
2 = SSE.

Square the difference between each observation and the estimate of its mean.

2. divide by degrees of freedom

s2 =
1

n− 2

n∑
i=1

(Yi − (b0 + b1Xi))
2 = MSE.

Lost 2 degree of freedom, because we estimated 2 parameters, β0 and β1.

SSE: error (residual) sum of squares; MSE: error (residual) mean square
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Properties of the point estimator of σ2:

s2 =
1

n− 2

n∑
i=1

(Yi − (b0 + b1Xi))
2

=
1

n− 2

n∑
i=1

(Yi − Ŷi)
2

=
1

n− 2

n∑
i=1

e2i

MSE is an unbiased estimate of σ2, that is

E(MSE) = σ2.

32



Normal Error Regression Model

No matter what may be the form of the distribution of the error terms ϵi the
least squares method provides unbiased point estimators of β0 and β1 that have
minimum variance among all unbiased linear estimators.

To set up interval estimates and make tests, however, we need to make assump-
tions about the distribution of the ϵi.
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The normal error regression model is as follows:

Yi = β0 + β1Xi + ϵi, i = 1, 2, . . . , n

Assumptions:

• Yi is the value of the response variable in the ith trial

• Xi’s are fixed known constants

• ϵi’s are independent N(0, σ2) random errors.

• β0, β1, and σ2 are unknown parameters (constants).

This implies, that the responses are independent random variates with

Yi ∼ N(β0 + β1Xi, σ
2).

34



Motivate Inference in SLR Models

Let Xi = #siblings and Yi = #hours spent on papers. Data
(1, 20), (2, 50), (3, 30), (5, 30) gives

Ê(Y ) = 33 + 0.3X

Conclusion: b1 is not zero, so
#siblings is linearly related to #hours,right?

WRONG!

b1 is a random variable because it depends on the Yi’s.

Think of consecutively collecting data and recalculating b1 for each data. We
draw the histogram of these b1’s
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Scenario 1: Highly variable Scenario 2: Highly concentrated
Histogram of bvar
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Think about H0 : β1 = 0
Is H0 false? Scenario 1: not sure

Scenario 2: definitely

If we know the exact dist’n of b1, we can formally decide if H0 is true. We need
formal statistical test of
H0 : β1 = 0 (not)
HA : β1 ̸= 0 (there is a linear relationship between E(Y ) and X)
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