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1 Information Matrices

In this note, data (y, z) are considered, where y denotes the observable part and z refers to that
part which is unobservable. Later we will concentrate on a response variable y which is modelled
in terms of a fixed predictor variable and an additional random effect z.

1.1 Complete Likelihood

Let 6 denote all unknown parameters in the model and

Ae(y, 2;0) = log f(y, 2;0)

be the complete log-likelihood function corresponding to the joint distribution of the response and
the random effect. We consider the model

f(y,2:0) = f(ylz;0) x f(20)

where f(y|z;0) is the conditional model, given the random effect z, and f(z;6) denotes the random
effect density. Both, f(y|z;0) and f(z;0) possibly depend on unknown parameters 6.
The respective complete score vector is
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1.2 Observed Likelihood
The MLE 6 is constructed by maximizing the observed log-likelihood

0) = log/f(y7z;9)dz

which depends on the observations y only. In what follows we need the exchangeability of integra-
tion and differentiation of the complete density function. From the respective observed scores
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we get the matrix of observed negative second derivatives
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Because —f"(y, 2;0)/ f(y, 2;0) = I.(y, 2;0) — Sc(y, 2;0)SL(y, z; 0) from (2), this can be rewritten as

I(y;0) = Eg(I(y,20)ly) — Eg (Se(y, 2;0)St(y, 2 0)|y) + Eo(Sc(y, 2 0)|y) Eo (Se(y, 2 0)|y)
= Ep(I(y,20)ly) — Vare (Sc(y, 2 0)|y) (4)

often called the missing information principle. This result is due to Louis (1982) and used to extract
the observed information matrix when the EM algorithm is applied to find MLEs in incomplete
data problems. Moreover, it provides a means of estimating the information which is associated
with the MLEs and requires only the computation of a complete-data gradient vector and a second
derivative matrix but not those associated with the incomplete-data likelihood.

I(y;0)

1.3 Missing Information Principle

Denote the observed and complete Fisher information matrices by

Z(0) = Eo(I(y;0)) = Ea(S(y;0)5 (y:0))
Z.(0) = Eo(l.(y,20)) = Eo(Sc(y, z,0)Si(y, 2;0)),



where expectations are taken over the marginal and the joint density, respectively. From
Ay;0) = Acly, 2;0) — log f(z]y; 6)

we get the identity
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By taking the expectation with respect to the conditional density of z, given the data y, we have
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McLachlan and Krishnan (1997) define
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to rewrite the above identity as a difference of conditionally expected informations, namely

I(y;0) = Ze(y; 0) — Zm(y3 0), (5)
where Z,,(y; 6) is considered as the missing information as a consequence of observing y only and

not also z. As stated in Louis (1982) the comparison of (5) with (4) results in an easy to interpret
expression for the missing information, i.e.

T (y;0) = Varg(Se(y, 2 0)|y). (6)

Note that with respect to the marginal density we have

EoZ.50) = [ ( [ 1.20)5C10:0) dz) 1) dy = [ [ 100070, 7:0) dy d= = 7.0)

By taking marginal expectations in (5) and by using the above result, we get
Z(0) = Zc(0) — Eo(Zm(y: ) (7)

for the a priori expected information.



1.4 EM Estimates

Dempster, Laird and Rubin (1977) iteratively maximizes
Q16" = / Ac(y, 2:0)f (2ly: 01)dz = Egor (el 2 0)y),

the conditional expected joint log-likelihood given the data. They also showed that if 6 converges
to a point @ then the observed score function has a zero at 6(>) = @, the marginal MLE. Each
iteration of the EM algorithm solves

%Q(me(t)) =0. (8)
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Louis (1982) and later on Meilijson (1989) considered ) and its derivatives when evaluated in
0 =00 eg.
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Evaluating the missing information (6) at 6 gives us the simplification
Im(yvé) = EQ(SC(:%Z,9)S£(y7279)|y)‘9:é (9)

because Fy(S.(y, 2; 0)|y)|9:é = S(y:0) = 0 at convergence, a consequence of (8).

A software which provides EM estimates by directly applying successive E and M steps will
automatically provide the inverse of the matrix Z.(y; é), an estimate of the complete information
at convergence. But this matrix should not be used for estimating the standard errors of the MLE
6, because it does not account for the missing information. Instead of that, Efron and Hinkley
(1978) suggest to use the inverse of the observed information I(y; ) to serve as an estimate of the
covariance matrix of the MLE.

If we take the observed score vector S(y;#) and calculate its negative derivative then we get
the desired observed information 9

—@S(yﬂ) =I(y;0).

The Newton-Raphson procedure
00+ =6 + I(y;0%)) 1 S(y; 6)

will give I(y; é)_l at convergence. One remaining open problem is concerned with the question on
how we can compute or approximate all the expected values that we need.



2 A Model to Handle Overdispersion

Now we consider a Generalized Linear Model for the conditional mean p = u(z) = E(y|z; 8) of an
observation y given an unobservable random effect z of the form

g(n) =a'B+ 2

where = includes all explanatory variables, y is a response variable and z is the random effect.
B is the vector of unknown parameters associated to the fixed effects and we like to construct
estimates for the standard error of the maximum likelihood estimate (MLE) 3. We also assume
that distributional assumptions can be made on the response variable conditional on the random
effect.

2.1 Gaussian Random Effects

First let us assume that data y = (y1,...,yn)? are available that conditionally follow a Generalized
Linear Model where the random effects z = (21, ..., 2,)! are independently drawn from a normal

distribution with zero mean and variance o2, e.g.

g(wi) =zt + 0.2,

where g is a (canonical) link function and z; (S N(0,1). Here, 6§ = (8%,0,)" and the density of the
random effects f(z) = ¢(z) does not depend on any unknown parameter. Let X = (X|z) denote
the design matrix X extended by the vector of random effects z and write

g(n) = X0.

For f(y|z;0) from the exponential family and a canonical link model we have the well known
results

['(Wlz;:0) < p(z)  f'(ylz;0) 0
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Lz0) = 0 log f(y)z:6)
= X'WX.

Here, V = V(u(z)) denotes the conditional variance function, i.e. the variance function to f(y|z;6)
as in the usual GLM setting for y|z. Therefore, the information matrices in (5) are

I(y;0) = ( (Y, 2; 9)‘ >=Ee()~(tVf(‘y)
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We approximate the above conditional expectations through Gauss-Hermite quadrature. That
means that the unobservable effects z; are replaced by some known masspoints (; with known
masses T, k= 1,..., K. Further, let Z;; = (zf, ()" and

J (il Cr; 0)

K
i1 S Wil G 0)m

the respective approximation to f(z;|y;; ). This gives an approximation to the complete Fisher
information
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which is automatically provided at convergence of the EM algorithm. For the first term in Z,, (y; 6)
we get
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The second term of Z,,(y; 0) is zero at § = 0. Generally, it can be approximated by
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Subtracting the last from the previous result gives the approximation to the missing information
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Hence, the observed information is

I(y;0) = Z Eg(:x;Vilys)
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It is also worth to consider the a priori expected information in (7)
Z(0) = Eo(I(y;0)) = Zc(0) — Eo(Zm(y; 0))-

Because of the assumed canonical link model, the matrix Z.(y; 0) = Eo(I.(y, z;0)|y) = X'V X is
not a function of the observed data. Therefore,

To(0) = Zo(y:0) = ) Eo(#:@Vilys) = ) Eo(#:Vi).

Moreover, this also holds for

Ey <Z Eq (T2 (y;: — Mi)2|yi)>
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Together this gives
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Z(0)

the variance-covariance matrix of the observed total score. For i.i.d. variates Meilijson (1989) uses
such an empirical Fisher information. Here we like to suggest to estimate the variance contribu-
tion of each individual score in an similar emplrlcal manner_for non-i.i.d. scores. Estlmatlng the
individual variance by ’samples of size one’ at a time, e.g. Var( (5:0)) = s(ys:0)st (y;; 0), results
in Z =", s(yi; 0)s' (yi; 6) with respective approximation

T30 D Fudinlys — ) (9 — i) Diga.
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2.2 Unspecified Random Effect Distribution

Let us again consider the model g(p;) = xS + z;. Like in the previous part, u; = E(y;|2;) denotes
the conditional mean but z; are now i.i.d. from an unknown distribution, which should be
estimated nonparametrically. This can be done by an estimate, that is defined by giving masses
7w = (m,...,7k)! on a finite number K of masspoints ¢ = ((1, ..., x)’; both vectors are treated
as unknown, whereas the number K itself is assumed to be a priori known. In the following the
explanatory vector x should not include an intercept term! Hence, we rewrite the model as

g() = i+ el =70

where &; = (z%,€!)t, 0 = (8,¢")" and €; = (€1, ..., €iK)" % MN(1; ), i.e. multinomial with

K K
P(z;=(p;m) = Ple; = ei5m) = H %, with Zﬂ'k =1, m >0,
k=1 k=1

where e; = (e;1,...,€; K)t is any admissible realization of ¢;. Hence, the unknown parameters can
be separated into two distinct sets of parameters, where 6 corresponds to f(y|z) (again a member
of the exponential family) and 7 only belongs to the discrete estimate of f(z) (the random effect
density).

Let X = (zt,e!)t denote the matrix built up by all rows of the design matrix X extended by
the rows of the respective row vectors e;. The complete € score and its negative derivative under
this model is as before

0 "(ylz; 0 0 ~
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To determine the 7 score under the multinomial model subject to the above constraint, we note
that log f(z;7) is, aside from constants,
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Therefore, the complete m-score vector is
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giving the vector
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where e, = (ekl,...,ek’K,l)t is a K — 1 indicator vector with ey, = 1 and zeros otherwise.
Equating the complete score to zero results in the ML estimates
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Its respective negative derivative is therefore the (K — 1) x (K — 1) matrix
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Because 6 and 7 are orthogonal parameter sets, the full matrix is
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Note that the conditional expectations can be approximated by
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By definition, the marginal score is the conditionally expected complete score. Hence, for k =
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with respective (approximate) marginal estimates
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The observed information is again described by the difference between the complete and the
missing part. The observed 6 information matrix part is handled in the same way as before.
Because the 0 score does not depend on 7 (and vice versa) the complete (6, 7) information matrix
Z.(y; 0, ) consists of two blocks. The 7 block is calculated by means of Z7 (y; ), and Z7 (y; 7), the
conditional variance of the complete 7 scores. Now we have the complete Fisher information
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and the missing information
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Notice that E(ejxeq|y;) = 0 for k # | and E(e% |y;) = E(ei|y;). Hence, the missing information
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3 The direct way — a reparameterized approach
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We again assume that the conditional density is a member of the exponential family, i.e. for
canonical link models with (extended) linear predictor n; = zly + z;

f(yilzi; 0) oc exp (yﬂh‘ - b(m)) (11)
this gives conditional moments
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and first derivatives
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If f(z;) does not depend on parameters, then the above results also hold for the log-likelihood
based on the joint density log f(y:, zi;0) = log f(y;|z:;0) + log f(z;). If f(2;) is totally unknown,

we can estimate through the discrete K-point distribution given by ((x, 7x), k= 1,...

reparametrize the masses m = 7(¥) as
7 = exp(V — k(¥)), where Ok(1)/09; = m
to ensure 7w, > 0. The derivatives of © w.r.t ¥ are therefore

%_ (1—7Tk)7Tk if k=1
09, | —mem if k#L

This can be also written as
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Now we study the derivative of the weights
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With these results we get
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Let e be a vector of zero with 1 at the kth position. The respective derivatives of the considered
estimating equations

n K
94(0,0) = Z Z i (Yi — Wik ) Wik
i=1 k=1
n K
9c(0,9) = Z Z er(Yi — Hik) Wik
i=1 k=1
are
agv(ev 19) LA t Ow;y,
Tt T . Z%( — Viswirz; + (yi — ) B )



3

1
M= 11

3

t
xixiwik ( —

@
Il
—
=~
Il
_

gﬂfa(ct,) — ;;xi(vikwikeiJr(
n K
=Yy q:i( — Vikwiey, + (yi
i=1 k=
n kKl
— ZZzieiwik(—Vzk‘F(
i=1 k=1
n K
- Z Z ek( — Vigwipah + (y;
:1 k;l
_ Z Z enTiwgy, ( — Vie + (vs
i=1 k=1
. 8!]7(9719)
= o
89%(?19) > ek( — Viwirel + (4

N
Il
—

3

s
Il
-

I
> T 14

ekeiwik( — Vi + (s

|

@
Il
-
=~
Il
—

Iz( — Viswirp @t + (i

Vik + (y;

6k< — Viswirey, + (i

- Nz’k)( (Y — k) wir, — wzkzx — it wzl))
n K K
- :uzk ) Z Z Ty LL' wzk: Nzk)(y le)wzl
i=1 k=1 I=1
8wzk
,Ufzk) 6Ct )
K
= Hik) (62 (yi — par)wik — wir »_ €] (i — Mz‘l)wil))
=1
n
:U'zk ) Z Z Z xzeszk /sz)(y ,U'zl)wzl
i=1 k=1 I=1
8wik
Hik) PN )
- va)( ( ,uzk: Wik — Wik Zx — Ml wzl))
n
- ,uik)g) - Zzzekﬁwik( — pi) (Yi — par)wit
i=1 k=1 =1
6wzk
/'[/Zk) act )
K
- Mk) (QZ(yi - Hz’k’)wik — Wik Z 6?(2/ - ,Uil)wil))
=1
n K K
— [ik) ) DO enefwir(yi — pin) (Wi — pir)wa
i=1 k=1 I=1

For 6 = (v%,¢")" and with Z;, = (zf,e})" we get for the combined estimating equation
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the result
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The results for the derivatives w.r.t 9 are
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