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Introduction

Points of action:

• Presence of uncertainty
• Variation in data
• Very little / too much information
• . . .

Statistical methods =⇒ judgements and decisions



Populations and samples

We focus on a well-defined collection of objects, the population.

Examples:

• All cars produced on February 8, 2008 in factory A.

• All children in the European Union aged 8-12.

Usually - due to constraints on time, money, etc. - we only select a
subset of the population, a sample.
For example we might select 10 cars out of the above car population to
check the exhaust emissions.



Variables

We are interested in certain characteristics of the elements of the
sample, e.g.:
• gender,
• age,
• weight or
• hair color.

A variable is any characteristic that may change from one object
to another. There are two types of variables:
• categorical (male/female, blonde/brown/other) and
• numerical (age=9 years, weight=35.2 kg).



What can we do with a sample to begin with?

Exploratory Statistics:
• Graphical analysis
• Numerical summary measures

With the help of statistics software packages like R such
calculations can easily be done.



Motivating example

Suppose we want to study the age of our neighbors. We get the
following data:

26 34 35 13 4 20 74
50 14 48 14 53 9 39
36 40 41 56 16 41 17
46 43 18 35 38 35 45

Looking at the raw data it is difficult to see any distinctive features
in it. Let us apply a simple graphical feature.



Stem-and-Leaf Display

> ages<-c(26,34,35,13,4,20,74,50,14,48,14,53,9,39,36,
+ 40,41,56,16,41,17,46,43,18,35,38,35,45)
> stem(ages)

The decimal point is 1 digit(s) to the right of the |

0 | 49
1 | 344678
2 | 06
3 | 4555689
4 | 0113568
5 | 036
6 |
7 | 4



Stem-and-Leaf Display - 2

• easy way to organize numerical data
• split observations in two parts

1 stem (one or more leading digits)

2 leaf (remaining digits)

• no loss of information

• very useful for samples with 20-200 observations



Stem-and-Leaf Display - 3

0 | 49
1 | 344678
2 | 06
3 | 4555689
4 | 0113568
5 | 036
6 |
7 | 4

What can we see now?
• Our youngest neighbor is 4, our oldest is 74.
• The groups of people in their 30s or 40s are the largest ones.
• Nobody is in his 60s.
• There are three neighbors aged 35.



Stem-and-Leaf Display - 4

Information in such a display:

• typical value

• extent of spread around the typical value

• presence of gaps

• symmetry

• number and location of peaks

• outliers



Histogram

Histogram of ages
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• easy plot to see characteristics of the data
• more efficient than a stem-and-leaf display with larger data sets



Histogram - 2

Some numerical data is obtained by counting to get the value of
a variable, e.g.

• the number of car accidents in one week or

• the number of customers in a shop on one day.

For other numerical data the number of possible values might be
finite, for example University grades 1-5 (in Austria).

Variables as the ones above together with categorical
variables are called discrete.

The set of possible values of discrete variables is either finite or can
be listed as an infinite sequence (1, 2, 3, . . .).



Histogram - 3

Other numerical data is obtained by measurements, e.g.

• the weight of an individual,

• the computation time of a program or

• the difference between the actual fill quantity of a beer bottle and
its target fill quantity.

These variables are called continuous.

The possible values of continuous variables consist of an entire interval
on the real line.



Histogram - discrete variable

We look at a small sample consisting of the grades of 20 students
in the statistics course.

4 2 2 1 3 2 5 4 2 1
3 1 4 5 2 1 2 3 3 2

To draw a histogram, we count how many times each grade has
occurred and draw a bar with height=(number of occurrences)
over that grade.

> grades<-c(4,2,2,1,3,2,5,4,2,1,
+ 3,1,4,5,2,1,2,3,3,2)
> hist(grades,breaks=seq(0.5,5.5,1))



Histogram - discrete variable - 2

Histogram of grades
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• The most common grade, the mode, is a 2.
• There are more bars on the right side of the mode than on the

left side.
• Therefore there is no obvious symmetry around 2.



Histogram - discrete variable - 3

Take the ages sample from before. We divide the ages into 8
groups of equal length: 1-10, 11-20, . . ., 71-80. That is, we count
how many observations lie in each of the groups.

1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80
2 7 1 8 7 2 0 1

Now we can act as in the previous example.

> hist(ages)



Histogram - discrete variable - 4

Histogram of ages
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• similar to stem-and-leaf display
• common ages are 11-20 and 31-50
• two peaks
• gap in 61-70



Histogram - discrete variable - 5

• The width and the positions of the bars have to be chosen.
• They influence the shape of the histogram.

> hist(ages)
> hist(ages,right=FALSE)
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Histogram - discrete variable - 6
If we put the width down to one year, there is a bar for each
possible age.

Histogram of ages
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Instead of the actual frequency, the height of the bars can also be
the relative frequency:

relative frequency =
number of times the value occurs

number of observations in the sample
.



Histogram - discrete variable - 7

The last histogram with relative frequencies has the property, that
the total area of all bars is one.

The area of the bar on top of 35 then estimates the probability
that a neighbor is 35 years old.

In the discrete case we assume that there is a true probability of
appearance for each age. They can also be plotted similar to a
histogram.

The distribution of the variable is responsible for the shape of
that plot.

The sum over all probabilities is always one.



Discrete distributions

Examples of distributions with their probability mass
functions:

Binomial distribution Poisson distribution
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There is not always such a characteristic in the distribution!



Discrete distributions - 2
The Binomial Distribution

Example: The number of students out of 10 that pass the statistics
test (frequency). Usually 70 % pass the test.

• Items in groups of size n = 10.
• An item can be satisfactory (success) or unsatisfactory

(failure).
• Proportion of all items that are successes is π = 0.7.
• Proportion of failure is 1− π = 0.3.

Therefore one observation can take values in {0, 1, 2, . . . , n}, that
is there is a minimum and a maximum value.

The average value, the mean, of such an observation is
n ∗ π = 10 ∗ 0.7 = 7.
The variance is n ∗ π ∗ (1− π) = 10 ∗ 0.7 ∗ 0.3 = 2.1.



Discrete distributions - 3

The Poisson Distribution

Examples:
1 The number of car accidents in Graz on one day.
2 The number of customers in a specific supermarket at 1 PM.

• There is no explicit maximum value.
• Usually used for count data.
• There is only one parameter λ that defines the shape of the

distribution (mean=variance=λ).



Discrete distributions - 4

The probability mass function

• pk = P (X = k) is the probability that the variable has value k.
• pk ≥ 0
• The sum over all pk is one.



Discrete distributions - 5

If we sum up the probabilities to each value of a discrete variable
and plot the resulting step function, we get the distribution
function F (x) of that random variable.

P(2 successes) =⇒ P(up to 2 successes)
Probability mass function Distribution function F (x)
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Discrete distributions - 6
If we already have a sample, we can calculate the empirical
distribution function. This is a step function that makes a step of
equal height 1/(# of obs.) at each observation in the sample.

Ages example:
> plot(ecdf(ages))
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Some important measures of X

Mean: E(X), average value, center of mass.
Variance: Var(X), measure for the variation in observed

values around the mean.
Standard
deviation:

√
Var(X), the square root of the variance.

Relation between the population and the sample:

Population ↔ Mathematical model assumptions
⇓ ⇑

Sample ↔ Check of adequacy of assumptions



Histogram - continuous variable

A power company needs information about the power demand.
Therefore they study power consumption values of 90 gas-heated
homes in the US. The first 20 values in ascending order are the
following.

2.97 4.00 5.20 5.56 5.94 5.98 6.35 6.62 6.72 6.78
6.80 6.85 6.94 7.15 7.16 7.23 7.29 7.62 7.62 7.69
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Again we divide the values in intervals of equal length, this time
e.g.

(2, 4], (4, 6], . . . , (18, 20],

and count the number of observations in each interval. Drawing
bars as high as the number of occurrences gives us:



Histogram - continuous variable - 2

Histogram of power
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The histogram would look different for another choice of intervals!



Histogram - continuous variable - 3
If we divide the height of all bars by the total area of all bars, we
obtain a histogram of relative frequencies:

Histogram of power
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In this plot the total area of all bars is one. The bars can now be
interpreted as estimators for probabilities:

The probability of a power consumption between 6 and 8 should be close
to 10 %.



Histogram - continuous variable - 4
If we smooth such a histogram of relative frequencies we obtain a
so called density estimator (red line):
> lines(density(power))

Histogram of power
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For explaining the properties of a continuous variable a density
estimator is more appropriate (because there are no jumps). This
leads us to describing the distribution of continuous (random)
variables.



Continuous distributions
• In the continuous case variables can take all values in some

interval, e.g. [10, 20].
• The probability that the variable takes any fixed value, e.g.

15, is 0.
• Therefore we need to find another concept of describing the

probability mass: the density function.
• The area between the density function and the x-axis is

one.
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Continuous distributions - 2

Examples of distributions with their density functions:

Normal distribution Exponential distribution
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Continuous distributions - 3

The Normal Distribution

Examples:
1 weights or heights of humans
2 measurement errors

Properties:
• most important distribution in statistics
• characterized by two parameters:

1 the mean µ
2 the variance σ2

• sums or averages of variables are often approximately normally
distributed



Continuous distributions - 4

Examples of normal density functions

Different means (µ) Different variances (σ2)
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Continuous distributions - 5

The Exponential Distribution

Examples:
1 life time of a bulb
2 time between successive arrivals in a shop

Properties:
• can take all values larger than 0
• one parameter λ

• mean=λ

• variance=λ2



Continuous distributions - 6

The density function

• usually called f(x)
• f(x) is defined for all values x on the real line.
• f(x) ≥ 0
• The area between f(x) and the x-axis is one.



Continuous distributions - 7
To get the probability that a random variable X lies between a
and b, we need to look at the area between the density function
f(x) and the x-axis from a to b.

For example the probability of a normal random variable X with µ = 15
and σ = 1.3 to be between 13 and 16 is the green area:

P (13 ≤ X ≤ 16) = 0.72
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Continuous distributions - 8
The distribution function

If we study the probability that a random variable X is at most b,
we are looking at its distribution function F (b) = P (X ≤ b).

For example we look at a normal random variable X as before (µ = 15,
σ = 1.3). Graphically looking at the green area is the same as
P (X ≤ 16) = 0.78.

Normal density function Normal distribution function
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Continuous distributions - 9

Properties of distribution functions:
• F (x) is defined for all values x on the real line.
• F (x) is a nondecreasing function.
• For x sufficiently small F (x) is arbitrarily close to 0.
• For x sufficiently large F (x) is arbitrarily close to 1.

These properties apply for both continuous and discrete random
variables’ distribution functions.

The empirical distribution function, as it was introduced earlier,
can also be calculated in the same way for a sample from a
continuous population.



Histogram - application
Let’s go back to the power demand example and assume that the
power demand is normally distributed with µ = 10 and
σ = 2.87.
Compare the histogram of our sample with the density function of a
normal (random) variable as above:

Histogram of power
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Histogram - shapes

Unimodal: One single peak.
Bimodal: Two different peaks.

Symmetric: The left half is a mirror image of the right half.
Positively skewed: The right tail is stretched out further

than the left one.
Negatively skewed: The left tail is stretched out further

than the right one.

These shapes are also relevant for probability mass functions
and density functions.



Histogram - shapes - 2
Symmetric unimodal Bimodal

Positively skewed Negatively skewed



Barchart
• Histogram for categorical data.
• Some arbitrary order.

Example: Hair color of 25 children

> barplot(table(hair))

black blonde brown other red
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Piechart
• used for categorical data
• shows similar information as a barchart

Example: Hair color example from before

> pie(table(hair))

black

blonde

brown
other

red



Numerical summary measures

Measures of the center

1 The sample mean x̄.
2 The sample median x̃ (also called q0.50).

We suppose we have a sample x = (x1, . . . , xn), thus n is the
number of observations.



The sample mean

The sample mean is defined by

x̄ =
x1 + x2 + . . . + xn

n
.

The sample mean estimates the true mean of the population.
It is the most common estimator.

Problem: A single outlier (unusually large or small observation)
can significantly change the sample mean!



The sample mean - Example

Remember the ages data set:

26 34 35 13 4 20 74
50 14 48 14 53 9 39
36 40 41 56 16 41 17
46 43 18 35 38 35 45

The sample mean is then

x̄ =
26 + 34 + 35 + . . . + 38 + 35 + 45

28
=

940
28

= 33.57143.

> mean(ages)
[1] 33.57143



The sample median

• Alternative measure of the center.
• Resists the effects of outliers.
• But: the median only estimates the true mean for

symmetric distributions!

The sample median divides the observations in two equally big
parts:
Half of the observations are smaller than the sample median, half
of them are larger.

The "middle value" of the ordered sample is the sample median:

1.2 3.4 4.2 5.1 5.9 6.9 8.3



The sample median - calculation

The following formula shows how to calculate the sample median x̃
from the ordered sample:

x(1) ≤ x(2) ≤ . . . ≤ x(n).

x̃ =

x(n+1
2 ) if n is odd

1
2

(
x(n

2 ) + x(n
2
+1)

)
if n is even.

This mean, if n is odd, we simply take the middle value.

If n is even, there are two middle values, so we take the average
of those two.



The sample median - examples

First look at the (already ordered) sample from before:

1.2 3.4 4.2 5.1 5.9 6.9 8.3

Here n is 7 (odd) and therefore x(4) = 5.1 is the middle value and
the sample median.

Suppose the sample consists of one more element, e.g. 8.7:

1.2 3.4 4.2 5.1 5.9 6.9 8.3 8.7

Then n = 8 (even) and the sample median is 1
2(x(4) + x(5)) = 5.5.



The sample median - ages example

In the ages example we get the following sample median using R:

> median(ages)
[1] 35.5

Here we have x̃ = 1
2(x(14) + x(15)) = 1

2(35 + 36).



Median of a distribution

As we have just seen, the sample median has the property, that
50 % of all observations are smaller or equal its value, while 50 %
are larger.

Looking at the mathematical model, the median x0.50 of a
continuous random variable X has the same property:

P (X ≤ x0.50) = P (X > x0.50) = 0.50.

The probability of X being smaller than the median is 50 %.
For discrete random variables the definition is similar.



Theoretical quantiles
As we just defined x0.50, we can introduce xp for any 0 < p < 1
with the property

P (X ≤ xp) = p.

That is, the probability of X being smaller than xp is 100 ∗ p %.
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Sample quantiles

To estimate the theoretical quantiles of a random variable from
a sample (x1, . . . , xn) one usually uses for 0 < p < 1

qp =

{
1
2(x(np) + x(np+1)) if np is an integer,
x(bnpc+1) otherwise.

Note that the sample median x̃ = q0.50 is also included in this
definition.

The 25 %, 50 % and 75 % quantiles are sometimes called the 1st,
2nd and 3rd quartiles.
The interquartile range (iqr) is the difference between the 3rd
and the 1st quartile:

iqr = q0.75 − q0.25.



Sample quantiles - 2

Example:

Let us calculate some quantiles of the ages data set.

> quantile(ages,c(0.05,0.25,0.75,0.95),type=2)
5% 25% 75% 95%

9.0 17.5 44.0 56.0
> median(ages)
[1] 35.5
> quantile(ages,0.50,type=2)
50%

35.5
> IQR(ages)
[1] 25.75



Measures of variability

A measure of the center is only a partial information about a
data set. Different samples may well have the same mean (or
median), while they differ in other important ways.

The following plot shows three different samples with the same
sample mean and different variabilities (sample 1 has the
largest, sample 3 the smallest amount of variability):
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The sample variance

The variability is responsible for the spread of observations
around the mean. Therefore in studying the variability of a
sample, the deviations from the mean x1 − x̄, . . . , xn − x̄ are of
great importance.

This leads us to the sample variance, the sum of the squared
deviations:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2.

The sample standard deviation is the (positive) square root of
the variance:

s =
√

s2.



The sample variance - 2

The scale for s is the same as the scale for each xi.

If for example the observations are fill quantities of beer barrels,
then we might have s = 2.0 liters. Roughly speaking this means
that a typical deviation is 2.0 liters.
If using another machine to fill the barrels, this could give s = 3.0,
indicating a larger variability.



The sample variance - power demand example
> mean(power)
[1] 10.03844
> var(power) # the sample variance s^2
[1] 8.225368
> sd(power) # the sample standard deviation s
[1] 2.867990
> hist(power) Histogram of power
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The sample skewness

The sample skewness is defined as

g1 =
1

n−1

∑n
i=1(xi − x̄)3

s3
.

> skewness<-function(x){
(sum((x-mean(x))^3)/(length(x)-1))/(sd(x)^3)}

> skewness(power)
[1] 0.2864764

Interpretation:
g1 ≈ 0 probably symmetric distribution
g1 > 0 long tail to the right
g1 < 0 long tail to the left



The boxplot
• visual summary of data
• based on different quantiles and extrema

∗ � Outlier x(1) < q0.25 − 1.5 iqr

� max(x(1), q0.25 − 1.5 iqr)

� q0.25

� x̃ = q0.50

� q0.75

XXXXXXXXXy

min (x(n), q0.75 + 1.5 iqr)
[iqr = q0.75 − q0.25]



The boxplot - 2

Advantages:
• easy overview of characteristics like the median and the

range
• recognition of skewness or symmetry
• shows the length of the tails and outliers
• good tool to compare different samples
• no need of (subjective) choices of parameters



The boxplot - Example
This is the boxplot of the ages data set:

> boxplot(ages)
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The boxplot - Example 2
Suppose we also know the sex of our neighbors (with F=female
and M=male), then we might want to study and compare the ages
of each group:

> boxplot(ages~sex)

F M
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The Q-Q plot

• Q-Q plot stands for Quantile-Quantile plot.
• It is used to compare a sample with a theoretical

population distribution.
• x-axis: theoretical quantiles
• y-axis: sample quantiles

We use the i−.5
n th quantiles for 1 ≤ i ≤ n, thus we compare

x(i) with x i−.5
n

of a possibly suitable distribution.

If the chosen distribution is supported by the data, the points
in the plot should nearly form a line.



The Q-Q plot - example
Let us have a look at a Q-Q plot of the power demand data.

As we have already seen in its histogram, the data seems to be close to a
normal distribution.

> qqnorm(power)
> qqline(power)
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The points are very close to a line, this is an indicator of a normal
distribution of the power demand population.



The Q-Q plot - example 2

Suppose we want to compare the same data with a different
distribution, say the t-distribution with parameter 2 (longer tails).
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The plot does not suggest an underlying t-distribution.



The scatter plot

• used for bivariate data
• data pairs (xi, yi): (14.2,5.2), (27.5,6.3), ...
• each pair as a dot in a 2-dimensional coordinate system
• helps to find relationships between variables x and y

Example:
In a sample we have the height (x in cm) and weight (y in kg) of
20 male statistics students.

Obs.: 1 2 3 4 5 6 7 8 9 10
x: 178 177 190 186 183 168 188 180 177 192
y: 78 75 86 82 75 67 82 78 78 84

Obs.: 11 12 13 14 15 16 17 18 19 20
x: 185 181 183 176 189 170 183 187 178 180
y: 81 74 77 78 84 69 77 78 75 80



The scatter plot - 2

> plot(x,y,main="Scatter plot of weight vs. height")

170 175 180 185 190

70
75

80
85

Scatter plot of weight vs. height

x

y

We see an indication of a linear relationship between the two
variables:
The taller a student, the heavier he is.



The scatter plot - 3

A scatter plot may also show a seemingly random distribution of
points:
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Scatter plot matrix

When looking at more than two numerical variables, we might
like to study the relationships between each pair of variables.
That is, we want a scatter plot of each variable pair. This is
realized within a scatter plot matrix.

Example:
Suppose we also know the age of the 20 statistics students from
before:

Obs.: 1 2 3 4 5 6 7 8 9 10
z: 19 22 24 21 28 23 27 20 20 24
Obs.: 11 12 13 14 15 16 17 18 19 20
z: 23 20 23 21 22 25 21 19 22 27



Scatter plot matrix - 2

> plot(data.frame(x,y,z))

x
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Résumé of introduced numerical summary measures

• measures of the center
1 sample mean x̄

2 sample median x̃

• measures of variability
1 sample variance s2

2 sample standard deviation s

• sample skewness g1

• sample quantiles qp



Résumé of plots for a first graphical analysis

• Stem-and-Leaf Display

• Histogram

• Barchart

• Piechart

• Boxplot

• Q-Q Plot

• Scatter Plot (Matrix)
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