Mathematische Statistik – Übungen: Blatt 5

- 1. 1000 Würfe einer Münze ergaben 560 mal Kopf und 440 mal Zahl.
 Ist es glaubwürdig anzunehmen, dass diese Münze fair ist? Rechtfertige die Antwort!
- 2. In einer kleinen Stadt wird angenommen, dass die Anzahl der Autounfälle in einem Jahr einer Poisson-Verteilung genügt. In den Jahren davor war die mittlere Anzahl von Unfällen 15. Dieses Jahr gab es 10 Unfälle. Ist es gerechtfertigt zu behaupten, dass die Unfallrate abgenommen hat?
- 3. Die Beziehung zwischen arithmetischem, geometrischem und harmonischem Mittel kann auch über Likelihood Quotienten Tests (LRTs) hergeleitet werden.

Seien dazu Zufallsvariablen Y_i , $i=1,\ldots,n$, unabhängig verteilt mit Dichte $\lambda_i \exp(-\lambda_i y_i)$ und wir testen $H_0: \lambda_1 = \cdots = \lambda_n$ gegen $H_1: \lambda_i$ sind nicht alle gleich.

- (a) Zeige, dass die LRT Statistik gegeben ist durch $(\overline{Y})^{-n}/(\prod_i Y_i)^{-1}$ und entwickle daraus die Ungleichung zwischen arithmetischem und geometrischem Mittel.
- (b) Führe die Transformation $X_i = 1/Y_i$ durch und zeige, dass die LRT Statistik basierend auf X_1, \ldots, X_n gegeben ist durch $[n/\sum_i (1/X_i)]^n/\prod_i X_i$. Schließe daraus auf die Ungleichung zwischen geometrischem und harmonischem Mittel.
- 4. Berechne und zeichne für Stichproben vom Umfang $n \in \{1, 4, 16, 64, 100\}$ aus einer $N(\mu, \sigma^2)$ Population mit bekanntem σ^2 die Power-Funktion für folgende LRTs. Nimm dazu $\alpha = 0.05$.
 - (a) $H_0: \mu \le 0$ gegen $H_1: \mu > 0$,
 - (b) $H_0: \mu = 0$ gegen $H_1: \mu \neq 0$.
- 5. Für eine Zufallsstichprobe X_1, \ldots, X_n von Bernoulli(p)-Variablen möchte man testen:

$$H_0: p = 0.49$$
 gegen $H_1: p = 0.51$.

Verwende den Zentralen Grenzwertsatz um annähernd den notwendigen Stichprobenumfang zu bestimmen, so dass die Wahrscheinlichkeiten für den Type I und Type II Error beide um 0.01 sind. Verwende eine Teststatistik die H_0 verwirft falls $\sum_i X_i$ groß ist.

6. Seien X_1, \ldots, X_n iid $N(\theta, \sigma^2)$ mit unbekanntem σ^2 . Teste

$$H_0: \theta = \theta_0$$
 gegen $H_1: \theta \neq \theta_0$.

(a) Zeige, dass ein Test der H_0 verwirft falls

$$|\overline{X} - \theta_0| > t_{n-1,1-\alpha/2} \sqrt{S^2/n}$$

ein Test von der Größe (size) α ist.

(b) Zeige, dass dieser Test auch als LRT hergeleitet werden kann.

7. Sei $(X_1, Y_1), \ldots, (X_n, Y_n)$ eine Zufallsstichprobe aus einer bivariaten Normalverteilung mit Parametern $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2$ und ρ . Teste

$$H_0: \mu_X = \mu_Y$$
 gegen $H_1: \mu_X \neq \mu_Y$.

- (a) Zeige, dass die Zufallsvariablen $W_i = X_i Y_i$ iid aus $N(\mu_W, \sigma_W^2)$ sind.
- (b) Zeige, dass die obigen Hypothesen mit der Statistik

$$T_W = \frac{\overline{W}}{\sqrt{S_W^2/n}}$$

getestet werden können, mit $\overline{W} = (1/n) \sum_i W_i$ und $S_W^2 = (1/(n-1)) \sum_i (W_i - \overline{W})^2$. Zeige auch, dass diese Teststatistik unter H_0 einer Student's t-Verteilung mit n-1 Freiheitsgraden folgt. Dieser Test ist auch bekannt als t Test für gepaarte Stichproben.

8. Sei X_1, \ldots, X_n eine Zufallsstichprobe aus $N(\mu_X, \sigma_X^2)$ und Y_1, \ldots, Y_m eine davon unabhängige Zufallsstichprobe aus $N(\mu_Y, \sigma_Y^2)$. Teste

$$H_0: \mu_X = \mu_Y$$
 gegen $H_1: \mu_X \neq \mu_Y$.

unter der Annahme $\sigma_X^2=\sigma_Y^2=\sigma^2.$

(a) Entwickle den LRT für diese Hypothesen. Zeige, dass der LRT auf der Statistik

$$T = \frac{\overline{X} - \overline{Y}}{\sqrt{S_p^2(\frac{1}{n} + \frac{1}{m})}}$$

basiert, wobei

$$S_p^2 = \frac{1}{(n+m-2)} \left(\sum_{i=1}^n (X_i - \overline{X})^2 + \sum_{i=1}^m (Y_i - \overline{Y})^2 \right).$$

Die Größe S_p^2 wird auch gepoolter Varianzschätzer genannt.

- (b) Zeige, dass $T \sim t_{n+m-2}$ unter H_0 gilt, weshalb man diesen Test auch den Zweistichproben t Test nennt.
- (c) Es liegen Holzstichproben vom Innen- und Außenteil einer byzantinischen Kirche vor. Das Datieren dieser Stücke ergab folgendes Ergebnis:

Innen		Außen	
1294	1251	1284	1274
1279	1248	1272	1264
1274	1240	1256	1256
1264	1232	1254	1250
1263	1220	1242	
1254	1218		
1251	1210		

Verwende den Zweistichproben t Test um zu schließen, ob das mittlere Alter vom Innenteil der Kirche gleich ist dem mittleren Alter des Außenteils.