Mathematische Statistik – Übungen: Blatt 3

1. Seien X_1, \ldots, X_n unabhängige, nicht identisch verteilte Zufallsvariablen mit Dichten

$$f_{X_i}(x|\theta) = \begin{cases} e^{i\theta - x}, & x \ge i\theta, \\ 0, & x < i\theta. \end{cases}$$

Zeige, dass $T = \min_i(X_i/i)$ eine suffiziente Statistik für θ ist.

- 2. Sei X_1, \ldots, X_n eine Zufallsstichprobe aus einer Gamma (α, β) -Population. Finde eine (zweidimensionale) suffiziente Statistik für (α, β) .
- 3. Sei X_1, \ldots, X_n eine Zufallsstichprobe aus einer Normal $(\theta, a\theta)$ -Population mit $0 < \theta$ und bekannter Konstante 0 < a.
 - (a) Prüfe, ob dieses Modell zur Exponentialfamilie gehört?
 - (b) Zeige, dass die Statistik $T=(\overline{X},S^2)$ eine suffiziente Statistik für θ ist.
- 4. Ein Beispiel aus der *Genetik* ist folgendes Multinomial-Modell. Betrachte hierbei die vektorwertige Zufallsstichprobe $\mathbf{x}_i = (x_{i1}, x_{i2}, x_{i3}, x_{i4}), i = 1, \ldots, n$, aus der Multinomial-Verteilung mit Zellwahrscheinlichkeiten $(\frac{1}{2} + \frac{\theta}{4}, \frac{1}{4}(1-\theta), \frac{1}{4}(1-\theta), \frac{\theta}{4})$ für \mathbf{x}_i mit $x_{ij} \in \{0, 1\}$ und $\sum_{j=1}^4 x_{ij} = 1$.
 - (a) Ist dieses Modell aus der Exponentialfamilie?
 - (b) Finde eine suffiziente Statistik für den skalarwertigen Parameter θ .
 - (c) Finde eine minimal suffiziente Statistik für θ .
- 5. Sei X_1, \ldots, X_n eine Zufallsstichprobe aus einer Inversen Gauß-Verteilung (Wald-Verteilung) mit Dichte

$$f(x|\mu,\lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left(-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right), \quad 0 < x, \mu, \lambda < \infty.$$

Zeige, dass die Statistiken

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 und $T = n \left(\sum_{i=1}^{n} X_i^{-1} - \overline{X}^{-1} \right)^{-1}$

suffizient für (λ, μ) sind.

6. Es liege genau **eine** Beobachtung x für die auf $\{0, 1, 2, 3, 4\}$ diskret verteilte Zufallsvariable X vor. X habe Wahrscheinlichkeitsfunktion $f(x|\theta)$, $\theta \in \{1, 2, 3\}$. Bestimme den MLE $\hat{\theta}$.

\overline{x}	f(x 1)	f(x 2)	f(x 3)
0	1/3	1/4	0
1	1/3	1/4	0
2	0	1/4	1/4
3	1/6	1/4	1/2
4	1/6	0	1/4

7. Die Zufallsstichprobe X_1, \ldots, X_n stamme aus einer Verteilung mit

$$P(X \le x | \alpha, \beta) = \begin{cases} 0 & \text{falls } x < 0, \\ (x/\beta)^{\alpha} & \text{falls } 0 \le x \le \beta, \\ 1 & \text{falls } x > \beta \end{cases}$$

mit positiven Parametern α und β .

- (a) Finde eine suffiziente Statistik für (α, β) .
- (b) Finde den MLE für (α, β) .
- (c) Die Länge von Kuckuckseiern in mm wird damit modelliert. Berechne die Maximum Likelihood Schätzung bei Vorliegen der 14 Beobachtungen

$$22.0,\ 23.9,\ 20.9,\ 23.8,\ 25.0,\ 24.0,\ 21.7,\ 23.8,\ 22.8,\ 23.1,\ 23.1,\ 23.5,\ 23.0,\ 23.0$$

- 8. Beweise Satz 2.1.3 über suffiziente Statistiken bei der Exponenialfamilie.
- 9. Sei X_1, \ldots, X_n eine Zufallsstichprobe aus einer Population mit Dichte $f(x|\theta)$. Zeige: die Maximierung von $L(\theta|\mathbf{x})$ bzgl. θ ist äquivalent mit der Maximierung von $\log L(\theta|\mathbf{x})$.
- 10. Sei X_1, \ldots, X_n eine Zufallsstichprobe aus einer Gamma (α, β) -verteilten Population.
 - (a) Finde den MLE $\hat{\beta}$ von β bei bekanntem α .
 - (b) Falls α und β unbekannt sind gibt es keine explizite Form für die MLEs, jedoch kann das Maximum **numerisch** gefunden werden. Verwende das Ergebnis von (a), um dieses Maximierungsproblem auf die Maximierung einer eindimensionalen Funktion zu reduzieren. Finde die MLEs $\hat{\alpha}$ und $\hat{\beta}$ für die beobachteten Längen der n=14 Kuckuckseiern.
 - (c) Berechne die Schätzer auch nach der Momenten-Methode und vergleiche deren Werte mit denen der Maximum-Likelihood Schätzung.