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Introduction

� Based on material from and in Tom Snijders and Roel

Bosker: Multilevel Analysis: An Introduction to Basic and

Advanced Multilevel Modeling (2nd ed.), SAGE (2012).

� Associated website: http://www.stats.ox.ac.uk/~snijders/

� Special interest on Varying Intercept and Varying

Coe�cient Models (Generalized Linear Mixed Models,

GLMM) to relate on Hierarchical Structures in the data.

� All models will be handled by using functions like lme,

lmer, or glmer.
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Plan

� Motivation

� Random intercept model

� Within-group and between-group e�ects

� Empirical Bayes estimates

� Random intercept and slope model

� Hierarchical linear models

� Generalized Linear Mixed Models

� Connections to Social Network Analysis
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Motivation

Q: Is there any relevant functional relationship of y on x?

x

y
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Motivation

A: Yes! There are 5 linear models, one for each group in the data.

x

y

group A group B group C group D group E
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Motivation

Q: Is there constant variance in y?

x

y
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Motivation

A: Yes! There are 3 homoscedastic groups in the data.

x

y

group A

group B

group C
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Motivation

How to account for groups or clusters in the data?

� Multilevel analysis is a suitable approach to base the model

on social contexts as also on characteristics of individual

respondents.

� In a hierarchical (generalized) linear model the response

variable represents the lowest level (level one, micro level).

� Aggregates of level-one variables can serve as explanatory

aspects for the second level (macro level).

� Explanatory variables could be available at any level.

� Repeated measurements, time series or longitudinal data also

form such homogeneous groups.

� Especially, groups, and individuals in these groups, of Social

Networks can be compared and modeled utilizing multilevel

analysis.



9/52

Motivation

Some examples of units at the macro and micro level:

macro-level (2) micro-level (1)

schools teachers

classes pupils

neighborhoods families

districts voters

�rms departments

departments employees

families children

doctors patients

interviewers respondents

judges suspects

subjects measurements
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Motivation

Two-level models

with micro-level (level 1) and macro-level (level 2):

st 1micro st nA.....

macro sch A

st 1 ..... st nB

sch B

st 1 ..... st nC

.............. sch C

st 1 ..... st nD

sch D
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Motivation

Arguments in favor of multilevel models (and not to use ordinary

least squares regression) in case of multilevel data:

� Relevant e�ects are often not recognized because they seem

to be irrelevant.

� Standard errors and tests conclusions could be simply wrong.
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Random Intercept Model

� Let i indicate the level-one unit (e.g. individual) and let j the

level-two unit (e.g. group).

� For individual i in group j , let yij be the response variable and

xij the associated vector of explanatory variables at level one.

� For group j , let zj be the vector of explanatory variables at

level two and denote the size of group j by nj .

An overall SLR that fully ignores the group structure would be:

yij = �0 + �1xij + �ij

Group-dependent SLRs

yij = �0j + �1jxij + �ij
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Random Intercept Model

Thus, there are two kinds of �xed e�ects regression models:

1 models in which the group structure is fully ignored,

2 models with �xed e�ects for the groups, i.e. �0j and �1j are

�xed group-speci�c parameters.

In a random intercept model, the intercepts �0j are random

variables and represent random di�erences between the groups

yij = �0j + �1xij + �ij ;

where �0j denotes the average intercept 00 plus the

group-dependent deviation u0j , i.e.

�0j = 00 + u0j

Here, there is only one slope �1, that is common to all groups.
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Random Intercept Model

Denote the constant slope parameter �1 by 10, then we get

yij = 00 + 10xij + u0j + �ij

In this random intercept model, we additionally assume that

� u0j are independent random variables,

� E(u0j) = 0 and var(u0j) = �2
0
,

� they are a simple random sample from a normal population,

i.e

u0j
iid� Normal(0; �20 )

We are not interested in all individual values of these random

e�ects, but only in their variance �2
0
.
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Random Intercept Model

Arguments for choosing �xed (F) or random (R) intercepts

(group indicators):

� If groups are unique entities and inference should focus on

these groups: F.

This often is the case with a small number of groups.

� If groups are regarded as a random sample from a (perhaps

hypothetical) population and inference should focus on this

population: R.

This often is the case with a large number of groups.

� If group e�ects u0j (etc.) are not normally distributed, R is

risky (or use more complicated multilevel models).
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Random Intercept Model

We now discuss the random intercept model without explanatory

variables:

yij = 00 + u0j + �ij

Variance decomposition (u0j and �ij are independent):

var(yij) = var(u0j) + var(�ij) = �20 + �2

Covariance between two responses (i 6= i 0) in the same group j is

cov(yij ; yi 0j) = var(u0j) = �20

giving the intraclass correlation coe�cient

�(yij ; yi 0j) =
cov(yij ; yi 0j)√
var(yij) var(yi 0j)

=
�2
0

�2
0

+ �2



17/52

Random Intercept Model

Example: 211 schools in the Netherlands with 3758 pupils (age

about 11 years) in elementary schools. The nesting structure is

students within classes. The response variable is the pupils result

in a language test.

> library(lme4)

> summary(lmer(langPOST~(1|schoolnr),data=mlbook_red,REML=FALSE))

Random effects:

Groups Name Variance Std.Dev.

schoolnr (Intercept) 18.13 4.257

Residual 62.85 7.928

Number of obs: 3758, groups: schoolnr, 211

Fixed effects:

Estimate Std. Error t value

(Intercept) 41.0046 0.3249 126.2
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Random Intercept Model

Interpretaion of these results:

� The (�xed average) intercept is estimated by ̂00 = 41:0

with standard error se(̂00) = 0:3. Thus, the population

from which the yij are from is normal with mean 41 and

standard deviation
p
18:13 + 62:85 = 9:0

� The level-two variance (schools variability) is estimated by

�̂2
0

= 18:1 (or the standard deviation is �̂0 = 4:3). Thus, the

population from which the random intercepts are drawn is a

Normal(41:0; 18:1).

� The level-one variance (students language test scores

variability) is estimated by �̂2 = 62:85 (or the standard

deviation is �̂ = 7:9).

� We estimate the intraclass correlation as

�̂ =
18:13

18:13 + 62:85
= 0:22
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Random Intercept Model

In a next step we extend this model and also allow for �xed

e�ects of explanatory variables, i.e.

yij = 00 + 10xij + u0j + �ij

In what follows, x relates to the centered verbal IQ score.

> summary(lmer(langPOST~IQ_verb+(1|schoolnr), data=mlbook_red,

+ REML=FALSE)

Random effects:

Groups Name Variance Std.Dev.

schoolnr (Intercept) 9.845 3.138

Residual 40.469 6.362

Number of obs: 3758, groups: schoolnr, 211

Fixed effects:

Estimate Std. Error t value

(Intercept) 41.05488 0.24339 168.68

IQ_verb 2.50744 0.05438 46.11
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Random Intercept Model

How does this compare with a SLR not accounting for the

multilevel structure induced by schools, i.e.

yij = 00 + 10xij + �ij

> summary(lm(langPOST ~ IQ_verb, data = mlbook_red))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.29584 0.11517 358.56 <2e-16 ***

IQ_verb 2.65126 0.05643 46.98 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 7.059 on 3756 degrees of freedom

Multiple R-squared: 0.3702, Adjusted R-squared: 0.37

F-statistic: 2207 on 1 and 3756 DF, p-value: < 2.2e-16
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Random Intercept Model

Comparing the results from the random intercept model and from

the SLR:

� The random intercept model contains the �xed e�ects 00
and 10 (as also the SLR) and the variance components �2

and �2
0
from the random e�ects. The SLR assumes that

�2
0

= 0.

� The multilevel model has more structure and accounts for

the dependence of responses from the same school.

� The numerical results are surprisingly very similar.
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Random Intercept Model

15 randomly chosen models with u0j
iid� Normal(0; 9:8):

−4 −2 0 2 4
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Random Intercept Model

Several explanatory variables:

yij = 00 +10x1;ij + � � �+p0xp;ij +01z1j + � � �+0qzqj + u0j + �ij

Included are

� p level-one explanatory variables x1;ij ; : : : ; xp;ij associated

with each individual i in each group j .

� q level-two explanatory variables z1j ; : : : ; xqj associated with

each group j .

Di�erence between within-group and between-group regression:

� The within-group regression coe�cient expresses the e�ect

of the explanatory variable within a given group.

� The between-group regression coe�cient expresses the e�ect

of the group mean of the explanatory variable on the group

mean of the response variable.
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Random Intercept Model

Di�erence between within-group and between-group regression:

x

y

within group A

within group B

within group C

between group
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Random Intercept Model

Example: pocket money for children in families.

� This will depend on the child's age as also on the average

age of the children in the family.

� The within-group regression coe�cient measures the e�ect

of age di�erences within a given family

� The between-group regression coe�cient measures the e�ect

of average age on the average pocket money received by the

children in the family.
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Random Intercept Model

Example: pocket money for children in families.

Denote age of child i in family j by xij , and the average age of all

children in family j by zj = x�j . In the model

yij = 00 + 10xij + u0j + �ij

the within-group and between-group coe�cient are forced to be

equal. If we add zj as additional explanatory variable, we obtain

yij = 00 + 10xij + 01x�j + u0j + �ij

= (00 + 01x�j + u0j) + 10xij + �ij

resulting in the within-group j regression line

E(yij) = 00 + 01x�j + 10xij
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Random Intercept Model

Example: pocket money for children in families.

yij = 00 + 10xij + 01x�j + u0j + �ij

Averaging this model over all elements in group j gives

y
�j = 00 + 10x�j + 01x�j + u0j + ��j

= 00 + (10 + 01)x�j + u0j + ��j

resulting in the between-group regression line

E(y
�j) = 00 + (10 + 01)x�j

with regression coe�cient 10 + 01.
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Random Intercept Model

> summary(lmer(langPOST ~ IQ_verb + sch_iqv + (1|schoolnr),

+ data = mlbook_red, REML = FALSE)

Random effects:

Groups Name Variance Std.Dev.

schoolnr (Intercept) 8.68 2.946

Residual 40.43 6.358

Number of obs: 3758, groups: schoolnr, 211

Fixed effects:

Estimate Std. Error t value

(Intercept) 41.11378 0.23181 177.36

IQ_verb 2.45361 0.05549 44.22

sch_iqv 1.31242 0.26160 5.02
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Random Intercept Model

The parameters of the random part of the model and the
estimated intercept variance are in

> mlmod <- lmer(langPOST ~ IQ_verb + sch_iqv + (1|schoolnr),

+ data = mlbook_red, REML = FALSE)

> VarCorr(mlmod)

Groups Name Std.Dev.

schoolnr (Intercept) 2.9461

Residual 6.3584

> VarCorr(mlmod)$schoolnr[1,1]

[1] 8.679716
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Random Intercept Model

For other methods for the objects produced by lmer, see

> methods(class="merMod")

[1] anova as.function coef confint

[5] deviance df.residual drop1 extractAIC

[9] family fitted fixef formula

[13] fortify getL getME hatvalues

[17] isGLMM isLMM isNLMM isREML

[21] logLik model.frame model.matrix ngrps

[25] nobs plot predict print

[29] profile qqmath ranef refit

[33] refitML residuals show sigma

[37] simulate summary terms update

[41] VarCorr vcov weights
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Random Intercept Model

Denote now the average IQ of pupils in school j by x�j , then the

model states

yij = 00 + 10xij + 01x�j + u0j + �ij

with

� within-group coe�cient 10 estimated by 2.45,

� between-group coe�cient 10 + 01 estimated by

2:45 + 1:31 = 3:77, (a pupil with a given IQ is predicted to

obtain a higher language test score if (s)he is in a class with

higher average IQ score),

� di�erence between within-group and between-group

coe�cient is tested by the respected t-value of 5.02 (highly

signi�cant).
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Random Intercept Model

What can we say about the latent random e�ects u0j?

Consider the empty model

yij = 00 + u0j + �ij = �0j + �ij

Since these are no parameters we cannot estimate them.

However, we are able to predict these quantities by using the

Empirical Bayes method.
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Random Intercept Model

yij = 00 + u0j + �ij = �0j + �ij

We started with the prior model u0j
iid� Normal(0; �2

0
)

Then we took a sample y1j ; : : : ; yni j from the jth group assuming

that the conditional model yij ju0j ind� Normal(00 + u0j ; �
2) holds.

If we only use group j then �0j would be estimated by

�̂0j = y
�j

Using the entire sample we would estimate the population mean

00 by the overall mean, i.e.

̂00 = y
��

=
1∑
j nj

N∑
j=1

nj∑
i=1

yij
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Random Intercept Model

yij = 00 + u0j + �ij = �0j + �ij

Now combine these two sources of information using a weighted

average and resulting in the empirical Bayes (posterior mean)

estimator

�̂EB
0j = �j �̂0j + (1� �j)̂00

with optimal weights

�j =
�2
0

�2
0

+ �2=nj

The weight �j somehow evaluates the reliability of the jth group

mean �̂0j = y
�j as an estimator of the true mean 00 + u0j .

If explanatory variables are in the model, the same principle can

be applied.
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Random Intercept Model

The ratio

�j
1� �j

=

�20
�20+�2=nj

�2=nj

�20+�2=nj

=
�2
0

�2=nj

is the ratio of the true variance �2
0
to the error variance �2=nj .

Since these parameters are usually unknown, we substitute their

estimates in order to calculate �̂EB
0j .

These posterior means can be used to detect groups with

unexpected high/low values of their response (given their

predictors).
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Random Intercept Model

Model: Denote the average IQ of pupils in school j by x�j , then

yij = 00 + 10xij + 01x�j + u0j + �ij

Q: How should parents choose a school for their kids?

A: Good schools are those where the students on average achieve

more than expected on the basis of their IQ.

The level-two residual u0j contains this information and has to be

estimated from the data. Comparison is sometimes based on

associated con�dence intervals based on comparative (posterior)

standard errors

sec(ûEB
0j ) = se(ûEB

0j � u0j)

or on diagnostic standard errors

sed(ûEB
0j ) = se(ûEB

0j )
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Random Intercept Model

Conditional means (and variances) of the random e�ects are
obtained as follows (ranef stands for random e�ects)

> pmu <- ranef(mlmod, condVar=TRUE)

> # posterior means

> postmean <- pmu$schoolnr[,1]

> # comparative (posterior) variances

> postvar <- attr(pmu$schoolnr,'postVar')[1,1,]

> # diagnostic variances

> diagvar <- VarCorr(mlmod)$schoolnr[1,1] - postvar

> # comparative standard deviations

> compsd <- sqrt(postvar)

> # bounds of 95% comparative intervals

> # (testing equality of level-two residuals)

> lower <- postmean - 1.39*compsd

> upper <- postmean + 1.39*compsd
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Random Intercept Model

Caterpillar plot (comparative 95 % con�dence intervals for the
random e�ects)

> perm <- order(postmean, lower, upper)

> pm_sort <- postmean[perm]

> upper_sort <- upper[perm]

> lower_sort <- lower[perm]

> library(Hmisc)

> errbar(1:211, pm_sort, upper_sort, lower_sort)
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Random Intercept Model
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Hierarchical Linear Model

Multilevel or Hierarchical Models:

st 1Level 1 st nA.....

Level 2 sch A

st 1 ..... st nB

sch B

st 1 ..... st nC

.............. sch C

st 1 ..... st nD

sch D

Level 3 city 1 city 2................................
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Hierarchical Linear Model

In addition to the intercept, also the e�ect of x could randomly

depend on the group, i.e. in the model

yij = �0j + �1jxij + �ij

also the slope �1j has a random part. Thus, we have

�0j = 00 + u0j

�1j = 10 + u1j

Substitution in the model results in

yij = 00 + 10xij + u0j + u1jxij + �ij
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Hierarchical Linear Model

Random intercept and random slope model:

yij = 00 + 10xij + u0j + u1jxij + �ij

Assume that the random e�ects (u0j ; u1j) are independent pairs
across j from a bivariate normal with zero means (0; 0) and

var(u0j) = �00 = �20

var(u1j) = �11 = �21

cov(u0j ; u1j) = �01

Again, the (u0j ; u1j) are not individual parameters, but their
variances and covariance are of interest.

This is again a linear model for the mean, and a parameterized

covariance within groups with independence between groups.
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Hierarchical Linear Model

Random slope model for the language scores: denote the average

IQ of all pupils in school j by x�j , then the model now states

yij = 00 + 10xij + 01x�j + u0j + u1jxij + �ij

> ransl <- lmer(langPOST ~ IQ_verb + sch_iqv

+ + (IQ_verb|schoolnr), data = mlbook_red,

+ REML = FALSE)

> summary(ransl)

Random effects:

Groups Name Variance Std.Dev. Corr

schoolnr (Intercept) 8.877 2.9795

IQ_verb 0.195 0.4416 -0.63

Residual 39.685 6.2996

Number of obs: 3758, groups: schoolnr, 211

Thus, v̂ar(u0j) = �̂2
0

= 8:88, v̂ar(u1j) = �̂2
1

= 0:19, and

v̂ar(�ij) = �̂2 = 39:68,
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Hierarchical Linear Model

Second part of the R output:

Fixed effects:

Estimate Std. Error t value

(Intercept) 41.1275 0.2336 176.04

IQ_verb 2.4797 0.0643 38.57

sch_iqv 1.0285 0.2622 3.92

Correlation of Fixed Effects:

(Intr) IQ_vrb

IQ_verb -0.279

sch_iqv -0.003 -0.188

Estimated model:

Ê(yij ju0j ; u1j) = 41:13 + 2:48xij + 1:03x�j + u0j + u1jxij
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Hierarchical Linear Model

15 randomly chosen models with u0j
iid� Normal(0; 8:9) and

u0j
iid� Normal(0; 0:2) for school j = 1 with IQ j = �1:4:
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Hierarchical Linear Model

General formulation of a two-level model:

yj = Xj + Zjuj + �j

with [
�j

uj

]
ind� Normal

([
0

0

]
;

[
ΣΣΣj 0

0 ΩΩΩj

])
Often we simplify and consider a model with ΣΣΣj = �2I but also

other structures are possible (e.g. time series).

The above model is equivalent to

yj � Normal
(
Xj;ZjΩΩΩjZ

T
j + ΣΣΣj

)
a special case of a linear mixed model.
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Generalized Linear Mixed Models

Extend the model on the linear exponential family, e.g. student i

in university j takes an exam and the result can be modeled as

Pr(yij = "sucess") = logit�1(xTij  + zTj uj)

again with uj
ind� Normal(0;ΩΩΩ).

Thus, assume that conditional on the random e�ects, the

response distribution is a linear exponential family, i.e. with pdf

f (y ju; )

and the random e�ect is from a zero mean normal distribution,

i.e. with pdf

f (u; ΩΩΩ)

The likelihood function corresponds to the marginal pdf of the

response which is

f (y ; ;ΩΩΩ) =

∫
f (y ju; )f (u; ΩΩΩ)du



48/52

Generalized Linear Mixed Models

The MLE ̂ and Ω̂ΩΩ is the maximizer of the integral

f (y; ;ΩΩΩ) =

∫
f (yju; )f (u; ΩΩΩ)du

=

N∏
j=1

∫ nj∏
i=1

f (yij juj ; )f (uj ; ΩΩΩ)duj

but very often there does not even exist an explicit form of it.

The normal{normal model discussed before is an exception

because this is a conjugate pair of distributions.

Laplace or Gauss-Hermite approximations can be utilized to

simplify the likelihood function above.
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Multilevel Logistic Model

Gelman and Hill (2007) consider a multilevel logistic model for

the survey response yij that equals 1 for supporters of the

Republican candidate and 0 for Democrats in the election 1988.

Their model uses the predictors sex and ethnicity (African

American or other) as also the 51 States indexed by j = 1; : : : ; 51.

Pr(yij = 1) = logit�1(00 + u0j + 10femaleij + 20blackij)

with 51 state-speci�c random intercepts u0j
iid� Normal(0; �2

0
).

> mean(female)

[1] 0.5886913

> mean(black)

[1] 0.07615139
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Multilevel Logistic Model

This model is �tted in R by

> M1 <- glmer (y ~ black + female + (1|state),

+ family=binomial(link="logit"))

> display(M1)

coef.est coef.se

(Intercept) 0.45 0.10

black -1.74 0.21

female -0.10 0.10

Error terms:

Groups Name Std.Dev.

state (Intercept) 0.41

No residual sd

---

number of obs: 2015, groups: state, 49

AIC = 2666.7, DIC = 2531.5

deviance = 2595.1
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Multilevel Logistic Model

The average intercept is 0.45 with standard error 0.10, the

coe�cients for black and female are �1:74(0:21) and
�0:10(0:10). Furthermore, �̂2

0
= 0:41.

Estimates of state-speci�c intercepts are available by

> coef(M1)

$state

(Intercept) black female

1 0.990578098 -1.741612 -0.09704731

3 0.686196961 -1.741612 -0.09704731

4 0.314917122 -1.741612 -0.09704731

5 0.306467230 -1.741612 -0.09704731

:
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Connecting to Social Network Analysis

Variance components (individual variance within groups and

variance between groups) in multilevel models are especially

interesting in the social network context (from P.P. Pare):

� interpretation as a measure of sociability of behaviors

� the larger the between group variance the more social is the

behavior

� if 100% variance is within group and 0% between groups, the

behavior is purely individual

� if 0% variance is within group and 100% between groups, the

behavior is purely social (individuals behave in perfect

conformity with their own group and all the variation is

between groups)

� in reality, there is often a division of the variance within and

between groups, but di�erent behaviors can be compared in

regard to their level of sociability


