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Abstract: In this article, we generalize the Rayleigh distribution using the
quadratic rank transmutation map studied by Shaw et al. (2009) to develop
a transmuted Rayleigh distribution. We provide a comprehensive description
of the mathematical properties of the subject distribution along with its reli-
ability behavior. The usefulness of the transmuted Rayleigh distribution for
modeling data is illustrated using real data.

Zusammenfassung: Wir verallgemeinern die Rayleigh-Verteilung, indem
wir die in Shaw et al. (2009) untersuchte quadratische Rangumwandlungsab-
bildung verwenden, um eine transmuted Rayleigh-Verteilung herzuleiten. Wir
stellen eine umfassende Beschreibung der Eigenschaften dieser Verteilung
bereit und besprechen ihr Verhalten in der Zuverlässigkeitstheorie. Der Nutzen
der transmuted Rayleigh-Verteilung bei der Modellierung von wird anhand
realer Daten illustriert.

Keywords: Rayleigh Distribution, Hazard Rate Function, Reliability Func-
tion, Parameter Estimation.

1 Introduction
In many applied sciences such as medicine, engineering and finance, amongst others,
modeling and analyzing lifetime data is crucial. Several lifetime distributions have been
used to model such kind of data. The quality of the procedures used in a statistical anal-
ysis depends heavily on the assumed probability model or distribution. Because of this,
considerable effort has been expended in the development of large classes of standard
probability distributions along with relevant statistical methodologies. However, there
still remain many important problems where the real data does not follow any of the clas-
sical or standard probability models.

In this article we present a new generalization of the Rayleigh distribution called the
transmuted Rayleigh distribution.

Definition 1 A random variable X is said to have a transmuted distribution if its cumu-
lative distribution function(cdf) is given by

G(x) = (1 + λ)F (x)− λF 2(x) , |λ| ≤ 1 ,

where F (x) is the cdf of the base distribution.

Observe that at λ = 0 we have the base distribution of the random variable X . Aryal et
al. (2009) studied the transmuted Gumbel distribution and it has been observed that the
transmuted Gumbel distribution can be used to model climate data. In the present study
we will provide mathematical formulations of the transmuted Rayleigh distribution and
also some of its properties.
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2 Transmuted Rayleigh Distribution

Definition 2 The density function (pdf) of a Rayleigh distribution is

f(x, σ) =
x

σ2
exp

(
− x2

2σ2

)
, x > 0 , σ > 0 ,

and the respective cdf is

F (x, σ) = 1− exp

(
− x2

2σ2

)
, x > 0 , σ > 0 .

The transmuted cdf is

G(x, σ, λ) =

(
1− exp

(
− x2

2σ2

))(
1 + λ exp

(
− x2

2σ2

))
,

with transmuted pdf

g(x, σ, λ) =
x

σ2
exp

(
− x2

2σ2

)(
1− λ+ 2λ exp

(
− x2

2σ2

))
.

Note that the transmuted Rayleigh distribution is an extended model to analyze more
complex data. The Rayleigh distribution is clearly a special case for λ = 0. Figure 1
illustrates some of the possible shapes of the pdf of a transmuted Rayleigh distribution for
selected values of the parameters λ and σ.

3 Moments
Theorem 1 The rth moment E(Xr) of a transmuted Rayleigh distributed random variable
X is given as

E(Xr) =
1

2
σrrΓ

(r
2

) (
λ+ 2

r
2 (1− λ)

)
.

Especially we have

E(X) =
1

2
σ
√
π
(
λ+

√
2(1− λ)

)
,

var(X) = E(X2)− E2(X) = σ2

(
2− λ− π

4

(
λ+

√
2(1− λ)

)2)
.

Proof.

E(Xr) =

∫ ∞

0

xrf(x) dx

=

∫ ∞

0

xr+1

σ2
exp

(
− x2

2σ2

)(
1− λ+ 2λ exp

(
− x2

2σ2

))
dx

=
(1− λ)

σ2

∫ ∞

0

xr+1 exp

(
− x2

2σ2

)
dx+

2λ

σ2

∫ ∞

0

xr+1 exp

(
−x2

σ2

)
dx

= 2
r−2
2 (1− λ)σrrΓ

(r
2

)
+

λr

2
σrΓ

(r
2

)
=

1

2
σrrΓ

(r
2

) (
λ+ 2

r
2 (1− λ)

)
.
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Figure 1: The pdf’s of various transmuted Rayleigh distributions.
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Figure 2: The cdf’s of various transmuted Rayleigh distributions.
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Here, we used ∫ ∞

0

xν−1 exp (−µxp) dx =
1

p
µ− ν

pΓ

(
ν

p

)
,

for p, ν, µ > 0 (see Gradshtein and Ryzhnik(2000), Sec. 3.478). �

Theorem 2 Let X have a transmuted Rayleigh distribution. Then the moment generating
function of X , say MX(t), is

MX(t) =
∞∑
i=0

ti

i!

1

2
σiiΓ

(
i

2

)(
λ+ 2

i
2 (1− λ)

)
.

Proof.

MX(t) = E
(
etX
)
=

∫ ∞

0

exp(tx)f(x) dx

=

∫ ∞

0

(
1 + tx+

t2x2

2!
+ · · ·+ tnxn

n!
+ · · ·

)
f(x) dx

=
∞∑
i=0

tiE(X i)

i!

=
∞∑
i=0

ti

i!

1

2
σiiΓ

(
i

2

)(
λ+ 2

i
2 (1− λ)

)
.

�

4 Parameter Estimators
The maximum likelihood estimator (MLE) of the parameters that is inherent within the
transmuted Rayleigh pdf is discussed next. The sample likelihood function under this
model is

L(σ, λ;x) =
n∏

i=1

g(xi, σ, λ)

=

∏n
i=1 xi

σ2n
exp

(
− 1

2σ2

n∑
i=1

x2
i

)
n∏

i=1

(
1− λ+ 2λ exp

(
− x2

i

2σ2

))
, (1)

with respective sample log-likelihood function

ℓ(σ, λ;x) = logL(σ, λ;x)

=
n∑

i=1

log(xi)− n log σ2 − 1

2σ2

n∑
i=1

x2
i +

n∑
i=1

log

(
1− λ+ 2λ exp

(
− x2

i

2σ2

))
.

For ease of notation, we will denote the first partial derivatives of any function f(x, y) by
fx and fy, and its second partial derivatives by fxx, fyy, fxy, and fyx.
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Now setting
ℓσ = 0 and ℓλ = 0 ,

we have

−2n

σ
+

1

σ3

n∑
i=1

x2
i +

2λ

σ3

n∑
i=1

x2
i exp

(
− x2

i

2σ2

)
1− λ+ 2λ exp

(
− x2

i

2σ2

) = 0 , (2)

and
n∑

i=1

2 exp
(
− x2

i

2σ2

)
− 1

1− λ+ 2λ exp
(
− x2

i

2σ2

) = 0 . (3)

The MLE θ̂ = (σ̂, λ̂) of θ = (σ, λ) is obtained by solving this nonlinear system of
equations. It is usually more convenient to use nonlinear optimization algorithms such
as the quasi-Newton algorithm to numerically maximize the sample likelihood function
given in (1). Applying the usual large sample approximation, the MLE θ̂ can be treated as
being approximately bivariate normal with mean θ and variance-covariance matrix equal
to the inverse of the expected information matrix, i.e.

√
n(θ̂ − θ) → N

(
0, nI−1(θ)

)
,

where I−1(θ) is the limiting variance-covariance matrix of θ̂. The elements of the 2 × 2
matrix I(θ) can be estimated by Iij(θ̂) = −ℓθiθj θ=θ̂, i, j ∈ {1, 2}.

From (2) and (3) the second partial derivatives of the log-likelihood function are found
to be

ℓσσ =
2n

σ2
− 3

σ4

n∑
i=1

x2
i −

6

σ4

n∑
i=1

x2
i exp

(
− x2

i

2σ2

)
1− λ+ 2λ exp

(
− x2

i

2σ2

)
+
2λ(1− λ)

σ6

n∑
i=1

x4
i exp

(
− x2

i

2σ2

)
(
1− λ+ 2λ exp

(
− x2

i

2σ2

))2 ,
ℓσλ =

2

σ3

n∑
i=1

x2
i exp

(
− x2

i

2σ2

)
(
1− λ+ 2λ exp

(
− x2

i

2σ2

))2
ℓλλ = −

n∑
i=1

 2 exp
(
− x2

i

2σ2

)
− 1

1− λ+ 2λ exp
(
− x2

i

2σ2

)
2

.

Approximate two sided 100(1−α)% confidence intervals for σ and for λ are, respectively,
given by

σ̂ ± zα/2

√
I−1
11 (θ̂) and λ̂± zα/2

√
I−1
22 (θ̂) ,

where zα is the upper αth quantile of the standard normal distribution. Using R we can eas-
ily compute the Hessian matrix and its inverse and hence the standard errors and asymp-
totic confidence intervals.
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We can compute the maximized unrestricted and restricted log-likelihood functions to
construct the likelihood ratio (LR) test statistic for testing on some transmuted Rayleigh
sub-models. For example, we can use the LR test statistic to check whether the a trans-
muted Rayleigh distribution for a given data set is statistically superior to the Rayleigh
distribution. In any case, hypothesis tests of the type H0 : θ = θ0 versus H0 : θ ̸= θ0 can
be performed using a LR test. In this case, the LR test statistic for testing H0 versus H1

is ω = 2(ℓ(θ̂;x)− ℓ(θ̂0;x)), where θ̂ and θ̂0 are the MLEs under H1 and H0, respectively.
The statistic ω is asymptotically (as n → ∞) distributed as χ2

k, where k is the length of
the parameter vector θ of interest. The LR test rejects H0 if ω > χ2

k;γ , where χ2
k;γ denotes

the upper 100γ% quantile of the χ2
k distribution.

5 Reliability Analysis
The reliability function R(t), which is the probability of an item not failing prior to some
time t, is defined by R(t) = 1 − F (t). The reliability function of a transmuted Rayleigh
distribution is given by

R(t, σ, λ) = exp

(
− t2

2σ2

)(
1− λ+ λ exp

(
− t2

2σ2

))
.

The other characteristic of interest of a random variable is the hazard rate function defined
by

h(t) =
f(t)

1− F (t)
,

which is an important quantity characterizing life phenomenon. It can be loosely inter-
preted as the conditional probability of failure, given it has survived to time t. The hazard
rate function for a transmuted Rayleigh random variable is given by

h(t, σ, λ) =
t
(
1− λ+ 2λ exp

(
− t2

2σ2

))
σ2
(
1− λ+ λ exp

(
− t2

2σ2

)) .

Figure 3 illustrates the reliability function of a transmuted Rayleigh distribution for
different values of the parameters σ and λ.

6 Order Statistics
The kth order statistic of a sample is its kth smallest value. For a sample of size n, the
nth order statistic (or largest order statistic) is the maximum, that is,

X(n) = max{X1, . . . , Xn} .

The sample range is the difference between the maximum and minimum. It is clearly a
function of the order statistics:

range{X1, . . . , Xn} = X(n) −X(1) .
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Figure 3: The reliability function of a transmuted Rayleigh distribution.

We know that if X(1) ≤ · · · ≤ X(n) denotes the order statistic of a random sample
X1, . . . , Xn from a continuous population with cdf FX(x) and pdf fX(x) then the pdf
of X(j) is given by

fX(j)
(x) =

n!

(j − 1)!(n− j)!
fX(x) (FX(x))

j−1 (1− FX(x))
n−j ,

for j = 1, . . . , n. The pdf of the jth order statistic for a transmuted Rayleigh distribution
is given by

fX(j)
(x) =

n!

(j − 1)!(n− j)!

x

σ2
exp

(
− x2

2σ2

)(
1− λ+ 2λ exp

(
− x2

2σ2

))
·
(
1− exp

(
− x2

2σ2

))(
1 + λ exp

(
− x2

2σ2

))j−1

·
(
exp

(
− x2

2σ2

)(
1− λ+ λ exp

(
− x2

2σ2

)))n−j

.

Therefore, the pdf of the largest order statistic X(n) is

fX(n)
(x) =

nx

σ2
exp

(
− x2

2σ2

)(
1− λ+ 2λ exp

(
− x2

2σ2

))
·
(
1− exp

(
− x2

2σ2

))(
1 + λ exp

(
− x2

2σ2

))n−1

,
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and the pdf of the smallest order statistic X(1) is

fX(1)
(x) =

nx

σ2
exp

(
− x2

2σ2

)(
1− λ+ 2λ exp

(
− x2

2σ2

))
·
(
exp

(
− x2

2σ2

)(
1− λ+ λ exp

(
− x2

2σ2

)))n−1

.

7 Application
Now we use a real data set to show that the transmuted Rayleigh distribution can be a
better model than the Rayleigh distribution.

We work with nicotine measurements made from several brands of cigarettes in 1998.
The data have been collected by the Federal Trade Commission which is an indepen-
dent agency of the US government, whose main mission is the promotion of consumer
protection.

The report entitled tar, nicotine, and carbon monoxide of the smoke of 1206 vari-
eties of domestic cigarettes for the year of 1998 available at http://www.ftc.gov/
reports/tobacco and consists of the data sets and some information about the source
of the data, smoker’s behaviour and beliefs about nicotine, tar and carbon monoxide con-
tents in cigarettes. The free form data set can be found at http://pw1.netcom.com/
rdavis2/smoke.html.

The site http://home.att.net/rdavis2/cigra.html contains n = 384 observa-
tions. We analysed data on nicotine, measured in milligrams per cigarette, from several
cigarette brands. Some summary statistics for the nicotine data are as follows: mean =
0.852, median = 0.9, minimum = 0.1 and maximum = 2.

The variance covariance matrix of the MLEs under the transmuted Rayleigh distribu-
tion is computed as

I(θ̂)−1 =

(
0.183× 10−3 0.470× 10−3

0.470× 10−3 0.529× 10−2

)
.

Thus, the variances of the MLE of σ and λ is var(σ̂) = 0.183 × 10−3 and var(λ̂) =
0.529 × 10−2. Therefore, 95% confidence intervals for σ and λ are [0.528, 0.582] and
[−0.914,−0.629].

Table 1: Estimated parameters of the Rayleigh and Transmuted Rayleigh distribution for
the nicotine measurements data.

Model Parameter Estimate Standard Error −ℓ(·;x)
Transmuted σ̂ = 0.5555 0.0135 121.224
Rayleigh λ̂ = −0.7718 0.0728

Rayleigh σ̂ = 0.6475 0.0175 142.3572

The LR test statistic to test the hypotheses H0 : λ = 0 versus H1 : λ ̸= 0 is ω =
42.2664 > 3.841 = χ2

1;0.05, so we reject the null hypothesis.
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surements data.

Table 2: Criteria for comparison.

Model KS −2ℓ AIC AICC BIC
Rayleigh 0.184 284.714 286.714 285.714 296.407
Transmuted Rayleigh 0.124 242.448 246.448 243.445 265.833

In order to compare the two distribution models, we consider criteria like KS (Kol-
mogorow Smirnow), −2ℓ, AIC (Akaike information criterion), AICC (corrected Akaike
information criterion), and BIC (Bayesian information criterion) for the data set. The
better distribution corresponds to smaller KS, −2ℓ, AIC, AICC, and BIC values:

AIC = 2k − 2ℓ , AICC = AIC +
2k(k + 1)

n− k − 1
,

and
BIC = k log(n)− 2ℓ ,

where k is the number of parameters in the statistical model, n the sample size and ℓ is the
maximized value of the log-likelihood function under the considered model. Also, here
for calculating the values of KS we use the sample estimates of λ and σ. Table 1 shows
the MLEs under both distributions, Table 2 shows the values of KS, −2ℓ, AIC, AICC,
and BIC values. The values in Table 2 indicate that the transmuted Rayleigh distribution
leads to a better fit than the Rayleigh distribution.



30 Austrian Journal of Statistics, Vol. 42 (2013), No. 1, 21–31

8 Conclusion

Here we propose a new model, the so-called the transmuted Rayleigh distribution which
extends the Rayleigh distribution in the analysis of data with real support. An obvious
reason for generalizing a standard distribution is because the generalized form provides
larger flexibility in modeling real data. We derive expansions for the mean, variance,
moments and for the moment generating function. The estimation of parameters is ap-
proached by the method of maximum likelihood, also the information matrix is derived.
We consider the likelihood ratio statistic to compare the model with its baseline model.
An application of the transmuted Rayleigh distribution to real data show that the new dis-
tribution can be used quite effectively to provide better fits than the Rayleigh distribution.
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Vodă, V. G. (1972). On the inverse Rayleigh distributed random variable. Reports of
Statistical Application Research, 19, 13-21.
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