
AUSTRIAN JOURNAL OF STATISTICS

Volume 42 (2013), Number 1, 33–45

The HS-SAS and GSH-SAS Distribution as Model for
Unconditional and Conditional Return Distributions

Matthias Fischer and Klaus Herrmann

University of Erlangen-Nürnberg, Germany

Abstract: We introduce two new skewed and leptokurtic distributions de-
rived from the hyperbolic secant distribution and from Vaughan (2002)’s gen-
eralized hyperbolic distribution by use of the sinh-arcsinh transformation in-
troduced in Jones and Pewsey (2009). Properties of these new distribution
are given. Their flexibility for modeling financial return data is comparable
to that of their most advanced peers. Contrary to the latter for both distri-
butions a closed-form solution for the density, cumulative distribution and
quantile function can be given.

Zusammenfassung: Im Rahmen der Arbeit werden zwei neue, flexible Ver-
teilungsfamilien eingeführt, die sich von der hyperbolischen Sekantverteilung
bzw. von Vaughan (2002)’s verallgemeinert hyperbolischer Sekantverteilung
durch Anwendung der sogenannten sinh-arcsinh Transformation ableiten las-
sen. Beide Verteilungsklassen erlauben für die Dichte-, die Verteilungs- sowie
die Quantilsfunktion eine einfache Darstellung in geschlossener Form. Durch
die flexible Nachbildung unterschiedlicher Schiefe- und Kurtosiskonstellatio-
nen können beide Familien z.B. bei der Modellierung von Finanzmarktren-
diten gewinnbringend eingesetzt werden.

Keywords: Hyperbolic secant; sinh-arcsinh Transformation, Skewness, Lep-
tokurtosis, GARCH.

1 Introduction
GARCH models and generalizations are nowadays widely used for modeling financial
returns and thus serve as models for the derivation of risk measures such as the Value-at-
Risk. The conditional distribution of such models are regularly found to be skewed and
leptokurtic.

In order to model these findings a vast supply of parametric skewed and leptokur-
tic distributions has been proposed in recent years. Prominent examples are general-
ized t-distributions, with the latest example probably given in Zhu and Galbraith (2010),
asymmetric power distributions, compare Komunjer (2007), stable distributions, compare
e.g. Nolan (2010), or the very recent propositions of generalized maximum entropy distri-
butions, see Herrmann (2011). All of these models are suitable for practical applications
where the focus often is on Monte Carlo simulations or the derivation of the Value at Risk
as a quantile of the loss distribution. For both applications it appears as a disadvantage
that none of the mentioned distributions allows the derivation of a closed-form solution
of the quantile function.

We derive two new distributions based on Jones and Pewsey (2009)’s sinh-arcsinh
transformation of the hyperbolic secant distribution and Vaughan (2002)’s generalized
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secant hyperbolic distribution. These distributions exhibit similar flexibility for modeling
skewness and kurtosis of financial data. In contrast to the above mentioned suggestions,
both density, cumulative distribution and quantile function can be given in explicit form.

The outline of this article is as follows: We briefly discuss the sinh-arcsinh transfor-
mation in the first section. The next two sections introduce the two new distributions and
discuss their properties. Section 4 compares their flexibility to the well-known financial
models in an application to BMW returns. A conclusion is given in Section 5.

2 The sinh-arcsinh Transformation
Jones and Pewsey (2009) introduce the sinh-arcsinh transformation, briefly S-transforma-
tion, for some (symmetric) random variable Z with known cumulative probability func-
tion FZ defined on R. Let the S-transformed random variable X be given by

Z = S(X; ϵ, δ) = sinh
(
δ sinh−1(X)− ϵ

)
, (1)

with ϵ ∈ R and δ > 0. It follows from the monotonicity of S that the distribution of X
depends on Z’s and parameters ϵ, δ with probability function given as

FX(x) = Pr(X < x) = Pr(S(X; ϵ, δ) < S(x; ϵ, δ)) = FZ(S(X; ϵ, δ)) . (2)

Jones and Pewsey (2009) show that the parameters ϵ and δ of the transformed random
variable X act respectively as skewness and kurtosis parameters in the sense of the or-
derings defined in van Zwet (1964). Jones and Pewsey (2009) apply the sinh-arcsinh-
transformation to introduce skewness and kurtosis to a normal distributed random vari-
able. Rosco, Jones, and Pewsey (2010) apply this transformation to introduce skewness
to a t-distributed random variable, where δ is hold constant at 1. The following two
sections discuss two further application of the sinh-arcsinh-transformation and discuss
their results. The first approach introduces skewness and kurtosis to a hyperbolic secant
distributed random variable. The second approach introduces skewness to an already lep-
tokurtic or platykurtic generalized hyperbolic distributed random variable.

3 Hyperbolic Secant Distribution
For a hyperbolic secant distributed random variable Z, density function, cumulative prob-
ability function and quantile function are known in their explicit formulae as

fHS(z) =
1

2
sech

(π
2
z
)
,

FHS(z) =
2

π
arctan

(
exp

(π
2
x
))

, (3)

F−1
HS(u) =

2

π
log
(
tan
(π
2
u
))

,

where sech denotes the hyperbolic secant function. The distribution has zero mean and
unit variance. It is symmetric and has an excess kurtosis of 2.
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Its elegant mathematical form already gave rise to further generalizations, e.g. in
Harkness and Harkness (1968) or Vaughan (2002), see Section 5. Both generalizations
define families of symmetric distributions with flexibility in terms of kurtosis. Contrary
to these generalizations the S-transformation allows for both: introduction of skewness
and kurtosis, see following section. Other generalizations of the hyperbolic distribution
to skewed densities are given in Fischer (2004), Fischer (2006) and Fischer and Vaughan
(2010). A recent overview is given in Fischer (2011).

4 The HS-SAS Distribution
The hyperbolic secant distribution is generalized to a skewed and leptokurtic distribution
by the application of the S-transformation defined in (2) to the hyperbolic secant distri-
bution defined in (3). The resulting S-transformed hyperbolic secant distribution, briefly
HS-SAS distribution, is given by its probability function as

FHS−SAS(x; ϵ, δ) = FHS (S(x; ϵ, δ)) =
2

π
arctan

(
exp

(
sinh

(
δ sinh−1(x)− ϵ

)))
. (4)

Its inverse defines the quantile function with the u-percentile xu as

xu = F−1
HS−SAS(u; ϵ, δ) = sinh

(
ϵ+ arcsinh (log (tan (1/2uπ)))

δ

)
. (5)

The median thus only depends on ϵ and δ and is given by

x0.5 = sinh
( ϵ
δ

)
. (6)

The density function is derived as the derivative of the probability function with respect
to x as

fHS−SAS(x; ϵ, δ) = 2
cosh

(
−δ sinh−1(x)− ϵ

)
δe− sinh(−δ sinh−1(x)−ϵ)

π
√
1 + x2

(
1 +

(
e− sinh(−δ sinh−1(x)−ϵ)

)2) . (7)

The fact, shown in Jones and Pewsey (2009), that ϵ and δ act as skewness and kurtosis
parameters respectively is illustrated in Figure 1.

Figure 2 illustrates the dependence of skewness and kurtosis on corresponding param-
eters ϵ and δ. Skewness and kurtosis is measured as standardized third and fourth power
moments (denoted as m3 and m4) as

m3 = E

((
x− µ

σ

)3
)

, m4 = E

((
x− µ

σ

)4
)

(8)

and by use of two quantile based measures suggested in Bowley (1920) and Crow and
Siddiqui (1967) (denoted as q3 and m4) as

q3 =
x0.75 + x0.25 − 2x0.5

x0.75 − x0.25

(9)
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Figure 1: The S-transformed hyperbolic secant distribution with ϵ ∈ [0; 2], δ = 1 (left
panel), and ϵ = 0, δ ∈ [0.5; 1.5] (right panel).

and
q4 =

x0.975 − x0.025

x0.75 − x0.25

, (10)

where xu denotes the quantile belonging to probability u. While standardized power
moments are calculated via numerical integration, the quantile based measures can be
derived directly from the quantile function.

Finally, we will demonstrate that all moments of an HS-SAS distribution exist: Firstly,
the n-th power of the S-transformation derives as

S(z)n =
1

2n

n∑
i=0

(
n

i

)
eϵ(n−2i)

(
z +

√
z2 + 1

)δ(n−2i)

=
1

2n

n∑
i=0

(
n

i

)
eϵ(n−2i) exp

{
δ(n− 2i) log

((
z +

√
z2 + 1

))}
.

Replacing z by X and taking expectations, we obtain

E(Zn) =
1

2n

n∑
i=0

(
n

i

)
eϵ(n−2i)E (exp (δ(n− 2i)W ))

=
1

2n

n∑
i=0

(
n

i

)
eϵ(n−2i)MW (δ(n− 2i))

with W ≡ asinh(Z) = log(Z +
√
Z2 + 1) and where MW denotes the corresponding

moment-generating function. Some properties of W are the following: Assume that Z
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Figure 2: Moment statistics and quantile measures for the S-transformed hyperbolic se-
cant distribution varying with ϵ and δ.

represents the hyperbolic secant density. The underlying transformation T is monotone
increasing because

T′(x) =
1√

x2 + 1
> 0 .

Because of its inverse function, T−1(x) = sinh(x) with corresponding first derivative
(T−1)′(x) = cosh(x) > 0, the random variable W admits the following density (see
Figure 3)

fW (x) =
cosh(x)

π cosh(sinh(x))
, x ∈ R

with cumulative distribution function

FW (x) =
2

π
arctan(exp(cosh(x))) , x ∈ R .

It has light tails (such that all moments exist). The even ones can be numerically approx-
imated as

E(W ) = 0 , E(W 2) = 1.0655 , E(W 3) = 0 , E(W 4) = 2.587

E(W 6) = 8.813 , E(W 8) = 37.009 .
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Figure 3: Log density (left panel) and density (right panel) of W .

5 Skewing Vaughan’s GSH distribution

Vaughan (2002) suggests the following generalization of the hyperbolic distribution,

fGSH(x; t) = c1
exp(c2x)

exp(2c2x) + 2a exp(c2x) + 1
,

for t > −π, where two cases for t are distinguished as

t ≤ 0 : a(t) = cos(t) , c1(t) =
sin(t)

t
c2 , c2(t) =

√
π2 − t2

3
,

t > 0 : a(t) = cosh(t) , c1(t) =
sinh(t)

t
c2 , c2(t) =

√
π2 + t2

3
. (11)

The parameter t drives the distribution’s shape in terms of kurtosis but leaves the distribu-
tion symmetric, see Vaughan (2002). Distribution and quantile function are also known
as

for π < t < 0:

FGSH(x; t) = 1 +
1

t
cot−1

(
exp(c2x) + cos(t)

sin(t)

)
,

F−1
GSH(u; t) =

1

c2
log

(
sin(tu)

sin(t(1− u))

)
,

with a(t) = cos(t), c1(t) =
sin(t)

t
c2, c2(t) =

√
π2−t2

3
;
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for t = 0:

FGSH(x; 0) = exp

(
πx√
3

)(
1 + exp

(
πx√
3

))−1

,

F−1
GSH(x; 0) =

√
3

π
log

(
u

1− u

)
,

with a(t) = 1, c1(t) = c2, c2(t) = π√
3
;

for t > 0:

FGSH(x; t) = 1− 1

t
coth−1

(
exp(c2x) + cosh(t)

sinh(t)

)
,

F−1
GSH(x; t) =

1

c2
log

(
sinh(tu)

sinh(t(1− u))

)
,

with a(t) = cosh(t), c1(t) =
sinh(t)

t
c2, c2(t) =

√
π2+t2

3
.

As the GSH distribution already possesses flexibility towards kurtosis the S-transfor-
mation is applied only to introduce skewness. This is done by applying the S-transformation
with constant δ = 1 and variable ϵ ∈ R (similar to Rosco et al., 2010 for the Student-
t distribution). The S-skewed GSH distribution, briefly GSH-SAS, is thus given by the
S-transformed random variable X with probability function

FGSH−SAS(x; ϵ, t) = FGSH(S(x; ϵ, 1); t) .

Probability, probability density and quantile function can be given in explicit form, where
it must again be distinguished for t as

for −π < t < 0:

FGSH−SAS(x; ϵ, t) = 1 +

(
π − arccot

(
e−c sinh(ϵ−arcsinh(x)) + cos(t)

sin(t)

))
t−1

fGSH−SAS(x; ϵ, t) =
c cosh(ϵ− arcsin(x))e−c sinh(ϵ−arcsinh(x))

t
√
1 + x2 sin(t)

(
1 + e−c sinh(ϵ−arcsinh(x))+cos(t)2 sin(t)−2

)
F−1
GSH−SAS(u; ϵ, t) = sinh

(
ϵ+ arcsinh

(
log (− cos(t)− cot(−t+ ut) sin(t))

c

))
with c(t) =

√
π2−t2

3
;

for t = 0:

FGSH−SAS(x; ϵ, 0) =
γ(x)

1 + γ(x)

fGSH−SAS(x; ϵ, 0) =

√
π

3

γ(x)√
1 + x2

cosh (ϵ− arcsinh(x))

(
1

1 + γ(x)
− γ(x)

(1 + γ(x))2

)

F−1
GSH−SAS(u; ϵ, 0) = sinh

(
ϵ+ arcsinh

(√
3

π
log

(
u

1− u

)))
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with γ(x) = exp
(
−
√

1
3
π sinh (ϵ− arcsinh(x))

)
,

for t > 0:

FGSH−SAS(x; ϵ, t) = 1− 1

t
arccoth

(
e−c sinh(ϵ−arcsinh(x)) + cosh(t)

sinh(t)

)
fGSH−SAS(x; ϵ, t) =

c cosh (ϵ− arcsinh(x)) e−c sinh(ϵ−arcsinh(x))

t
√
1 + x2 sinh(t)

(
(e−c sinh(ϵ−arcsinh(x)) + cosh(t))

2
sinh(t)−2 − 1

)
F−1
GSH−SAS(u; ϵ, t) = sinh

(
ϵ+ arcsinh

(
log (− cosh(t)− coth(−t+ ut) sinh(t))

c

))
with c(t) =

√
π2+t2

3
.

The new distribution’s flexibility in terms of skewness is illustrated in Figure 4.

Figure 4: The skewed generalized hyperbolic secant distribution with ϵ ∈ [0; 2], δ = −2
(left panel), and δ = 2 (right panel).

The effect of the skewness parameter on measures of skewness is illustrated in Figure 5.

6 Application to Univariate Returns
We apply the new models to daily BMW share prices and their log-returns from January
1st 2009 to March 15th 2011, see Figure 6. As Figure 6 indicates there could be GARCH-
type effects in return volatility such that we consider both standardized and GARCH-
filtered returns, see Table 1.1 It can be seen that filtering for GARCH-effects reduces both

1The GARCH-filter is based on a GARCH(1,1) process.
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Figure 5: Two measures of skewness for the S-skewed generalized hyperbolic secant
distribution varying with ϵ.

skewness and kurtosis, both measured by third or fourth standardized power moments,
respectively.

Both, pronounced kurtosis and positive skewness, indicate a significant deviation
from normality in both types of returns. We thus apply both the S-transformed hyper-
bolic secant distribution and the skewed generalized hyperbolic distribution to fit the re-
turns. A skewed t-distribution derived from the maximum entropy framework proposed
in Herrmann (2011) denoted as MEHC and the normal distribution serve as benchmark
for both models. For the former we choose a arctan-based moment to measure skewness
as in Fischer, Gao, and Herrmann (2010). This density function has been found to have
similar flexibility for modeling financial market returns as other skewed t-distributions,
e.g. the SGT2 proposed in Grottke (2001), compare Fischer et al. (2010). As skewness in
both, raw and GARCH-filtered data, is less pronounced than kurtosis, a symmetrical and
the skewed version is estimated for each of the suggested distributions.

In order to assess the different models flexibility we apply different goodness-of-
fit criteria such as likelihood (LL) and the likelihood-based information Akaike and
Bayesian information criterion (AIC and BIC). Together with the Kolmogorov-Smirnov
(KS) and χ2 distance, these measures emphasize the overall fit. The last criterion chosen
is the Andersen-Darling distance (AD) that puts more emphasis on the fit in the tails.
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Table 1: Descriptive statistics for the data used.

Raw returns GARCH-filtered returns
Mean 0.0016 0.0712
Standard Deviation 0.0242 1.0027
Skewness 0.4218 0.2946
Kurtosis 6.0083 4.1232
Observations 561 561

Figure 6: BMW share price and its log-return.

A graphical representation of the fitted distribution is given in Figure 7.2 Results for
goodness-of-criteria are given in Tables 3 and 5, estimates in Tables 2 and 4.

The skewness parameters for all distributions are significantly different from 0 (the
value implying symmetry) and the skewed version of every distribution outperforms the
symmetric versions by all criteria of goodness-of-fit. The new distributions outperform
the normal distribution by all criteria including those which penalize additional param-
eters (AIC and BIC). For the case of raw returns the skewed t-distribution is slightly
better as the new suggestions. But for the GARCH-filtered returns there is mixed picture:
The t-distribution gives a lower χ2 distance, but worse KS distance and likelihood-based
criteria. Both new suggestions give a marginal better fit in the tails for GARCH-filtered
returns but worse fit for raw returns.

2For HS-SAS, GSH-SAS and MEHC only the skewed version is plotted.
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Figure 7: Histogramm and fitted density functions for BMW share price and its log-return.

Table 2: Estimated parameters and standard deviations for BMW raw returns.

Distribution δ t ϵ ν arctan2

HS-SAS (sym.) 0.98016 - - - -
0.00561 - - - -

HS-SAS (skw.) 0.97990 - 0.09229 - -
0.00571 - 0.00450 - -

GSH - −1.56043 - - -
- 0.11467 - - -

GSH-SAS - −1.57346 0.09477 - -
- 0.11165 0.00468 - -

MEHC (sym.) - - - 2.93645 -
- - - 0.00202 -

MEHC (skw.) - - - 2.93645 −0.00780
- - - 0.00202 4.47e-05

Table 3: Goodness-of-fit for BMW raw returns.
Distribution LL AIC BIC KS χ2 AD
HS-SAS (sym.) −771.7 1551.4 1568.8 3.14 6.485 0.160
HS-SAS (skw.) −770.8 1549.5 1566.9 1.79 4.842 0.118
GSH −771.8 1551.5 1568.8 3.01 6.402 0.176
GSH-SAS −770.8 1549.6 1566.9 1.87 4.789 0.125
MEHC (sym.) −770.6 1549.2 1566.5 2.87 5.119 0.070
MEHC (skw.) −769.9 1547.9 1565.2 1.69 3.354 0.064
Normal −795.5 1595 1603.7 4.61 21.603 18.22
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Table 4: Estimated parameters and standard deviations for BMW GARCH-filtered re-
turns.

Distribution δ t ϵ ν arctan2

HS-SAS (sym.) 1.18057 - - - -
0.01442 - - - -

HS-SAS (skw.) 1.19732 - 0.15360 - -
0.01569 - 0.00886 - -

GSH - 0.03329 - - -
- 60.8726 - - -

GSH-SAS - 0.25462 0.10926 - -
- 8.27093 0.00454 - -

MEHC (sym.) - - - 4.0960 -
- - - 0.00290 -

MEHC (skw.) - - - 4.2280 −0.00780
- - - 0.00306 4.44e-05

Table 5: Goodness-of-fit for BMW GARCH-filtered returns.
Distribution LL AIC BIC KS χ2 AD
HS-SAS (sym.) −786.7 1581.5 1598.8 2.64 6.475 0.107
HS-SAS (skw.) −785.3 1578.6 1595.9 1.74 5.311 0.069
GSH −786.4 1580.9 1598.2 2.60 5.479 0.102
GSH-SAS −785.1 1578.3 1595.6 1.75 4.399 0.067
MEHC (sym.) −786.5 1581.1 1598.4 2.60 4.816 0.088
MEHC (skw.) −785.7 1579.4 1596.7 1.84 3.969 0.074
Normal −795.5 1595 1603.7 4.07 10.824 0.337

7 Conclusion

The sinh-arcsinh transformation introduced in Jones and Pewsey (2009) provides a useful
tool for deriving new skewed and leptokurtic distributions. The application of such trans-
formations to the hyperbolic secant and the generalized hyperbolic distributions yields
new flexible distributions for which all, probability, probability density and quantile func-
tion can be given in closed-form. The exemplary empirical study shows that the flexibility
of such distributions is not necessarily outperformed by other flexible distributions typi-
cally applied for financial market models.
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