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Abstract: This paper deals with Bayesian analysis of two-parameter gen-
eralized exponential distribution in proportional hazards model of random
censorship. It is well known for two-parameter lifetime distributions that
continuous conjugate priors for the parameters do not exist; we assume in-
dependent gamma priors for the scale and shape parameter. It is seen that
the closed-form expressions for the Bayes estimators cannot be obtained;
we suggest Tierney-Kadane’s approximation to obtain the Bayes estimates.
However with this method, it is not possible to construct the HPD credible
intervals, we propose Gibbs sampling procedure to approximate the Bayes
estimates and also to construct the HPD credible intervals. Monte Carlo sim-
ulation is carried out to observe the behavior of the proposed methods and
to compare with maximum likelihood method. One real data analysis is per-
formed for illustration.

Zusammenfassung: Diese Arbeit behandelt die Bayesianische Analyse der
zwei-parametrischen generalisierten Exponentialverteilung in proportionalen
Hazardmodellen mit zufälliger Zensierung. Für zweiparametrische Lebens-
dauerverteilungen ist bekannt, dass es keine stetigen, konjugierten Priori-
Annahmen für diese Parameter gibt. Wir nehmen daher unabhängige Gamma-
Prioriverteilungen für den Skalierungs- und den Gestaltsparameter an. Man
sieht, dass es für die Bayes-Schätzer keine Darstellung in geschlossener Form
gibt. Wir empfehlen die Tierney-Kadane Approximation, um die Bayes-
Schätzer zu erhalten. Jedoch ist es mit dieser Methode unmöglich, HPD
Kredibilitätsintervalle zu konstruieren. Daher empfehlen wir eine Gibbs Sam-
pling Prozedur, um die Bayes-Schätzer zu approximieren und um HPD Inter-
valle zu konstruieren. Mittels einer Monte-Carlo Simulation wird das Verhal-
ten der vorgeschlagenen Methoden veranschaulicht und die Resultate werden
mit der Maximum Likelihood Methode verglichen. Eine reale Datenanalyse
ist zur Illustration durchgeführt.

Keywords: Bayes Estimate, Log-concave Density Function, Gibbs Sam-
pling, Tierney-Kadane’s Approximation, Markov Chain Monte Carlo.

1 Introduction
Censoring is an important feature of reliability and life-testing experiments. In these ex-
periments the units on test are lost or removed from the test, so that the event of interest
may not always be observed for all the units in the study. Clearly, to wait for the last
observation would not be advisable as it is necessary to report the results from the study
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as soon as possible. There are several censoring mechanisms that are used in survival
analysis to reduce the experimental time. Under type II censoring, a sample of n units is
followed until a fixed number of units r ≤ n have experienced the event of interest. In
this scheme the number of units experiencing the event is prefixed but the total duration
of the study is random. Type II censoring scheme is often used in life testing applications
and toxicology experiments. Under type I censoring, a sample of n units is followed until
a fixed censoring time T . Clinical data is often collected by fixing a maximum follow-up
time T for each unit in the study. The lifetime of a sampling unit will be known only if
it is less than or equal to the predetermined maximum follow-up time T . A more general
form of type I censoring is random censoring in which censoring time T is not fixed but
is a random variable. In a clinical trial, for example, patients often enter into the study
after some medical operation, therefore the enrolment time and hence the censoring time
is random. In some medical studies and longitudinal designs, individuals enter into the
study simultaneously but the censoring time depends on other random factors, e.g., pa-
tients lost to follow-up, drop out of the study, etc. De Santis, Mortera, and Nardi (2001)
derived the Jeffreys priors under different censoring designs and obtained the Bayes esti-
mates in detail for exponential distribution. Liang (2004) considered random censorship
assuming exponentially distributed censoring time with known censoring parameter in
the range (0, 1). Friesl and Hurt (20070) dealt with Bayesian estimation in exponential
distribution under random censorship model and investigated the asymptotic properties of
different estimators with particular stress on the Bayesian risk. These authors focused on
the exponential distribution which is appropriate only when the hazard rate is constant.
There are many phenomena in life testing experiments where the suitability of the expo-
nential distribution is inappropriate. For situations where the hazard rate is increasing or
decreasing, generalized exponential, gamma and Weibull distributions are more suitable.
The scale and shape parameters of these distributions make them flexible for analyzing
any general life time data.

In this paper, we consider a two-parameter generalized exponential (GE) distribution
introduced by Gupta and Kundu (1999). Like Weibull and gamma distributions, the GE
distribution can have increasing, constant or decreasing hazard function depending on
the shape parameter. It is observed in Gupta and Kundu (2001) that the GE distribution
and the gamma distribution have very similar properties in many respects and in some
situations the GE distribution provides a better fit than gamma and Weibull distributions in
terms of maximum likelihood or minimum chi-square. Kundu and Gupta (2008) obtained
the Bayes estimates of unknown parameters under the assumptions of independent gamma
priors on both the shape and scale parameters using the Lindley’s approximation and
Gibbs sampling procedure. Kundu and Pradhan (2009) considered the Bayesian inference
and life testing plans for the GE distribution under type II censoring scheme. Pakyari
(2010) compared the GE distribution with geometric extreme exponential and Weibull
distributions based on the likelihood ratio and minimum Kolmogorov distance criteria.

The proportional hazards (PH) model has been in statistical literature since the work of
Cox (1972). Although Cox introduced the PH model to introduce the covariates, however,
the same idea can be used to introduce an additional shape/skewness parameter to the base
distribution (Gupta and Kundu, 2009). The PH model of random censorship has been
studied by many authors in classical context, see for example Koziol and Green (1976),
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Csörgő and Horváth (1983), Hollander and Peña (1989), Csörgő and Faraway (1998).
The rest of the paper is organized as follows. In Section 2 we derive the model. The

maximum likelihood (ML) estimation for the unknown parameters is presented in Sec-
tion 3. Section 4 contains the prior distributions, Bayes estimates using Gibbs sampling
scheme and Lindley’s approximation. A simulation study is considered in Section 5. A
real data set is analyzed in Section 6 and finally, we conclude the paper in Section 7.

2 The Model and Assumptions
Let X1, . . . , Xn be independent and identically distributed random variables with distri-
bution function FX(t) and density function fX(t). Consider another sequence T1, . . . , Tn

of independent and identically distributed random variables with distribution function
GT (t) and density function gT (t), independent of {Xi}. In the context of reliability and
life testing experiments, the Xi’s are the true survival times of n individuals censored
by the Ti’s from the right, so that one observes independent and identically distributed
random pairs (Y1, D1), . . . , (Yn, Dn), where Yi = min(Xi, Ti) and Di = I(Xi ≤ Ti) is
the indicator of the noncensored observation, for i = 1, . . . , n. Thus, the observed Yi’s
constitute a random sample from the distribution function FY (t), where 1 − FY (t) =
(1 − FX(t))(1 − FT (t)). This is the usual random censorship model studied by Kaplan
and Meier (1958), Efron (1967), Breslow and Crowley (1974). Kaplan and Meier (1958)
developed their well known product limit estimator of the distribution function FX(t) un-
der the assumption of independence of X and T . In the PH model of random censorship,
it is further assumed that the survival function of the censoring time is a power of the
survival function of the survival time. An important consequence of this assumption is
that the observable variables Y and D are independent, see for example Herbst (1992).
Cheng and Lin (1987) proved that the survival time distribution function estimator un-
der the assumption of proportional hazards outperforms the Kaplan-Meier product limit
estimator in terms of asymptotic efficiency. For further details on PH model of random
censorship, we refer to Csörgő (1988). He also provided a test to check the validity of PH
model under the assumption of independence of Y and D.

With the assumption of independence of X and T , it is simple to show that the joint
density function of Y and D is

fY,D(y, d) = {fX(y)(1−GT (y))}d {gT (y)(1− FX(y))}1−d , y ≥ 0, d = 0, 1 .
(1)

The random variables X and T satisfy the proportional hazards model with proportional-
ity constant β > 0, if

1−GT (y) = {1− FX(y)}β . (2)

For β = 0, expression (2) represents the case of no censoring. The relation (2) differen-
tiates the PH model from the general model of random censorship. From (1) and (2), we
have

fY,D(y, d) = fX(y){1− FX(y)}ββ1−d , y > 0, d = 0, 1 . (3)

In this paper we assume that the random variable X follows a two-parameter general-
ized distribution with shape parameter θ and scale parameter λ. The probability density
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function and cumulative distribution function of the GE distribution are

fX(x; θ, λ) = θλ(1− e−λx)θ−1e−λx , x > 0, θ, λ > 0 , (4)

FX(x; θ, λ) = (1− e−λx)θ . (5)

Using (4) and (5) we can express (3) as

fY,D(y, d; θ, λ, β) = θλ
(
1− e−λy

)θ−1
e−λy

[
1−

(
1− e−λy

)θ]β
β1−d , y > 0, d = 0, 1 .

(6)
The marginal distributions of Y and D can be obtained from (6) as

fY (y; θ, λ, β) = (1 + β)θλ(1− e−λy)θ−1e−λy
[
1−

(
1− e−λy

)θ]β
, y > 0 ,

fD(d; p) = pd(1− p)1−d , d = 0, 1, 0 ≤ p ≤ 1 ,

where

p = Pr(X ≤ T ) =
1

1 + β
.

3 Maximum Likelihood Estimation

In this section, we derive the ML estimators θ̂, λ̂, and β̂ of the unknown parameters θ,
λ, and β assuming that the model defined in (6) holds. For an observed sample (y, d) =
(y1, d1), . . . , (yn, dn) of size n from (6), the likelihood function is

L(θ, λ, β|(y, d)) = θnλn

n∏
i=1

(
1− e−λyi

)θ−1
e
−λ

n∑
i=1

yi
n∏

i=1

[
1−

(
1− e−λyi

)θ]β
β
n−

n∑
i=1

di
.

(7)
Throughout the paper we suppose that

ξi = 1− e−λyi , ξ′i = yie
−λyi , ξ′′i = −y2i e

−λyi , ξ′′′i = y3i e
−λyi .

The log-likelihood function can be written from (7) as

l(θ, λ, β|(y, d)) = log[L(θ, λ, β|(y, d))]

= n log(θλ)+

(
n−

n∑
i=1

di

)
log β−λ

n∑
i=1

yi+(θ−1)
n∑

i=1

log ξi (8)

+β
n∑

i=1

log
(
1− ξθi

)
.
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Differentiating (8) with respect to θ, λ, and β and equating the resulting expressions to
zero, we have the likelihood equations as

n

θ
+

n∑
i=1

log ξi − β
n∑

i=1

ξθi log ξi
1− ξθ

= 0 , (9)

n

λ
−

n∑
i=1

yi + (θ − 1)
n∑

i=1

ξ′i
ξi

− βθ

n∑
i=1

ξθ−1
i ξ′i
1− ξθi

= 0 , (10)

n−
∑n

i=1 di
β

+
n∑

i=1

log
(
1− ξθi

)
= 0 . (11)

All the three equations are nonlinear, so the ML estimates do not exist in closed forms. We
suggest the NLP procedure in SAS to compute the ML estimates of the parameters. For
interval estimation on the unknown model parameters, we need the expected information
matrix which is provided in Appendix A.

Now we state the asymptotic normality results of ML estimators θ̂, λ̂, and β̂ to obtain
asymptotic confidence intervals. It can be stated as

√
n
(
θ̂ − θ, λ̂− λ, β̂ − β

)
∼ N3

(
0, I−1(θ, λ, β)

)
,

where I(θ, λ, β) is the expected information matrix.

4 Bayesian Estimation
For a Bayesian estimation of the parameters one needs prior distributions for these pa-
rameters. These prior distributions depend upon the knowledge about the parameters and
the experience of similar phenomena. We assume the following independent prior distri-
butions for θ, λ, and β

π1(θ) = gθ(a1, b1) =
b
a1
1

Γ(a1)
θa1−1e−b1θ , a1, b1, θ > 0

π2(λ) = gλ(a2, b2) =
b
a2
2

Γ(a2)
λa2−1e−b2λ , a2, b2, λ > 0

π3(β) = gβ(a3, b3) =
b
a3
3

Γ(a3)
θa3−1e−b3β , a3, b3, β > 0

(12)

Our prior assumptions of independent gamma distributions are not unreasonable; many
authors have used the independent gamma priors for the scale and the shape parameters of
two-parameter lifetime distributions (Berger and Sun, 1993; Kundu, 2008; Wahed, 2006;
Kundu and Pradhan, 2009). It is to be noted that the noninformative priors for the scale
and the shape parameters are the special cases of these independent gamma priors.

The joint prior distribution of unknown parameters can be written as

π(θ, λ, β) ∝ θa1−1e−b1θλa2−1e−b2λβa3−1e−b3β . (13)

Combining (7) and (13), the joint posterior density function of θ, λ, and β given data can
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be written as

π(θ, λ, β|(y, d)) ∝ θn+a1−1 exp

(
−θ

(
b1 −

n∑
i=1

log ξi

))

λn+a2−1 exp

(
−λ

(
b2 +

n∑
i=1

yi

))
(14)

βn−
∑n

i=1 di+a3−1 exp

(
−β

(
b3 −

n∑
i=1

log
(
1− ξθi

))) n∏
i=1

ξ−1
i .

Thus, the Bayes estimate of any function of the parameters, say U(θ, λ, β), under a SE
loss function can be written as

Ûβ(θ, λ, β) = E(U(θ, λ, β)|(y, d)) =
∫∞
0

∫∞
0

∫∞
0

U(θ, λ, β)π(θ, λ, β|(y, d))dθ dλ dβ∫∞
0

∫∞
0

∫∞
0

π(θ, λ, β|(y, d))dθ dλ dβ
.

(15)
However, it is not possible to evaluate (15) in closed-form. We use two different methods
to approximate (15), namely (a) Gibbs sampling and (b) Tierney and Kadane’s approxi-
mation.

4.1 Gibbs Sampling
We use a Gibbs sampling procedure to obtain the Bayes estimates θ̂GS , λ̂GS , and β̂GS of
θ, λ, and β now. The full conditional forms for θ, λ, and β up to proportionality can be
obtained from (14) as

π1(θ|λ, β, (y, d)) ∝ θn+a1−1 exp

(
−θ

(
b1 −

n∑
i=1

log ξi

))
n∏

i=1

(
1− ξθi

)β
, (16)

π2(λ|θ, β, (y, d)) ∝ λn+a2−1 exp

(
−λ

(
b2 +

n∑
i=1

yi

))
n∏
i

ξθi

n∏
i=1

(
1− ξθi

)β
, (17)

π3(β|θ, λ, (y, d)) ∝ βn−
∑n

i=1 di+a3−1 exp

(
−β

(
b3 −

n∑
i=1

log
(
1− ξθi

)))
. (18)

To obtain the Bayes estimates using Gibbs sampler, it is required to have some mechanism
of generating samples from the full conditional distributions for the quantities involved.
The full conditional form (16) is log-concave since

∂2π1(θ|λ, β, (y, d))
∂θ2

=
−(n+ a1 − 1)

θ2
− β

n∑
i=1

ξθi log
2 ξi(

1− ξθi
)2 < 0 .

Thus, the samples of θ can be generated using the method proposed by Devroye (1984).
The full conditional form (17) can be sampled using the Metropolis-Hastings algorithm
(Gilks, Richardson, and Spiegelhalter, 1995) with gamma(n+ a2, b2 +

∑n
i=1 yi) as a can-

didate-generating density (Chib and Greenberg, 1995). Finally the full conditional form
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(18) is the gamma density, so the samples of β can be easily generated using any of the
gamma generating routines. Now following the idea of Geman and Geman (1984) and
using (16), (17), (18), it is possible to generate samples of (θ, λ, β) from the posterior dis-
tribution (14) and then to obtain the Bayes estimates and corresponding credible intervals.
Starting with suitable choice of initial values, say (θ0, λ0, β0), we suggest the following
procedure to generate the posterior samples and then to obtain the Bayes estimates and
the corresponding HPD credible intervals:

• Step 1 Generate θ1 from the log-concave density (16) using the method suggested
by Devroye (1984).

• Step 2 (i) Generate x from gλ (n+ a2, b2 +
∑n

i=1 yi) and u from U(0, 1).

(ii) If u < min(1, d) then λ1 = x else go to (i), where

d =

n∏
i=1

(1− e−xyi)
θ0

n∏
i=1

(
1− (1− e−xyi)

θ0
)β0

n∏
i=1

(1− e−λ0yi)θ0
n∏

i=1

(
1− (1− e−λ0yi)θ0

)β0
.

• Step 3 Generate β1 from gβ

(
n−
∑n

i=1 di+a3, b3−
∑n

i=1 log
(
1−
(
1−e−λ0yi

)θ0)).

• Step 4 Repeat Steps 1 to 3 M times to obtain (λ1, θ1, β1), . . . , (λM , θM , βM).

• Step 5 Obtain the approximate Bayes estimates of θ, λ, and β under SE loss function
as

θ̂GS =
1

M

M∑
j=1

θj , λ̂GS =
1

M

M∑
j=1

λj , β̂GS =
1

M

M∑
j=1

βj .

• Step 6 Obtain the approximate posterior variances of θ, λ, and β under SE loss
function as

V̂ (θ|(y, d)) = 1

M

M∑
j=1

(θj − θ̂GS)
2 , V̂ (λ|(y, d)) = 1

M

M∑
j=1

(λj − λ̂GS)
2 ,

V̂ (β|(y, d)) = 1

M

M∑
j=1

(βj − β̂GS)
2 .

• Step 7 To construct the HPD credible intervals for θ order the generated sample
θ1, . . . , θM as θ(1) < · · · < θ(M). Construct all the 100(1 − α)% credible intervals
for θ as

(
θ(1), . . . , θ([M(1−α)])

)
, . . . ,

(
θ([Mα]), θ(M)

)
, where [x] denotes the largest

integer less than or equal to x. The HPD credible interval for θ is that interval
which has the shortest length. Similarly, the HPD credible intervals for λ and β can
be obtained.
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4.2 Tierney-Kadane’s Approximation
In this subsection, we obtain the approximate Bayes estimates θ̂TK , λ̂TK , and β̂TK of θ,
λ, and β under SE loss function using the Tierney-Kadane’s approximation. Tierney and
Kadane (1986) proposed a procedure to approximate the ratio of two integrals such as
(15). Although Lindley’s approximation (Lindley, 1980) plays an important role in the
Bayesian analysis, however, this approximation requires the evaluation of third derivatives
of the log-likelihood function which is very tedious in some situations such as the present
one. Moreover, the Lindleys approximation has an error of order O(n−1) where as the
Tierney-Kadane’s approximation has an error of order O(n−2).

To apply the Tierney-Kadane’s approximation, suppose that

ℓ(θ, λ, β) =
1

n
{ρ(θ, λ, β) + l(θ, λ, β)}

and
ℓ∗(θ, λ, β) =

1

n
logU(θ, λ, β) + ℓ(θ, λ, β) .

Now the expression (15) for the posterior mean of U(θ, λ, β) can be written as

Ûβ(θ, λ, β) = E(U(θ, λ, β)|(y, d)) =
∫
enℓ

∗(θ,λ,β)d(θ, λ, β)∫
enℓ(θ,λ,β)d(θ, λ, β)

. (19)

The expression (19) is approximated by Tierney-Kadane’s method as

Ûβ(θ, λ, β) =

(
detΣ∗

detΣ

)1/2

exp
{
nℓ∗(θ̂ℓ∗ , λ̂ℓ∗ , β̂ℓ∗)− nℓ(θ̂ℓ, λ̂ℓ, β̂ℓ)

}
, (20)

where (θ̂ℓ∗ , λ̂ℓ∗ , β̂ℓ∗) and (θ̂ℓ, λ̂ℓ, β̂ℓ) maximize ℓ∗(θ, λ, β) and ℓ(θ, λ, β), respectively, and
Σ∗ and Σ are minus the inverse Hessians of ℓ∗(θ, λ, β) and ℓ(θ, λ, β) at (θ̂ℓ∗ , λ̂ℓ∗ , β̂ℓ∗) and
(θ̂ℓ, λ̂ℓ, β̂ℓ), respectively. Further description is given in Appendix B.

5 Simulation
A simulation study is performed to observe the behavior of the proposed ML estimators
and the Bayes estimators based on Gibbs sampling and the Tierney-Kadane’s approxima-
tion (T-K) for different sample sizes, for different priors, and for different censoring rates.
We consider different sample sizes: n = 20, 40, 60; different proportions of uncensored
observations: p = 0.50, 0.80; different sets of parameter values: θ = 1.5, λ = 1, β = 1,
θ = 1.5, λ = 1, β = 0.25; different combinations of hyperparameters: a1 = 0, b1 = 0,
a2 = 0, b2 = 0, a3 = 0, b3 = 0 (prior-1), a1 = 3, b1 = 2, a2 = 2, b2 = 2, a3 = 2, b3 = 2
(prior-2) when θ = 1.5, λ = 1, β = 1 prior-1, a1 = 3, b1 = 2, a2 = 2, b2 = 2, a3 = 1,
b3 = 4 (prior-2) when θ = 1.5, λ = 1, β = 0.25. Here prior-1 denotes the noninformative
priors for θ, λ, and β when all the hyperparameters in (12) are zero and prior-2 denotes the
informative priors for θ, λ, and β when the hyperparameters are taken so that the priors’
means are the same as the original means. In all cases, the SE loss function is used to
obtain the Bayes estimates. For a particular case, we generate 1000 randomly censored
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samples from (6) and for each sample we compute the maximum likelihood estimates and
the corresponding 95% confidence intervals based on the observed Fisher information ma-
trix, the Bayes estimates under prior-1 and prior-2 using the Gibbs sampling procedure
and the corresponding 95% credible intervals based on 20000 MCMC samples with 5000
burn-in and the Bayes estimates under prior-1 and prior-2 using the Tierney-Kadane’s
approximation. The average ML estimates, average Bayes estimates, mean squared er-
rors (MSEs), coverage percentages and average lengths of confidence/credible intervals
are obtained from each replication. The results are reported in Tables 1 to 4. Some of the
points are very clear from these results. It is observed that as the sample size increases, the
biases, the MSEs and the average confidence/credible interval lengths of the estimators
decrease. This is true for both the cases of censoring rates. The behavior of ML esti-
mators and Bayes estimators of θ and λ under noninformative priors (prior-1) based on
Gibbs sampling and Tierney-Kadane’s approximation is approximately similar. However,
the Bayes estimators of θ and λ under informative priors (prior-2) based on Gibbs sam-
pling and Tierney-Kadane’s approximation outperform the ML estimators and the Bayes
estimators of θ and λ under prior-1 in terms of MSEs and average confidence/credible
interval lengths. When comparing the Bayes estimators under prior-2, it is seen that the
Bayes estimators based on Tierney-Kadane’s approximation perform slightly better than
the Bayes estimators based Gibbs sampling. Thus in case of no prior information we
suggest the ML estimates because these are much easier to compute than the Bayes es-
timates. However, with some extra effort the more accurate noninformative priors based
Bayes estimates using Tierney-Kadane’s approximation may be obtained. On the other
hand, when one has sufficient prior information about the unknown parameters then it is
better to use the Bayes estimates based on these prior information.

6 Data Analysis

In this section, we analyze a real data set obtained from Fleming and Harrington (1991).
The data belongs to Group IV of the Primary Biliary Cirrhosis (PBC) liver study con-
ducted by Mayo Clinic. The event of interest is time to death of PBC Patients. The data
on the survival times (in days) of 36 patients who had the highest category of bilirubin
are: 400, 77, 859, 71, 1037, 1427, 733, 334, 41, 51, 549, 1170, 890, 1413, 853, 216,
1882+, 1067+, 131, 223, 1827, 2540, 1297, 264, 797, 930, 1329+, 264, 1350, 1191,
130, 943, 974, 790, 1765+, 1320+. The observations with ‘+’ indicate censored times.
For computational ease, each observation is divided by 1000. Since we do not have any
prior information about the unknown parameters, we use the noninformative priors for
θ, λ, and β, that is a1 = b1 = a2 = b2 = a3 = b3 = 0 for Bayes estimates. We
compute the ML and Bayes estimates using Gibbs sampling (GS) and Tierney-Kadane’s
approximation (T-K). To test the goodness of fit of the model to this data, we compute
the Kolomogorov-Smirnov D statistics and the associated p-values. The results are given
in Table 5. Based on the Kolomogorov-Smirnov test, we can say that all the methods fit
the data quite well. We also plot the empirical cumulative distribution function (CDF)
and the fitted CDF using ML estimates and Bayes estimates based on Tierney-Kadane’s
approximation in Figure 1.
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Table 1: Average values of the ML estimator and the Bayes estimators of θ using MCMC
Gibbs sampling and Tierney-Kadane’s approximation (T-K) and the corresponding mean
squared errors (in parenthesis) when θ = 1.5.

p n MLE Bayes (MCMC) Bayes (T-K)
Prior-1 Prior-2 Prior-1 Prior-2

0.50
20 1.7108 (0.3130) 1.6844 (0.3181) 1.5816 (0.1008) 1.6987 (0.3673) 1.5605 (0.0756)
40 1.5782 (0.9630) 1.5674 (0.0933) 1.5449 (0.0582) 1.6033 (0.1399) 1.5563 (0.0622)
60 1.5531 (0.0677) 1.5463 (0.0682) 1.5342 (0.0492) 1.5650 (0.0757) 1.5433 (0.0455)

0.80
20 1.7556 (0.4450) 1.7216 (0.4105) 1.6004 (0.1274) 1.7530 (0.5468) 1.5650 (0.0852)
40 1.6223 (0.1555) 1.6165 (0.1678) 1.5734 (0.0922) 1.5927 (0.1452) 1.5435 (0.0620)
60 1.5825 (0.0972) 1.5626 (0.0835) 1.5486 (0.0580) 1.5599 (0.0896) 1.5358 (0.0508)

Table 2: Average values of the ML estimator and the Bayes estimators of λ using MCMC
Gibbs sampling and Tierney-Kadane’s approximation (T-K) and the corresponding mean
squared errors (in parenthesis) when λ = 1.

p n MLE Bayes (MCMC) Bayes (T-K)
Prior-1 Prior-2 Prior-1 Prior-2

0.50
20 1.1217 (0.1275) 1.1042 (0.1136) 1.0529 (0.0370) 1.0999 (0.1235) 1.0400 (0.0334)
40 1.0509 (0.0470) 1.0423 (0.0461) 1.0293 (0.0259) 1.0537 (0.0544) 1.0317 (0.0262)
60 1.0320 (0.0310) 1.0293 (0.0311) 1.0224 (0.0209) 1.0351 (0.0345) 1.0244 (0.0210)

0.80
20 1.1243 (0.1128) 1.0916 (0.1022) 1.0467 (0.0405) 1.0963 (0.1141) 1.0375 (0.0364)
40 1.0622 (0.0521) 1.0526 (0.0497) 1.0347 (0.0306) 1.0399 (0.0497) 1.0228 (0.0272)
60 1.0431 (0.0316) 1.0290 (0.0292) 1.0236 (0.0212) 1.0248 (0.0289) 1.0167 (0.0190)

Table 3: Average values of the ML estimator and the Bayes estimators of β using MCMC
Gibbs sampling and Tierney-Kadane’s approximation (T-K) and the corresponding mean
squared errors (in parenthesis) when β = 1 and 0.25.

p n MLE Bayes (MCMC) Bayes (T-K)
Prior-1 Prior-2 Prior-1 Prior-2

0.50
20 1.0020 (0.0000) 1.0830 (0.0080) 1.0250 (0.0020) 1.0864 (0.0080) 1.0271 (0.0023)
40 1.0010 (0.0000) 1.0400 (0.0020) 1.0190 (0.0010) 1.0410 (0.0019) 1.0216 (0.0011)
60 1.0010 (0.0000) 1.0260 (0.0010) 1.0150 (0.0000) 1.0266 (0.0008) 1.0169 (0.0006)

0.80
20 0.2500 (0.0000) 0.2610 (0.0000) 0.2520 (0.0000) 0.2637 (0.0002) 0.2530 (0.0000)
40 0.2500 (0.0000) 0.2560 (0.0000) 0.2520 (0.0000) 0.2563 (0.0001) 0.2524 (0.0000)
60 0.2500 (0.0000) 0.2560 (0.0000) 0.2520 (0.0000) 0.2540 (0.0000) 0.2520 (0.0000)

7 Conclusion

In this paper we consider the Bayesian analysis of two-parameter generalized exponential
distribution under the proportional hazards model of random censorship. The well known
gamma priors for the scale and the shape parameters are used to obtain the Bayes esti-
mates as the continuous conjugate priors on these parameters do not exist. It is observed
that the Bayes estimates of unknown parameters cannot be obtained in closed form; we
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Table 4: Average confidence/credible interval lengths of the ML estimators and the Bayes
estimators under prior-1 and prior-2 and the corresponding 95% coverage percentages (in
parenthesis) when θ = 1.5, λ = 1, β = 1 and 0.25.

p n MLE Prior-1 Prior-2
θ λ β θ λ β θ λ β

0.50

20 1.999
(94)

1.474
(98)

2.029
(100)

1.918
(95)

1.465
(99)

1.995
(100)

1.450
(98)

1.065
(100)

1.297
(100)

40 1.234
(96)

1.000
(98)

1.332
(100)

1.214
(96)

0.997
(98)

1.321
(100)

1.073
(98)

0.835
(99)

1.046
(100)

60 0.979
(95)

0.806
(97)

1.062
(100)

0.969
(95)

0.808
(98)

1.055
(100)

0.893
(96)

0.712
(99)

0.901
(100)

0.80

20 2.277
(94)

1.232
(95)

0.610
(100)

2.167
(95)

1.217
(96)

0.577
(100)

1.617
(99)

0.947
(98)

0.362
(100)

40 1.409
(95)

0.837
(96)

0.408
(100)

1.388
(95)

0.836
(96)

0.397
(100)

1.209
(97)

0.726
(97)

0.303
(100)

60 1.104
(95)

0.675
(95)

0.328
(100)

1.079
(96)

0.671
(96)

0.323
(100)

0.995
(97)

0.611
(97)

0.265
(100)

Table 5: The MLEs and the Bayes estimates based on different methods, Kolomogorov-
Smirnov D statistics and the associated p-values.

Method θ̂ λ̂ β̂ D p-value
MLE 1.3286 1.2072 0.1628 0.1195 0.8051
Bayes (GS) 1.3160 1.1870 0.1666 0.1197 0.8026
Bayes (T-K) 1.3901 1.2963 0.1579 0.1187 0.8149

propose Tierney-Kadane’s approximation to obtain the approximate Bayes estimates. Un-
fortunately with this method it is not possible to obtain the Bayesian credible intervals for
the unknown parameters, we propose the Gibbs sampling scheme to obtain the Bayes
estimates and also to construct the HPD credible intervals. The ML estimates are also
obtained for comparison purposes. To observe the behavior of the proposed Bayes esti-
mators and to compare with ML estimators, a simulation study is performed for different
sample sizes, for different priors and for different censoring rates. It is seen that as the
sample size increases, the biases, the MSEs and the average confidence/credible interval
lengths of the estimators decrease no matter what proportion of censoring rate is implied.
The behavior of ML and Bayes estimators of the shape parameter θ and the scale param-
eter λ under noninformative priors is very similar. However, the Bayes estimators of θ
and λ under informative priors perform better than the ML estimators and the Bayes es-
timators under noninformative priors in terms of MSEs and average confidence /credible
interval lengths. It is further observed that the Bayes estimators under informative priors
based on Tierney-Kadane’s approximation perform slightly better than the Bayes estima-
tors based on Gibbs sampling. We apply the proposed methods to a real data set. Based
on the Kolomogorov-Smirnov test all the methods fit the data quite well. The results of
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Figure 1: Empirical and fitted CDF using MLE and Bayes based on Tierney-Kadane’s
approximation.

real data analysis confirm the observations obtained through the simulation study.

Appendix A: Expected Information Matrix
The second order partial derivatives of the log-likelihood function defined in (8) are

∂2l

∂θ2
= − n

θ2
− β

n∑
i=1

ξθi log
2 ξi

(1− ξθi )
2
,

∂2l

∂θ∂β
= −

n∑
i=1

ξθi log ξi
1− ξθi

,

∂2l

∂λ2
= − n

λ2
+(θ−1)

n∑
i=1

ξiξ
′′
i − (ξ′i)

2

(ξi)2
−βθ

n∑
i=1

ξθ−1
i {ξ′′i (ξi − ξθ+1

i ) + (ξ′i)
2(ξθi + θ − 1)}

(1− ξθi )
2

,

∂2l

∂θ∂λ
=

n∑
i=1

ξ′i
ξi

− β
n∑

i=1

ξ′iξ
θ−1
i

(1− ξθi )
2
(1− ξθi + θ log ξi) ,

∂2l

∂λ∂β
= −

n∑
i=1

θξθ−1
i ξ′i

1− ξθi
,

∂2l

∂β2
= −n−

∑n
i=1 di

β2
,

where

ξi = 1− e−λyi , ξ′i = yie
−λyi , ξ′′i = −y2i e

−λyi , ξ′′′i = y3i e
−λyi .

The 3× 3 expected information matrix is

I(θ, λ, β) =
1

n

 Iθθ Iθλ Iθβ
Iθλ Iλλ Iλβ
Iθβ Iλβ Iββ

 ,
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with elements

Iθθ =
n

θ2
+

n

θ2
β + 1

β − 1

[
{Ψ(2)−Ψ(β + 1)}2 +Ψ′(2)−Ψ′(β + 1)

]
,

Iθλ =
nθ(β + 1)

λ

∫ 1

0

tθ−2(1−tθ)β−2(1−t) log(1−t)
{
(1− tθ)2 − βtθ(1− tθ + θ log t)

}
dt ,

Iθβ =
n

θβ

[
{Ψ(2)−Ψ(β + 2)}2 +Ψ′(2)−Ψ′(β + 2)

]
,

Iλλ =
n

λ2
+
nθ(β + 1)

λ2

∫ 1

0

tθ−3(1−tθ)β−2(1−t) log2(1−t)
{
(1− θ)(1− tθ)2 + βθt2

}
dt ,

Iλβ = −nθ2(β + 1)

λ

∫ 1

0

t2θ−2(1− tθ)β−1(1− t) log(1− t)dt ,

Iββ =
n

β(β + 1)
,

where Ψ(·) denotes the digamma function and Ψ′(·) its derivative.

Appendix B: Tierney-Kadane’s Approximation

For U(θ, λ, β) = θ, obtain (θ̂ℓ, λ̂ℓ, β̂ℓ) from

(n+ a1 − 1)θ−1 − b1 +
n∑

i=1

log ξi − β

n∑
i=1

ξθi log ξi
1− ξθi

= 0 ,

(n+ a2 − 1)λ−1 − b2 −
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i=1

yi + (θ − 1)
n∑

i=1

ξ′i
ξi

− βθ
n∑

i=1

ξθ−1
i ξ′i
1− ξθi

= 0 ,(
n−

n∑
i=1

di + a3 − 1

)
β−1 − b3 +

n∑
i=1

log(1− ξθi ) = 0 ,

and (θ̂ℓ∗ , λ̂ℓ∗ , β̂ℓ∗) from

(n+ a1)θ
−1 − b1 +

n∑
i=1

log ξi − β

n∑
i=1

ξθi log ξi
1− ξθi

= 0 ,

(n+ a2 − 1)λ−1 − b2 −
n∑

i=1

yi + (θ − 1)
n∑

i=1

ξ′i
ξi

− βθ
n∑

i=1

ξθ−1
i ξ′i
1− ξθi

= 0 ,(
n−

n∑
i=1

di + a3 − 1

)
β−1 − b3 +

n∑
i=1

log(1− ξθi ) = 0 .

Obtain det(Σ) from

Σ−1 =
1

n

 ℓθθ ℓθλ ℓθβ
ℓθλ ℓλλ ℓλβ
ℓθβ ℓλβ ℓββ

 ,
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where

ℓθθ =
n+ a1 − 1
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+ β
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2
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+ β

n∑
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ξ′iξ
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2
(1− ξθi + θ log ξi) ,
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λ2
− (θ − 1)
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ξiξ
′
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2
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2

{
ξ′′i (ξi − ξθ+1

i ) + (ξ′i)
2(ξθi + θ − 1)

}
,

ℓλβ = θ

n∑
i=1

ξθ−1
i ξ′i
1− ξθi

, ℓθβ =
n∑

i=1

ξθi log ξi
1− ξθi

, ℓββ =
n−

∑n
i=1 di + a3 − 1

β2
,

and det(Σ∗) from

Σ∗−1 =
1

n

 ℓ∗θθ ℓ∗θλ ℓ∗θβ
ℓ∗θλ ℓ∗λλ ℓ∗λβ
ℓ∗θβ ℓ∗λβ ℓ∗ββ

 ,

where

ℓ∗θθ =
n+ a1
θ2

+ β
n∑

i=1

ξθi log
2 ξi

(1− ξθi )
2
,

ℓ∗θλ = ℓθλ , ℓ∗θβ = ℓθβ , ℓ∗λλ = ℓλλ , ℓ∗λβ = ℓλβ , ℓ∗ββ = ℓββ .

All the ℓ and ℓ∗ elements are evaluated in (θ̂ℓ, λ̂ℓ, β̂ℓ) and (θ̂ℓ∗ , λ̂ℓ∗ , β̂ℓ∗), respectively. Now
it is simple to evaluate (20) for the Bayes estimate of θ.

The same procedure can be used for U(θ, λ, β) = λ and U(θ, λ, β) = β to obtain the
Bayes estimates of λ and β. Note that ℓ(θ, λ, β) and consequently (θ̂ℓ, λ̂ℓ, β̂ℓ) and det(Σ)
do not change no matter what function of parameters is being estimated.
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Csörgő, S. (1988). Testing for the proportional hazards model of random censorship. In
Proceedings of the 4th prague symposium on asymptotic statistics, prague (Vol. 1,
p. 87-92).
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