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Abstract: Assessing the reliability of a product is very important to improve
the product’s quality and to get the trust of customers. Degradation exper-
iments are usually used to assess the reliability of highly reliable products,
which are not expected to fail under the traditional life tests. Several decision
variables, such as the sample size, the inspection frequency, and the termina-
tion time, have a direct influence on the experimental cost and the estimation
precision of lifetime information. This paper deals with the optimal design
of a degradation experiment where the degradation rate follows a log-logistic
distribution. Under the constraint that the total experimental cost does not ex-
ceed a predetermined budget, the optimal decision variables are obtained by
minimizing the mean squared error of the estimated 100pth percentile of the
lifetime distribution of the product. A simulation study and a real example of
drug potency data are provided to illustrate the proposed method.

Zusammenfassung: Die Beurteilung der Zuverlässigkeit eines Produktes ist
sehr wichtig, um dessen Qualität zu verbessern und um das Vertrauen der
Kunden zu erhalten. Degradationsexperimente werden in der Regel verwen-
det, um die Zuverlässigkeit der höchst-zuverlässigen Produkte zu beurteilen,
von denen man nicht erwartet, dass diese unter den traditionellen Tests über-
haupt fehlschlagen. Mehrere Entscheidungsvariablen wie die Probengröße,
die Prüffrequenz, und der Beendigungszeitpunkt, haben einen direkten Ein-
fluss auf die Kosten und auf die experimentelle Schätzgenauigkeit der Lebens-
dauerinformationen. Diese Arbeit befasst sich mit der optimalen Gestaltung
von Degradationsexperimenten, bei denen die Abbaurate einer log-logistischen
Verteilung genügt. Unter der Bedingung, dass die gesamten experimentellen
Kosten ein vorgegebenes Budget nicht übersteigen, werden die optimalen
Entscheidungsvariablen durch die Minimierung des mittleren quadratischen
Fehlers des geschätzten 100p-te Perzentil der Lebensdauerverteilung des Pro-
duktes erhalten. Eine Simulationsstudie und ein reales datenbeispiel einer
Dosis-/Wirkungsstudie werden bereitgestellt, um das vorgeschlagene Ver-
fahren zu illustrieren.

Keywords: 100pth Percentile, Degradation Experiments, Highly Reliable
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1 Introduction
Reliability is an important characteristic of a product’s quality. Therefore, assessing the
reliability of a product is very important to improve the product’s quality and to get the
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trust of customers. However, for highly reliable products that are designed to operate
without failure for several years, assessing lifetimes using traditional life tests that record
only time-to-failure is a difficult task, since no failures are expected to occur over a reason-
able amount of time. In such cases, if there exist quality characteristics whose degradation
over time is related to failure, then collecting degradation data can be useful in assessing
product’s lifetime information. Lu and Meeker (1993) discussed statistical methods for
using degradation measures to estimate a time-to-failure distribution for a large class of
degradation models. In their book about reliability, Meeker and Escobar (1998, Chapter
13) provided various approaches that can be used to assess reliability information based
on degradation data.

To conduct a degradation experiment, the experimenter has to pre-specify a critical
level of degradation, obtain measurements of degradation at different fixed times, and de-
fine that failure occurs when the degradation reaches that level. On the other hand, degra-
dation experiments are expensive, so it is essential to plan them carefully by determining
the optimal setting of the three decision variables (i.e. the sample size, the inspection
frequency, and the termination time of the experiment) that have a direct influence on the
estimation precision and experimental total cost. The total cost of a degradation exper-
iment can be divided into three parts: the cost of tested units, the cost of operating the
experiment, and the cost of inspections (Wu and Chang, 2002).

Usually the increase of the sample size and the inspection frequency will increase the
precision of the estimates, but this will increase the total cost of the experiment as well.
Therefore, an optimal degradation experiment design is the one that can get a tradeoff
between estimation precision and budget.

There is an extensive literature on the design of degradation experiments, which shows
the importance of the degradation rate distribution of products. Weibull and log-normal
distributions were used to describe degradation rates of highly reliable products. For ex-
ample, Yu and Tseng (1999) studied the optimal setting of the decision variables for a
degradation experiment with a linearized degradation model where the degradation rate
follows a log-normal distribution. Their study was conducted under the constraint that
the total experimental cost does not exceed a predetermined budget and by using the cri-
terion of minimizing the variance of the estimated 100pth percentile of a product’s lifetime
distribution. Later, Yu and Tseng (2004) investigated the optimal combination of the deci-
sion variables for a degradation experiment, but this time with different degradation rate,
which is assumed to follow a reciprocal Weibull distribution. They also highlighted the
importance of choosing the correct degradation rate for the optimal test plan and showed
that an incorrect choice may lead to serious bias.

For very-highly reliability products, the degradation of the quality characteristic is
usually very slow and thus it is impossible to have a precise estimation within a reason-
able amount of testing time. In such cases, we can conduct an accelerated degradation test
(ADT) by using higher stresses to accelerate degradation at each run of the experiment
(Meeker and Escobar, 1998). Yu (2002a) addressed the problem of designing an ADT to
obtain an efficient interval estimation of mean-time-to-failure and determine the optimal
decision variables by minimizing the expected width of its confidence interval, assuming
that the degradation rate follows a log-normal distribution. Similarly, but by using the
criterion of minimizing the mean-squared error of the estimated 100pth percentile of the
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product’s lifetime distribution, Yu (2003, 2002b) designed accelerated degradation exper-
iments with log-normal and reciprocal Weibull degradation rates, respectively. For more
details see Al-Haj Ebrahem, Alodat, and Arman (2009a); Al-Haj Ebrahem, Eidous, and
Kamil (2009b).

Recently the log-logistic distribution has been found to be suitable for describing the
degradation rate for highly reliable products (Chiodo and Mazzanti, 2004). In addition, it
is often used to analyze lifetime data, especially for events whose rate increases initially
and decreases later.

In most practical problems, interest focuses on finding the 100pth percentile of the
time to failure distribution qp. A commonly used criterion to measure the estimation
precision of the 100pth percentile of lifetime distribution is its mean squared error (MSE).
Therefore, the optimal values of the decision variables are those that minimize the mean
squared error of the estimated 100pth percentile under the constraint the total cost does
not exceed a predetermined budget.

The primary objective of this research paper is to determine the optimal setting of
the decision variables that affect the experimental cost and the estimation precision of
the 100pth percentile of the lifetime distribution of the products whose degradation rates
follow the log-logistic distribution. This can be achieved by minimizing the mean squared
error of the estimated 100pthpercentile under the constraint that the total experimental cost
does not exceed a predetermined budget.

The rest of this paper is organized as follows. Section 2 addresses the optimization
problem and describes the degradation model and its assumptions. Section 3 explains
the framework for solving the optimization problem. Section 4, discusses the results of a
simulation study to illustrate the proposed method. A real example of drug potency data
is provided in section 5. Conclusions of this study are presented in Section 6.

2 The Optimization Problem
In order to understand the problem, we have first to define the decision variables. Thus, let
n be the number of tested units. For each unit let f denotes the interval between measure-
ments (inspection frequency) and let l be the number of inspections. Then the termination
time is (l− 1)f . In designing the optimal degradation experiment, the experimenter faces
the following decision problems:

• How many devices (n) should be tested?
• How to determine the appropriate inspection frequency (f)?
• How many measurements (l) should be taken to collect the data?
• What is the appropriate termination time for the experiment?

Thus, the optimal degradation design problem consists of finding (f, l, n) that minimizes
the mean squared error of the estimated 100pth percentile. However, the determination
of (f, l, n) is restricted to the budget of experiment, say, Cb. Hence, the optimal design
problem can be formulated as follows:

minimize MSE(q̂p(f, l, n)) subject to TC(f, l, n) ≤ Cb , (1)
f, l, n ∈ N , l ≥ 2 , f ≥ 1 ,
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where q̂p(f, l, n) is an estimator of qp, TC(f, l, n) is the total cost of conducting a degra-
dation experiment, and Cb denotes the budget of the experiment.

2.1 Degradation Model and Assumptions
Consider the following degradation model

yij = g(tj, βi) + ϵij = βitj + ϵij , i = 1, 2, . . . , n , j = 1, 2, . . . , l , (2)

where yij is the observed degradation measurement of the ith unit at time tj , g(tj, βi) is
the actual degradation path, βi > 0 is a random effect that varies from unit to unit, ϵij
is the random measurement error term, n is the number of tested units and l is the total
number of inspections for each unit.

Assume that a degradation experiment is conducted under the following conditions:
1. There are n experimental units randomly selected for conducting a degradation ex-

periment in a specific homogenous environment (e.g. the same temperature, pres-
sure, humidity, etc).

2. The measurements are taken every f units of time (e.g. f hours or f days), until
time tl = (l − 1)f , where l is the number of inspections.

3. The error term ϵij follows a normal distribution with mean zero and variance σ2
ϵ .

4. The random effect βi is assumed to follow a log-logistic distribution with scale
parameter a and shape parameter b (which is denoted by βi ∼ Log-logistic(a, b)).

Note that log βi follows the logistic distribution with location parameter m and scale pa-
rameter u, where m = log a and u = 1/b (which is denoted by log βi ∼ Logistic(m,u)).

The products lifetime T is defined as the time when the actual degradation path g
crosses the critical level D. Thus, from the model in (2), T can be expressed as

T =
D

βi

. (3)

Since βi ∼ Log-logistic(a, b), it can be easily shown that T also follows a log-logistic dis-
tribution with scale parameter D/a and shape parameter b (i.e. T ∼ Log-logistic(D/a, b)).

The 100pth percentile qp of the above log-logistic distribution can be expressed as

qp =
D

a

(
p

1− p

)1/b

. (4)

In addition, we can rewrite the 100pth percentile in terms of the logistic distribution pa-
rameters m and u by taking the logarithm on both sides, as follows

qp = exp

(
logD −m+ u log

p

1− p

)
. (5)

3 The Optimal Design
The following subsections illustrate a framework for solving the optimization problem
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3.1 Estimation of qp
For j = 1, 2, . . . , l and based on the observations yij , j = 1, . . . , l, the least squares
estimator (LSE) β̂i of βi, conditional on βi, can be obtained by minimizing

l∑
j=1

ϵ2ij =
l∑

j=1

(yij − βitj)
2 .

Clearly, the LSE of βi is given by

β̂i =

l∑
j=1

yijtj

l∑
j=1

t2j

. (6)

Thus, we have

β̂i|βi ∼ N

(
βi,

σ2
ϵ∑l

j=1 t
2
j

)
.

In addition, σ2
ϵ can be estimated as

σ̂2
ϵ =

1

n

l∑
j=1

σ̂2
ϵi
, (7)

where

σ̂2
ϵi
=

1

l − 1

l∑
j=1

(yij − β̂itj)
2 . (8)

Now, we need to find an approximation of the unconditional distribution of β̂i and log β̂i,
in order to use them in the estimation of m and u. Therefore, by using Chebychev’s
inequality, it can be shown that β̂i converges in probability to βi as

Pr

((
β̂i − βi

)2
≥ ε

)
≤ 1

ε2
E
(
β̂i − βi

)2
≤ 1

ε2
E

(
E
(
β̂i − βi

)2
|βi

)
≤ 1

ε2
E
(
var(β̂i|βi)

)

≤ 1

ε2
E

 σ2
ϵ

l∑
j=1

t2j

 .

From the above inequality and the definition of convergence in probability, we can show
that β̂i converges in probability to βi when

∑l
j=1 t

2
j goes to infinity, i.e.

β̂i
P→ βi as

l∑
j=1

t2j → ∞ .
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Moreover, since log β̂i is a continuous function of β̂i we can also conclude that

log β̂i
P→ log βi as

l∑
j=1

t2j → ∞ .

According to the above result, it can be concluded that the asymptotic distribution of
log β̂i is the logistic distribution with location parameter m and scale parameter u, (i.e.
log β̂i ∼ Logistic(m,u)).

Now, in order to find the maximum likelihood estimator of m and u, let xi = log β̂i.
Then

f(xi) =
e−(xi−m)/u

u(1 + e−(xi−m)/u)2
, xi ∈ R (9)

and the log-likelihood function is

logL(m,u) =
n∑

i=1

(
−xi −m

u
− log u− 2 log

(
1 + e−(xi−m)/u

))
. (10)

To find the maximum likelihood estimator (MLE) (m̂, û), we have to take the first partial
derivatives of the log-likelihood with respect to m and u, and then set each derivative to
zero and solve the resulting two equations simultaneously, i.e.

n

2
=

n∑
i=1

e−(xi−m)/u

1 + e−(xi−m)/u
(11)

nu =
n∑

i=1

(xi −m)

(
1− 2

1 + e(xi−m)/u

)
. (12)

The estimators m̂ and û can be obtained numerically by finding the roots of equations (11)
and (12). Moreover, by substituting these two estimators into equation (5), an estimator
of qp is

q̂p = exp

(
logD − m̂+ û log

p

1− p

)
. (13)

3.2 The Sampling Distribution of (m̂, û)

Since m̂ and û are the MLE’s of m and u, we can use the asymptotic property of MLE’s
to find their sampling distribution, that is(

m̂

û

)
∼ N

((
m

u

)
,Σ

)
,

where

Σ =

(
var(m̂) cov(m̂, û)

cov(m̂, û) var(û)

)
denotes the variance-covariance matrix of m̂ and û, and can be obtained by taking the
inverse of the Fisher information matrix I−1(m,u).
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The Fisher information matrix I(m,u) can be expressed as

I(m,u) = −

E
(

∂2 logL(m,u)
∂m2

)
E
(

∂2 logL(m,u)
∂m∂u

)
E
(

∂2 logL(m,u)
∂m∂u

)
E
(

∂2 logL(m,u)
∂u2

) .

Hence, the sampling distribution of m̂ and û is given by(
m̂

û

)
∼ N

((
m

u

)
,

(
3u2

n
0

0 3u2

n(1+u2)

))
.

In a real situation the experiment is only conducted up to time tl. Thus, the parame-
ters (m,u) should be calibrated by using the conditional expectation technique (Yu and
Tseng, 2004). The following equations describe (ml, ul) which denote the parameters
after calibration (see Appendix)

ml ≈ m

and

ul ≈
√
u2 +

3

π2

σ2e−2m∑l
j=1 t

2
ij

.

3.3 The Distribution of q̂p
We can use the calibrated parameters to find the asymptotic distribution of log q̂p, which
in turn will lead us to the distribution of q̂p.

Since m̂ and û are jointly normal, then any linear combination of them has a normal
distribution, too. Therefore, log q̂p and its asymptotic distribution are expressed as

log q̂p = logD − m̂+ û log
p

1− p
∼ N(µ, v) ,

where
µ = logD −ml + ul log

p

1− p

and

v =
3u2

l

n

(
1 +

1

1 + u2
l

(
log

p

1− p

)2
)

.

Now, since log q̂p ∼ N(µ, v) then q̂p follows a log-normal distribution with location pa-
rameter µ and scale parameter ν (i.e. q̂p ∼ Log-normal(µ, ν)).

It is easy to show that the mean and variance of q̂p, respectively, are

E(q̂p) = eµ+
ν
2

and
var(q̂p) = (ev − 1)e2µ+v .

Thus, the mean squared error of the estimated 100pth percentile MSE(q̂p(f, l, n)) can be
expressed as

MSE(q̂p(f, l, n)) = var(q̂p) + E2(q̂p − qp)

= (ev − 1)e2µ+v + (eµ+
ν
2 − eµ)2

= e2µ
(
1− 2e

v
2 + e2v

)
.
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3.4 The Cost Function TC(f, l, n)

The total cost of a degradation experiment consists of three main parts (Wu and Chang,
2002):

1. Cost of tested units. Let Cit denotes the cost of one unit. Then the total sample cost
is nCit.

2. Cost of inspections, which includes the cost of using inspection equipments and ma-
terial. Let Cmea be the cost of one inspection on one unit, then the total inspection
cost is nlCmea.

3. Cost of operating the experiment, which consists of the salaries of operators and
the cost of utility and depreciation of equipments. It depends on the termination
time (l − 1)f . Let Cop be the cost of the operation in the interval between two
inspections. Then (l − 1)fCop is the total cost of the operation.

Thus, the total experimental cost can be obtained by combining the above subtotal costs
in one equation as

TC(f, l, n) = nCit + nlCmea + (l − 1)fCop .

According to the above results, we can rewrite the optimization problem (1) as

minimize e2µ(1− 2e
v
2 + e2v) subject to nCit + nlCmea + (l − 1)fCop ≤ Cb ,

f, l, n ∈ N , l ≥ 2, f ≥ 1 .

But it is obvious that our optimization problem cannot be solved in a closed form easily,
since both the objective function and the constraint are nonlinear functions of f , l, and n.
Therefore, in order to find the optimal solution for the problem, we will use the algorithm
which was proposed by Wu and Chang (2002).

4 Simulation Study
A simulation study is performed to investigate and analyze our proposed method, There-
fore, assume that (m,u, σ2

ϵ ) = (2.0, 1.0, 2.5), set p = 0.1 and D = 100, and apply the
algorithm which was proposed by Wu and Chang (2002), to get the optimal setting of the
decision variables and their corresponding minimum MSE(q̂p(f, l, n)).

Changes in the values of Cb, Cop, Cmea and Cit affect the determination of the optimal
degradation design. Thus, we examined the sensitivity of the decision variables (f, l, n)
to the changes in cost elements. Results are represented in Table 1. From these results we
can draw the following conclusions:

1. The sample size n is not affected by changes in Cop and Cmea, but it is highly
affected by changes in Cit and Cb. In addition, n increases with Cb and decreases
with Cit.

2. The number of inspections l is slightly affected by changes in Cop and highly af-
fected by changes in the values of Cb, Cmea and Cit. It is obvious that l decreases
with both Cb and Cmea.
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Table 1: Optimal values of f , l, n and termination time (l − 1)f under various values of
the budget Cb, the operation cost Cop, the inspection cost Cmea, and the unit cost Cit.

Cb Cop Cmea Cit f∗ l∗ n∗ (l∗ − 1)f∗ MSE(q̂p(f
∗, l∗, n∗))

1000 0.5 0.06 50 5 14 19 65 2.98565
1200 0.5 0.06 50 8 10 23 72 2.12061
1400 0.5 0.06 50 16 6 27 80 1.62293
1600 0.5 0.06 50 10 8 31 70 1.30481
1800 0.5 0.06 50 9 8 35 63 1.08614
1000 0.5 0.06 50 5 14 19 65 2.98565
1000 0.7 0.06 50 3 16 19 45 2.98574
1000 0.9 0.06 50 4 11 19 40 2.98589
1000 1.1 0.06 50 3 12 19 33 2.98601
1000 1.3 0.06 50 2 14 19 26 2.98619
1000 0.5 0.06 50 5 14 19 65 2.98565
1000 0.5 0.08 50 9 9 19 72 2.98568
1000 0.5 0.10 50 12 7 19 72 2.98571
1000 0.5 0.12 50 9 8 19 63 2.98573
1000 0.5 0.14 50 18 5 19 72 2.98576
1000 0.5 0.06 50 5 14 19 65 2.98565
1000 0.5 0.06 60 4 14 16 52 4.16761
1000 0.5 0.06 70 3 9 14 24 5.51072
1000 0.5 0.06 80 5 13 12 60 7.79611
1000 0.5 0.06 90 8 3 11 16 9.63941

3. The inspection frequency f is sensitive to all cost elements. However, it nearly
increases with Cb and Cmea, but decreases with Cop.

4. The termination time is affected by changes in all cost elements, and it decreases
with Cop and Cit.

5. The value of the mean squared error is highly affected by the sample size.

5 Application to Real Data
One of the formally documented procedures in degradation analysis concerns the deter-
mination of the shelf lives of drugs (Chao, 1999). All drugs are specifically labeled to be
used before a certain date. How are these expiration dates determined?

Developing a new drug involves performing a stability study to determine the drug
shelf life (or lifetime). The expiration dating period or shelf life of a drug is defined as
the length of time it takes for the drug’s potency to decrease to a particular level of its
original potency. Potency refers to the amount or dose of a drug required to produce a
given effect.

In the pharmaceutical industry, drug products are usually manufactured in different
batches. The Food and Drug Administration (FDA) requires testing of at least three
batches, preferably more, depending on economic considerations.
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Therefore, assessing the lifetime distribution of a drug product and estimating its shelf
life efficiently require an optimal design. Which in turn can be achieved by determining
the optimal setting of the number of batches to be tested, the number of inspections, and
the interval between inspections (or the inspection frequency), taking into consideration
that the total cost of the test does not exceed a particular budget.

5.1 Drug Potency Data

Consider a typical set of data, reported by Chow and Shao (1991) that obtained from a
stability study of a certain drug. There is a random sample of 24 batches; measurements
of their potency are taken at 0, 12, 24, and 36 months. The main purpose of analyzing
this data is to determine the shelf life of this drug, defining its shelf life (or lifetime) as
the length of time it takes for this drug’s potency to decrease to 95% of its original stated
potency. Consequently, the critical degradation level is 95.

Figure 1: Plot of drug potency degradation data over time t in months.

The drug’s potency degradation data is plotted in Figure 1, which shows that the degra-
dation curves are nearly linear, thus, we can use a linear degradation model to describe
the degradation observation. Clearly, the degradation process in the above data is a de-
creasing process and the degradation rate has a negative sign. Therefore, in order to make
this data applicable to our model (2), we should rescale the data by replacing the drug’s
potency degradation data and use the reduction in drug potency data instead.

Let wij denotes the reduction of drug potency of the ith batch at time tj (i.e. wij =
100− yij), where yij is the original drug potency of the ith batch at time tj . Consider the
transformed data as plotted in Figure 2, we can use model (2) to describe the reduction of
drug potency as

wij = βitj + ϵij ,

where ϵij ∼ N(0, σ2
ϵ ) and βi follows the log-logistic distribution.
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Figure 2: Plot of reduction of drug potency over time t in months.

5.2 Estimation of σ2
ϵ , m, and u

Based on the observations (tj, wij), j = 1, . . . , 4, and by using equations (6) and (7),
the least squares estimators β̂i and σ̂2

ϵi
can be obtained, respectively. Figure 3 shows the

logistic probability plot for log β̂i, i = 1, . . . , 24. The linear pattern of the plot indicates
that it is reasonable to assume that βi follows the log-logistic distribution.

Figure 3: The logistic probability plot for log β̂i, i = 1, . . . , 24.

Now, from equations (7), (11), and (12), σ2
ϵ and the parameters m and u can be esti-

mated as

(σ̂2
ϵ , m̂, û) = (0.82004,−1.63384, 0.154635) .
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5.3 Optimal Test Plan Based on the Reduction of Drug’s Potency
Data

As we mentioned before that the shelf life of a drug is the time it takes for the drug’s
potency to decrease to 95% of its original stated potency, i.e. it is the time when the
amount of reduction in potency is 5. Thus, in this case our critical degradation level
D = 5.

Moreover, assume that the cost elements needed for conducting this test are as follows:
Cit = 30, Cop = 18, Cmea = 8, and Cb = 1000. Finally, take p = 0.1 and let the unit
of time be measured by months. The optimal setting of the decision variables and their
corresponding minimum MSE(q̂p(f, l, n)) are listed in Table 2.

Table 2: Optimal setting of the decision variables for the drug’s potency data.
Cb Cop Cmea Cit f∗ l∗ n∗ (l∗ − 1)f∗ MSE(q̂p(f

∗, l∗, n∗))

1000 18 8 30 8 5 6 32 98.0102

That is, the optimal inspection interval f ∗ = 8 months, the optimal number of batches
n∗ = 6, the optimal number of inspection l∗ = 5, and the optimal termination time of the
test is 32 months. In other words, in order to estimate the 10th percentile of the drug’s
lifetime distribution, or to estimate the time at which 10% of the drug batches will lose
5% of their original potency and considered as expired, we need to test 6 batches during
32 months by taking measurements of their drug potency every 8 months.

6 Concluding Remarks
In this paper, we obtained the optimal design of a degradation experiment where the
degradation rate follows the log-logistic distribution. Particularly, we derived the optimal
setting of the decision variables: the sample size, the inspection frequency, and the termi-
nation time, by using the criterion of minimizing the mean squared error of the estimated
100pth percentile of the products lifetime subject to the constraint that the total cost does
not exceed a predetermined budget. Some concluding remarks are given as:

1. Selecting the optimal combination of the sample size, the inspection frequency, and
the number of inspections with the minimal cost are the key points for optimal
degradation experiment design.

2. Among all decision variables f , l, and n, the sample size n has the most important
influence on the value of the mean squared error. Therefore, if we wish to reduce
the mean squared error, we should increase the number of test units. In other words,
if we want to increase the precision we have to raise the budget of the experiment
or we can reduce the cost of tested units.

3. The budget of the experiment has a high influence on most of the decision variables.
Thus, if we raise the budget of the experiments the number of units will increase,
but the number of inspections and the mean squared error will decrease.
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Appendix

Assume that log β̂i ∼ Logistic(ml, ul). Then we have

E(log β̂i) = ml (14)

and

var(log β̂i) =
π2

3
u2
l . (15)
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We use the following conditional expectation rules to find the unconditional mean and
variance of log β̂i, i.e.

E(log β̂i) = E(E(log β̂i|βi)) ≈ E(log βi) = m (16)

and

var(log β̂i) = var(E(log β̂i|βi)) + (var(log β̂i|βi))

≈ var(log βi) + E

(
σ2
ϵ

β2
i

∑l
j=1 t

2
j

)

=
π2

3
u2 +

σ2
ϵ∑l

j=1 t
2
j

E

(
1

β2
i

)
≈ π2

3
u2 +

σ2
ϵ e

−2m∑l
j=1 t

2
j

. (17)

Equate equations (14) with (16) and (15) with (17) to get

ml ≈ m

and

π2

3
u2
l ≈ π2

3
u2 +

σ2
ϵ e

−2m∑l
j=1 t

2
j

ul ≈
√

u2 +
3

π2

σ2e−2m∑l
j=1 t

2
j

.

Authors’ address:

Rana Azmi Dandis, Mohammed Al-Haj Ebrahem
Department of Statistics
Yarmouk University
Irbid
Jordan
E-mails: rana dandis@yahoo.com, m hassanb@hotmail.com


