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Abstract: In order to occupy a competitive position in semiconductor indus-
try the most important challenges a fabrication plant has to face are the reduc-
tion of manufacturing costs and the increase of production yield. Predictive
maintenance is one possible way to address these challenges. In this paper we
present an implementation of a universally applicable methodology based on
the theory of regression trees and Random Forests to predict tool maintenance
operations. We exemplarily show the application of the method by construct-
ing a model for predictive maintenance of an ion implantation tool. To fit the
problem adequately and to allow a descriptive interpretation we introduce the
remaining time until next maintenance as a response variable. By using R and
adequately analyzing data acquired during wafer processing a Random Forest
model is constructed. We can show that under typical production conditions
the model is able to predict a recurring maintenance operation sufficiently
accurate. This example shows that better planning of maintenance operations
allows for an increase in productivity and a reduction of downtime costs.

Zusammenfassung: Die wichtigsten Herausforderungen mit denen man in
der Halbleiterindustrie konfrontiert ist, um wettbewerbsfähig zu bleiben sind
die Reduktion von Herstellungskosten und die Erhöhung der Produktivität.
Die prädiktive Wartung (engl. Predictive Maintenance) ist ein möoglicher
Weg um sich mit diesen Aufgaben zu befassen. In dieser Arbeit stellen
wir die Umsetzung einer universell anwendbaren Methodik basierend auf der
Theorie der Regressionsbäume und der Random Forests vor, um Maschinen-
wartungen vorhersagen zu können. Exemplarisch für die Anwendung der
Methodik konstruieren wir ein Modell für die prädiktive Wartung einer Ma-
schine zur Implantierung von Ionen. Für eine adäquate und interpretier-
bare Modellierung des Problems führen wir die verbleibende Zeit bis zur
nächsten Wartung als Zielgröße ein. Mit Hilfe des Software-Pakets R und
adäquater Datenanalyse konstruieren wir ein Random Forests Modell unter
Verwendung von Daten, die während der Wafer-Prozessierung akquiriert wur-
den. Wir können zeigen, dass ein wiederkehrender Wartungseingriff unter
typischen Produktionsbedingungen mit einer ausreichenden Genauigkeit vor-
hergesagt werden kann. Dieses Beispiel zeigt, dass die bessere Planbarkeit
von Wartungsarbeiten den Weg für Steigerungen der Produktivität und die
Reduktion von Stillstandskosten ebnet.

Keywords: Applied Statistics, Regression Trees, Random Forests, Predictive
Fault Detection, Advanced Process Control.
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1 Introduction
Among the most important challenges in a semiconductor fabrication plant are the reduc-
tion of nonproductive wafers and wafer defects as well as the increase of throughput and
uptime of the production equipments. Achieving these objectives requires both, the im-
plementation of a satisfying fault detection and classification environment and advanced
process control (APC). One typical goal of APC is the transition from preventive to pre-
dictive maintenance, defined as a model-based prediction of equipment faults.

Usually, a production step in a semiconductor process contains information of many,
often nonlinearly related production parameters. Hence, for implementing model-based
fault prediction a multivariate method needs to be able to capture such complex relation-
ships.

In this paper we present an implementation of a universally applicable methodology
for predictive maintenance based on the use of classification and regression trees (CART,
see Breiman, Friedman, Olshen, and Stone, 1984) for both data analysing and modelling
purposes. CART models offer an intuitive overview of a multivariate data set and are
suitable for dealing with complex processes and nonlinear relationships. They are also
able to recognize the parameters that are most important to a given regression problem.
However, they suffer from high prediction variance. Therefore, for prediction purposes
we use a method that utilizes an ensemble of CART models called Random Forests (see
Breiman, 2001). The aggregation of a large number of different single models usually
offers improved prediction accuracy.

Furthermore, such tree-based methods are nonparametric and distribution-free. A
classical modelling approach often needs specific parametric and distributional assump-
tions that can be restrictive for our modelling purposes. A nonparametric modelling
methodology is able to avoid these problems. This way, the methodology can be used
for a wider range of applications.

We exemplarily show how this methodology can be utilized for predictive mainte-
nance tasks by applying it to predict a recurring maintenance operation on an ion implan-
tation tool. Predicting this production-time-consuming operation accurately allows for
specific maintenance scheduling. It reduces tool downtime and improves the productivity
of the equipment.

In the following section the method of Random Forests is summarized and an overview
of its inherent variable importance measures is given. In the third section we show how
the methodology is applied to the prototype tool. A predictive model is presented and we
use test data to evaluate its performance. Finally some concluding remarks will be made.
For further reading on predictive failure detection see Scheibelhofer (2011).

2 Review of Random Forests
A Random Forest for regression consists of an ensemble (or a forest) of regression tree
models. As in Bagging (or “Bootstrap Aggregating”, see Breiman, 1996), a Random
Forest does not use all of the given observations for constructing each tree but only a
bootstrap sample (see Efron, 1979). Additional randomness comes from using only a
random sample of predictors for determining each split in each tree. With this Random
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Forests aim to reduce the variance of CART’s fitted values and to improve the prediction
error. The method is also able to measure its own performance by using the observa-
tions not selected by the bootstrapping (out-of-bag or OOB samples) to test the model’s
predictive power and calculate error rates (OOB error).

The basic steps of the algorithm are the following (see Berk, 2008): Let the response
be a continuous variable, n be the number of given observations and mtry be the number
of predictors used for each split in each tree.

1. Draw a bootstrap sample of size n from the data (random sample drawn with re-
placement).

2. Take a random sample of size mtry without replacement of the predictors.

3. Construct the first regression tree partition of the data, i.e. the first split and repeat
step 2 for each subsequent split in the tree. Do not prune.

4. Drop the OOB data down the tree and store the assigned value, i.e. the mean of the
terminal node in which the observation falls.

5. Iterate the steps 1 to 4 a large number of times, e.g. 500.

6. Use only the predicted values assigned to each observation when that observation
was an OOB observation (i.e. not used to build the tree) to calculate the MSE.

Aggregating the results of single tree models reduces variance and produces more
stable models. Furthermore the method does not overfit due to the law of large numbers
as is proved in Breiman (2001).

Unlike with CART there is no graphical model output to visualize results and variable
importance ranking. Although there are several graphical methods that aim to compensate
this drawback, the procedure remains a black box.

By drawing a bootstrap sample of size n from the data, on average about one third
of the samples are not used to build the corresponding tree as stated in Breiman (2001).
These OOB samples are used to test each tree and deliver an internal estimation of the test
set error (see Breiman, 2001, p. 11). On average each data point is among the out-of-bag
sample around 36 % of the time as mentioned in Liaw and Wiener (2002). Furthermore,
the prediction error observed using OOB cases approaches the true prediction error as the
number of trees goes to infinity.

2.1 Variable Importance
Following the discussions in Berk (2008), Sandri and Zuccolotto (2006), and Breiman
(2001) the following measures for determining variable importance are common in the
regression case.

• Measure 1: Measure the reduction in the deviance each time the predictor is used
to define a split. The sum of these reductions can then be used as importance mea-
sure for one particular tree and the average of all reductions over all tree models
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describes the predictor’s importance. The importance measure Imp(1) for the pre-
dictor xi is therefore defined as

Imp(1)
xi

=
1

k

∑
A

d(xi, A)1{xi∈A} ,

where A is a node in each tree, d(xi, A) is the reduction in the deviance induced xi

at node A and 1{xi∈A} is an indicator function which is equal to 1 if xi is selected
for a split at node A.

• Measure 2: In every grown tree in the ensemble, the OOB data cases are dropped
down and the mean squared error is computed to assess the model error. Then the
values of predictor i are randomly shuffled and the OOB cases are dropped down
again. The shuffled predictor should now be on average unrelated to the response.
Iterate this procedure for each of the p predictors and compute

Imp(2)
xi

=
1

K

K∑
k=1

(MSE(k)
i − MSE(k)) , i = 1, . . . , p

with K being the number of trees, MSE(k)
i is the mean squared error of the kth

tree calculated using out-of-bag data when the ith predictor values are shuffled and
MSE(k) is the general mean squared error of the kth tree without shuffling.

If desirable, one can normalize Imp(2)
xi

with the standard deviation of the differences:

Imp(2)∗
xi

=
Imp(2)

xi

sd({MSE(k)
i − MSE(k)}Kk=1)

,

with the division not being done if the standard deviation is 0.

Further discussions on predictor relevance can be found for example in Hastie, Tib-
shirani, and Friedman (2001).

3 Case Study: Predictive Maintenance on an Implanter
Tool

3.1 Motivation
Ion implantation is a single process step which occurs several times during wafer fabrica-
tion and is typically one of the most complex ones. The ion implantation tool (implanter)
is used to impinge charged atoms or molecules (ions) upon the wafer to systematically
change electrical characteristics of the wafer surface (see Wolf, 2003). Therefore, the
ions are generated in an ion source and extracted in form of an ion beam. One part of the
ion source of an implanter is the filament. It is stressed during the implanter operation
and breaks on a highly irregular basis every few days. Figure 1 shows an ion source and
different filament conditions. The breakdown and the resulting tool downtime leads to
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Figure 1: The ion source of an implanter tool (left) and different filament conditions.

a highly undesired loss in productivity. Thus, a well-defined point of time for changing
the filament can increase the throughput and reduce downtime and maintenance costs.
For example, knowledge of the remaining lifetime of the filament right before a weekend
could prevent expensive weekend assignment of engineers and reduce manpower costs.
Therefore we try to find a statistical model for predicting the filament break.

3.2 Data Analysis
Our initial data set consists of ninitial = 6781 observations and pinitial = 20 tool variables.
The continuous nonconstant predictor variables are measured every time a new production
unit starts on the implanter. All computation was done using R (see R Development Core
Team, 2011). For the Random Forest analysis in R the downloadable randomForest

package (see Liaw and Wiener, 2002) was used.

3.2.1 Response variable

For the initial set of historical process data a response variable suitable for the problem
has to be assigned to every observation. As the exact time and date of each filament
break is logged the remaining filament lifetime can be calculated for every historical data
case. Thus, for our problem of predicting an imminent filament break we create the
time-to-event response variable NextPM. For every observation in the historical data set,
the corresponding NextPM value describes the exact hours left until the next recorded
filament break. That means, the assigned response value describes the observed time
span to the next maintenance event. These continuous values are highly intuitive and a
prediction is easy to interpret for engineers.

In order to use a historical data set to fit a model for NextPM the raw data of ninitial

cases have to be adjusted. Time periods in which the implanter tool was shut down com-
pletely (i.e. no stressing of the filament) or where the filament was changed due to regular
maintenance operations have to be filtered out of the NextPM calculation. Furthermore,
we only consider lifetime values of 120 hours or less as this is the time span of interest
for process engineers.

After purging the data, n = 1812 observations or seven filament lifetime cycles re-
main. Figure 2 shows the adjusted NextPM values as well as their distribution. The
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Figure 2: NextPM over time (left) and its sample distribution.

remaining gaps in the NextPM values are due to the implanter tool being idle but with the
ion beam being activated, i.e. with the filament being stressed.

As we choose a Random Forest approach for modelling NextPM we can avoid any
further distributional or parametric assumptions.

3.2.2 Predictors and their relationships

The ith NextPM value yi can be seen as a mapping of the filament condition to the corre-
sponding observation vector of p explanatory variables xi = (xi1, . . . , xip), i = 1, . . . , n.
Table 1 lists all initial variables along with a short description. Process engineers suggest
that FIL I should be of high relevance for modelling the filament lifetime as it provides
direct information of power running over the filament.

To determine contributing predictors we utilize the variable importance measures in-
herent to Random Forests as described in Section 2.2. This leads to Figure 3.

Another useful variable importance indicator are single regression tree models. Fig-
ure 4 shows the R output of a single CART model using the rpart package in R (for
details on their construction see Therneau and J. (1997) and Hothorn and Zeileis (2012)).
Similar results can be obtained by using trees based on unbiased recursive partitioning
(see Hothorn, Hornik, and Zeileis, 2006).

The analysis suggests that FIL I is by far the most important predictor as also sug-
gested by process engineers. Furthermore, GAS, EXT I, ION NAME, SUP I and BEAM

can be regarded as top contributing variables. Further analysis of the change in a Random
Forest model’s OOB error induced by omitting one of the six predictors above shows that
ION NAME is redundant due to no significant error reduction. Figure 5 shows the rela-
tionships of the remaining 5 predictors to NextPM. We denote the variable constellation
FIL I, EXT I, SUP I, GAS, BEAM as M0. FIL I is the only predictor with a linear re-
lationship to NextPM. Process engineers suggested that the current FIL I value serves as
a good indicator of the remaining filament lifetime. However, all other predictors show
no clear visual relationship.

The filament condition can also be considered dependent on the accumulated stress
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Parameter Description
ARC I Current between filament and source chamber (in amperes)
ARC VOLTS Voltage of ARC I (in volts)
BEAM Power of the ion beam (in amperes)
BEAM ENERGY Total energy that reaches the wafer (in electronvolts)
BEAM I RANGE Categorical (6 levels), specifies unit calculation for BEAM current
CHAMBER PRESSURE Pressure in the source chamber (in torr)
DELTA Time elapsed since last data point (in hours)
EXT I Power coming out of the source (in milliamperes)
EXT VOLTS Voltage of EXT I (in kilovolts)
EXTRACTION Target value of EXT VOLTS (constant)
FIL I Current streaming over the filament (in amperes)
GAS Pressure of gas bottle for storing the elements (in torr)
ION NAME Categorical (5 levels), atomic mass unit of element to implant
SCANNER PRESSURE Pressure of the scanner (in torr)
SOURCE PRESSURE Vacuum value, must correspond with GAS (in torr)
SUP I Current filtered out of extraction power (in milliampere)
SUP VOLTS Voltage of SUP I (in kilovolts)
X AXIS x axis position of source and extraction blind, values from 0-999
Y AXIS y axis position of source and extraction blind, values from 0-999
Z AXIS z axis position of source and extraction blind, values from 0-999

Table 1: Overview and descriptions of the predictors measured on an implanter tool.

over its lifetime. Therefore we also examine the effect of accumulation of variable mea-
surements so far over a filament lifetime cycle. This should provide information on how
machine usage up to the current observation point affects the filament lifetime. The as-
sociated variable importance analysis suggests that the accumulated version of SUP I

(s.SUP I) is important. Furthermore, with the presence of accumulated variables in the
tree-based interaction structure the importance of FIL I decreases. However, adding the
accumulated variables to a model does not necessarily improve its practical use as will be
shown in the next section (see Table 2).

3.3 Final Model

In order to determine the final model for our purged training data set, Random Forest
models with a number of different variable constellations have been evaluated in terms of
their prediction errors (RMSE). In order to test the practical performance of the models we
use a separate test data set consisting of ntest = 674 observations or two filament lifetime
cycles. Table 2 shows a selection of the models considered with error rates for the training
set (RMSE train), the test set (RMSE test) and an error rate smoothed with moving average
of 5 (RMSE test MA(5)). The models have been evaluated with set.seed(1), 1000
single tree models and the mtry value that returns the lowest OOB error for each model
as determined by the function tuneRF() from the randomForest package.

Obviously, adding the accumulated variables only improves the RMSE on the train-
ing set, but the test cases mostly yield RMSE values worse than in the base model M0.



168 Austrian Journal of Statistics, Vol. 41 (2012), No. 3, 161–173

Delta

ARC_VOLTS

EXT_VOLTS

Y_AXIS

CHAMBER_PRESSURE

BEAM_ENERGY

Z_AXIS

X_AXIS

EXT_I

ION_NAME

GAS

SUP_I

BEAM

FIL_I

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

%IncMSE

EXT_VOLTS

ARC_VOLTS

Delta

Y_AXIS

CHAMBER_PRESSURE

Z_AXIS

BEAM_ENERGY

X_AXIS

SUP_I

ION_NAME

GAS

BEAM

EXT_I

FIL_I

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 2e+05 4e+05 6e+05

IncNodePurity
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of a Random Forest model.
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Figure 4: Regression tree model constructed using binary recursive partitioning routines
as implemented in the R package rpart and plotted using routines from the R package
partykit.

However, adding the accumulated measurements s.SUP I gives error rate improvements
compared to M0. The constellation M10 (five variables) yields a better training error (7.85
vs. 13.2 hours) and test error rate (11.18 and 10.78 hours) by replacing SUP I with its ac-
cumulated version s.SUP I.

Thus we use M10 as final model. The mtry value resulting in the lowest OOB error
is calculated to be mtry = 4. The model plot on the right hand side of Figure 6 shows
that a number of 400 trees is reasonable. More trees do not yield a significant OOB error
reduction.

A model with mtry = 4 and 400 trees explains about 93 % of the variance of NextPM
and its RMSE is 7.85 hours.
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Figure 5: Scatterplots of the continuous predictors FIL I, BEAM, SUP I, GAS and
EXT I with the response NextPM.

Furthermore, the model serves as a statistic for the remaining lifetime of a filament.
Based on the constructed model, the ith future observation x̃i = (x̃i1, . . . , x̃i5) of the
contributing five predictors (with one accumulated predictor) can be assigned a predicted
value ŷi. This ŷi is always calculated by using the trained model i.e. by averaging over
the prediction of the single tree ensemble as determined above.

3.4 Results
Using the constructed lifetime statistic which is our trained model, the ith predicted value
ŷtesti is the result of the model predictions of the ith test observation xtest

i = (xtest
i1 , . . . , xtest

i5 ).
Given xtest

i , the corresponding prediction ŷtesti is the terminal node prediction that xtest
i is

assigned on average over the constructed ensemble of 400 trees.
The coefficient of determination R2 of the model is 0.88. It is estimated internally by

R2 = 1−
1

ntest

∑ntest

i=1 (ytesti − ŷtesti )2

Var(ytesti )
,

where ytesti is the observed NexPM value corresponding to xtest
i . By taking moving aver-

age values (MA) over the last five fitted values instead of the fitted values itself the result-
ing root mean squared error can be reduced to 10.78 hours. In the critical time frame of
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Model Variables in the model RMSE #variables
train test test MA(5)

M0 FIL I, EXT I, SUP I, GAS, BEAM 13.20 14.61 13.58 5
M1 s.FIL I, EXT I, SUP I, GAS, BEAM 3.84 18.13 18.18 5
M2 s.FIL I, s.EXT I, SUP I, GAS, BEAM 2.13 20.58 20.66 5
M3 s.FIL I, s.EXT I, s.SUP I, GAS, BEAM 1.37 19.73 19.81 5
M4 s.FIL I, s.EXT I, s.SUP I, s.GAS, BEAM 1.22 19.49 19.62 5
M5 s.FIL I, s.EXT I, s.SUP I, s.GAS, s.BEAM 1.09 19.25 19.39 5
M6 FIL I, s.EXT I, s.SUP I, s.GAS, s.BEAM 1.11 17.15 17.33 5
M7 FIL I, EXT I, s.SUP I, s.GAS, s.BEAM 1.53 15.66 15.89 5
M8 FIL I, EXT I, SUP I, GAS, BEAM, s.FIL I, 1.17 18.94 19.09 10

s.EXT I, s.SUP I, s.GAS, s.BEAM
M9 FIL I, s.EXT I, SUP I, GAS, BEAM 7.59 21.82 21.68 5
M10 FIL I, EXT I, s.SUP I, GAS, BEAM 7.85 11.18 10.78 5
M11 FIL I, EXT I, SUP I, s.GAS, BEAM 4.10 15.29 15.52 5
M12 FIL I, EXT I, SUP I, GAS, s.BEAM 6.36 19.29 19.25 5
M13 FIL I, EXT I, SUP I, GAS, BEAM, 3.39 16.87 17.06 6

s.ARC VOLTS
M14 FIL I, EXT I, SUP I, GAS, BEAM, 4.46 12.13 12.40 6

s.BEAM ENERGY
M15 FIL I, EXT I, SUP I, GAS, BEAM, 3.49 13.74 13.95 6

s.EXT VOLTS
M16 FIL I, EXT I, SUP I, GAS, BEAM, 8.20 21.93 21.67 6

s.CHAMBER PRESSURE
M17 FIL I, EXT I, SUP I, GAS, BEAM, 2.76 12.88 13.14 7

s.BEAM ENERGY, s.EXT VOLTS
M18 s.FIL I, s.EXT I, s.SUP I, s.ARC VOLTS, 1.08 19.57 19.69 5

s.BEAM
M19 FIL I, EXT I, s.SUP I, GAS, BEAM, s.EXT I 5.08 18.62 18.64 6
M20 FIL I, s.EXT I, s.SUP I, GAS, BEAM 5.04 18.78 18.80 5

Table 2: Results of Random Forest models with different variable constellations. Accu-
mulated variable measurements are denoted s.name, e.g. s.SUP I. All RMSE values are
in hours.

72 hours before the actual filament break the root mean squared error is 10.8 hours. An
error of this magnitude makes the constructed model applicable for tool monitoring and
predictive maintenance on the implanter.

A graphical comparison of observed test response and the model output can be ob-
served in Figure 7.

In the first cycle (left plot in Figure 7) we observe a low prediction variance for all
filament lifetimes and an accurate prediction overall. For the second cycle the prediction
variance is constantly higher with mostly under-estimation and an over-estimation of the
prediction near the filament breakdown.

Long-running real time testing of the model has shown that several consecutive pre-
dictions below 30 hours indicate that a filament breakdown is imminent.

For further improvements of the prediction one can expand the model by applying
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Figure 6: Values of mtry (left) and the number of trees against the OOB error rate.

Figure 7: Graphical comparison of the observed values of NextPM from the test set (rep-
resented as quadrangles) and the MA over the last five predicted values for two filament
lifetime cycles (cross symbols)

quantile regression Forests as introduced in Meinshausen (2006). This method allows
for a more specific prediction in that it is able to estimate its reliability with prediction
intervals.

In order to apply the model in a production environment its corresponding R output is
integrated in an automated framework as it is described in Schellenberger et al. (2011).
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4 Conclusion

In this work we presented an exemplary implementation of a methodology for advanced
process control based on regression trees and Random Forests. The methodology allows
a transition from a time-based to a condition-based maintenance, a reduction of problem
complexity and it offers high predictive performance. As the Random Forest approach
is free of parametric or distributional assumptions, the method can be applied to a wide
range of predictive maintenance problems. We exemplarily implemented the approach on
an ion implantation tool where a standard maintenance operation, namely the breakdown
of the filament part, can be predicted with a satisfying accuracy for production needs. This
proves to be highly useful for applying predictive maintenance in wafer production and
equipment control. The implementation of the model in the production environment offers
the possibility to specifically schedule maintenance operations. This leads to a reduction
of tool downtime, maintenance and manpower costs and improves competitiveness in the
semiconductor industry.
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