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Abstract: In this paper we consider estimation of R = P(Y < X)), when X
and Y are distributed as two independent four-parameter generalized gamma
random variables with same location and scale parameters. A modified maxi-
mum likelihood method and a Bayesian technique have been used to estimate
R on the basis of independent samples. As the Bayes estimator cannot be ob-
tained in a closed form, it has been implemented using importance sampling
procedure. A simulation study has also been carried out to compare the two
methods.

Zusammenfassung: In diesem Beitrag betrachten wir die Schitzung von
R = P(Y < X), wenn die beiden unabhingigen Zufallsvariablen X und
Y aus einer Vier-Parameter generalisierten Gammaverteilung mit gleichen
Lokations- und Skalen-Parametern stammen. Eine modifizierte Maximum-
Likelihood Methode und eine Bayes-Technik wurden verwendet, um R auf
der Grundlage von unabhiéngigen Stichproben zu schitzen. Da der Bayes-
Schitzer nicht in geschlossener Form dargestellt werden kann, wurde dieser
mittels einer Importance Sampling Prozedur implementiert. Eine Simulations-
studie wurde ebenfalls durchgefiihrt, um beide Methoden zu vergleichen.
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1 Introduction

Stress-strength reliability is one of the main tools of reliability analysis of structures. A
stress-strength system fails as soon as the applied stress Y is at least as large as its strength
X. This model is also known as the load-capacity model in the context of solid mechanics
or structural engineering. Inference regarding P(Y < X), defining the reliability of
the system, has been widely discussed in literature, when Xand Y are assumed to be
independent random variables. See, for example, Basu (1964), Downtown (1973), Tong
(1974, 1977), Kelley, Kelley, and Suchany (1976), Beg (1980), Iwase (1987), McCool
(1991), Ivshin (1996), Ali, Woo, and Pal (2004); Ali, Pal, and Woo (2005, 2010), Ali and
Woo (2005a, 2005b), Pal, Ali, and Woo (2005), Ragab and Kundu (2005), and Raqab,
Madi, and Kundu (2008). Besides, system reliability, P(Y < X) finds importance in
other fields too. For example, in biometry, suppose X represents a patient’s remaining
years of life when treated with drug A and Y represents the same when treated with drug
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B. Then, if choice of drug is left to the patient, his deliberation will center on whether
P(Y < X) is less than or greater than 1/2. In the context of statistical tolerance, if X
denotes the diameter of a shaft and Y the diameter of a bearing that is to be mounted on
the shaft, then the probability that the bearing fits without any interference is given by
P(Y < X). Hence, it is very important to consider inference on P(Y < X).

In this paper, we consider the problem of estimating R = P(Y < X)), where X and Y’
are distributed independently as generalized gamma distributions. A four-parameter gen-
eralized gamma distribution may be defined as having the cumulative distribution function

(cdf)

F(z:0,8,7.6) = { et 9>a—le—ﬁ<“—9>du]7 |

and the probability density function (pdf)

flz;a,3,7,0) = Py (z — @) Le Pla=0) { " (u—9)a_1e‘6(“‘9)du] ”
T T ) ) T(a) !

for x > 0 and «, 3,7 > 0. Here 6 and [ are the location and scale parameters, re-
spectively, and («, ) are the shape parameters. We shall denote the distribution by
GG(«w, 3,7,0). For v = 1 and § = 0 this distribution reduces to the standard two-
parameter gamma distribution, whereas for o = 1, it reduces to the three-parameter gen-
eralized exponential distribution studied by Gupta and Kundu (1999).

In this paper, we assume that X ~ GG(«, 3,71,0) and Y ~ GG(a, 3,72, 0). It has
been observed that the usual maximum likelihood estimator of the parameters may not
exist. In Section 2, we study modified maximum likelihood estimators of the unknown
parameters and hence of 1. In Section 3, importance sampling is used to obtain Bayes
estimates of the model parameters and of 2. In Section 4, the procedures are illustrated
by analyzing a simulated and a real data set. Finally, in Section 5 some simulation studies
are provided and in Section 6 a discussion on our findings is given.

2 Modified Maximum Likelihood Estimation

Let X = (X1,Xs,...,X,,) and Y = (Y3,Y5,...,Y,) be independent random samples
drawn from GG(«, (3,71, ) and GG(«, 3, ¥, ) respectively, and let the ordered observa-
tions in the two samples be (X(1) < X(2) < -+ < X)) and (Y1) < Y{g) < -+ < V().
Then, the likelihood function of p = («, 3, 71, V2, 0) is

7” . a - CK (6%



M. M. Ali et al.

where

m

D(B,0) = —p [Z(%) —0)+ Z(ym —0)

=1

199

S(a, ,0) = (-1 Zlog& ), B,0)+(12—1 Zlog& ), B,0) (1)

Si(x;«, 8,0) B —6)* Le=Bu=9) gy

with w = min(z ), y(l)) and

[ 1, if 0 <w
9<w =70, otherwise.

2)

Now, for § > 0 and «, y1, 72 < 1, as 8 approaches w, the likelihood function tends to
oo. This means that the MLEs of «, 3,71, 72 do not exist. We therefore obtain modified

MLE:s of the unknown parameters using the procedure proposed by Ragab (2007).

Since the likelihood function is maximized at § = w, the modified MLE of 0 is § = w.

The modified likelihood function of p* = («, 5,71, 72) is then defined as follows.

Case 1: y(;) < z(1): Here the modified likelihood function is given by

L ( *’x )O( B(nﬁn—l)aVTV ﬁ a—l ﬁ( o )a—leD,,,od(ﬁHS,,,od(a,B)
mod \ P Y [mtn— 1 y(l) YY) —Ya) )
i=1 Jj=2
where
Duod(B) = =5 [Z( o —ym) + e — )
i=1 j=2
Smod(aa ﬁ) = (’71 - ]-) Z log Slmod(x(i); «, /6) + (72 - ]-) Z log Slmod(y(j); «, B)
i=1 j=2
x Ba

Slmod(x; «, 6) = (u — y(l))a_le_ﬁ(“_y@))du )

y(l) F(a)
Then,

lOg Lmod(p*|x’ y) X _(m+n_1) 1Og F( ) (m+n_ 1)Oé IOg 6+m IOg Al

+(n—1)logvy, + (a—1) {Zlog Z/(1))+210g(?/(j)_
j=2

+Dmod(ﬁ) + Smod(a/a B) .

The modified MLEs of 7, and -, are obtained by solving the equations

0 0
—log Luwa(p*lz,y) =0 d —log Ly, 0,
5, 108 a(p’|z,y) an 9, 08 a(p’lz,y) =
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which gives
1 1

~ ~

71 = - m N ) ,}/2 = - ’I’L—
%leogslm0d<x(i);&76> ﬁ z OgSlmod( )5 aﬁ)
i= =2

Here & and B are the modified MLEs of « and (3, respectively, satisfying the following
non-linear equations, which are obtained by maximizing the modified profile likelihood
function of («, 5), i.e.

B = qi(a, B) 3)
a = g(a, ), “4)
where
nia.8) = "IN e, 8) = 1t eplda(a, ),

3

Ay(o, ) = Z(l‘m —yw) + > (W —yw)

i | 1>:i< e
+ (%2 - 1)2 <y(j)5_1i(d)()a Z(yg)yuﬂ] |
Ao f) = s (2 T
{%(m% +(n—1)%) = (m+n—1)log 3
{Zlog @) — Ya +Zlog Yo — )}]
la) = d‘ir( ).

Case 2: z(;) < y(1): Here the modified likelihood function is given by

B(ern Da,m—1 n

* ,y ’7 o= a— mo mod (&,
Lo (02 ) X s ¥ T L) [Lwo)ePom @t Smmtas,
i=2 j=1
where
Dioa(B) = =6 [Z( —z) + YY) — @)
=2 j=1

Smod(aa ﬁ) = (fyl - 1) Zlog Slmod(x(i); «, 5) + (72 - 1) Zlog Sln10d<y(j); Oé,ﬁ)

i=2 j=1

x ﬁa e
Slmod(x;aaﬂ) = / —(’LL — w(l))a e B(u x(l))du.
o, Fla)
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The modified MLE of p* can be obtained in the same way as in Case 1. Here we get,

1 1

~ ~

== T2 = T ’

A A

P Zlog Stmod (T(1); & 5) 1 leog Stmod () &, B)
=

where & and 3 are the modified MLEs of « and 3, respectively, obtained by maximizing
the modified profile likelihood function of («, 3), which give the following non-linear
equations

B =gi(a, B), a=g(a,fB), )
with
1
ﬁwﬁﬁi%ﬁggﬂ, G50 B) = 1+ exp(A3(c, B))
A, B) = (o) —yw) + W6 — yw)
i—2 j=1
5 S () — yy) e o)
_m (71_1)222 Slmod(xi ;047/8)
N W) )t o)
+(72 1) ]Z:; Slmod( ])’ ’5) )
. B 1
A0 = TG D) F et — )

}9%< D4+ mda} — (m+n— 1)log 8

[(a)
{Zlog Tu) — Ya +Zlog Yy — Y 1))}].

The expression of R can be easily shown to be R = 1 /(71 +72). Hence, the modified
MLE of R is given by
.
M+ Y2
It is difficult to obtain both the exact and the asymptotic distributions of R, and thereby
find a confidence interval for R. One may, however, use the parametric bootstrap tech-

nique proposed by Efron (1982) to get a confidence interval.

3 Bayesian Estimation

A natural and simple choice for the priors of «, 3, 71,72 and 6 is to assume that these are
independently distributed as follows:

a~Exp(a), B ~Exp(b), v ~Exp(ci), 72 ~Exp(c),
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and that # has a truncated exponential distribution with pdf

66(9790)

h(0)2§m7 0<9<90, 5790>0.

The prior parameters should be chosen so as to reflect the prior knowledge about «, 3, v, Vo
and 6.

3.1 Posterior Distribution

The joint distribution of X, Y’ p has pdf

g(x,y, p) o< abeicr€ gy ﬁ(fvm — )" f[(w ) — )
IR a) Fm—i—n(a)(l _ 6—590) P = J

eXp(D(ﬁu 6) + S(Oé, 67 9) - P(Oé, ﬁa Y1, 72, 9))[0<9<0019<w 3
where D([3,0), S(«a, (3, 0) are given in (1) and and Iy, is defined in (2). Moreover,

P(a, B,7,72,0) = ac+ b8 + ey + coye + E(0p — 0)

; 1, if0< 8 <6
0<0<60 — 0, otherwise.

The posterior distribution of p, given X = z and Y = y then comes out to be

=1

gy | m+1,¢ — Zlog51($i; 04,579)>

Jj=1

9o (n + 1,6 — Zlogsl(yj;a,5a9)>
§

hy (€ + (m +n)f,wo) Ula, 5,0) , (6)

where
Ua, B,0) =exp (—Z log(z;—0)— Y _log(y;—0)—> log Sy (zs;-)— Y _ log S1(y;; -))
i=1 j=1 i=1 j=1

{<e+<m+n>ﬁ>rwa>}‘1<a—<m+n> 1ogﬂ—z1og<xi—e>—zlog<yj—e>>

{cl—ZlogSl(xi;')} {CQ_ZIOngl(yj;‘)} ,

j=1
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and wy = min(fy, w), gz(t,s) is the pdf of a gamma variable Z with shape and scale
parameters ¢ and s, respectively, and hz(t, s) is the pdf of a truncated exponential variable
Z with parameters ¢ and s.

The posterior joint density of («, 3, 6) is obtained by integrating (6) over (71, ¥2) and
is given by

mo(a, B,0l,y) = ga (1, a—(m+n)logh— log(z; —8) = Y log(y; - 9)>
j=1

=1

g%m+z<_%+z _%>
i=1
ha(f—i_(m—i_n)ﬁawO) ( 757 )
And the marginal posterior distributions of v; and 7, given «, [3, 8, are respectively

Gamma (m+1, c1— Y log Sy (x;; a,ﬁ,@)) and Gamma (n+1, ca— > log Si(yj; a,ﬁ,é’)) .

i=1 Jj=1

3.2 Posterior Expectation

For any continuous function k() of p, the posterior expectation is given by

Bkoy) = 1 [ [ [ [ [Ka8.90500)0, 5.00h0(€ + (m -+ )5, un)
Ja (1, a—(m+mn)logf — i:log(xi —6)— ilog(yj — 0))
gg<1,b+i — wp +Z —wo>

m41,¢ — ZlogSl 2, B, ))

=1

<n+ 1,00 — Zlog Sy (y;; v, B, )) dryidryadaddds,

where

= [ [ [ vies0mte s oy

Ja <1, a—(m+mn)logf — Zlog(wi —0) — Zlog(yj - 9))
— =
g5<1 b+zm: — wy +Z —w0>dad9dﬁ.
i=1
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Therefore, we get

El(k(aa ﬁa Y1, 72, Q)U(Oé, 57 0))

E(k(p)|z,y) = E\(U(a,,0)) |

(7

where E; (-) denotes the expectation under

Y1 ~ Gamma (m +1,¢1 — 210g51($i;%579)>

=1

Y5 ~ Gamma (n +1,c2— ) log Sl(yj;a,5,9)>

j=1

a ~ Gamma (1, a—(m+mn)logf — Zlog(mi —0) — Zlog(yj - 6’)) (8)
j=1

=1
0 ~ truncated exponential (£ + (m + n)S5, w)

6 ~ Gamma <1, b+ i(l’z — wo) + i(yj - 'LUQ)) .

i=1

Hence, to find the posterior expectation of a function, we can use the following general
importance sampling procedure:

Step 1: Generate 3 from the Gamma(1,b + > " | (z; — wo) + >0, (y; — wo)).

Step 2: For J obtained in step 1, generate # from the truncated exponential(§ + (m +

n)B,wp).

Step 3: For 5 and 6 obtained in steps 1 and 2, generate o from Gamma(1l,a — (m +
n)log B — 1" log(w; — 0) — Y271 log(y; — 6)).

Step 4: For the values of (3, 6 and « obtained, generate y; from Gamma(m + 1,¢; —
> imy log Si(wi; o, B, 0)) and v, from Gamma(n + 1, ¢ — > 7 log Si(y;; @, B, 0)).

Step 5: From steps 1 to 4 compute (7) by averaging the numerator and denominator with
respect to the simulations.

3.3 Highest Probability Density Intervals

A Monte Carlo method has been developed by Chen and Shao (1999) for using importance
sampling to compute highest probability density (HPD) intervals for parameters and any
function of them. The method can be used to find HPD intervals for the model parameters
a, 3,71, 72,0 and also for R.

Let A = p(p) be a continuous function of p. To find a HPD interval for A, let p;,
1t =1,2,...,q denote a sample of size ¢ from the importance sampling distribution (8),
where p; = (o, Bi, Y14, V2i, 0i). Let the corresponding sample for A be A;, i = 1,2,...,¢
and let the ordered sample observations be denoted by A1) < A2y < -+ < A(y). Suppose
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P = (a(i), By V1()s V2(i) G(i)) denotes the observation on p corresponding to A(;), ¢ =
1

,2,...,q.
We compute

Uiy, By, i)
q )

> Ulag), By, b))

J=1

v; = 1=1,2,...,q.

Then, for ¢ sufficiently large, the 100(1 — ) % HPD interval for X is given by the shortest
interval among [;(¢q), j = 1,2,...,vq, where

I(q) = ( AG/), j\(j/q+(1—'v))) 7

A@) js an estimate of the d-th quantile of \ and is given by

A0 — {)\(1) %fd :z—Ol i
)\(7,) if Zj:l (] S ) S ijl (R

We can find HPD intervals for «, 3,71, 72, 8 and R in this way.

4 Data Analysis

In this section we illustrate the procedures discussed by analyzing simulated data sets and
real life data sets.

Example 1: We generate data sets of 20 observations each from the distributions
GG(a, 8,71, 0) and GG(a, 3,72, 0) with v = 1.15, 3 = 0.5, 0 = 1,91 = 2.5, 72 = 1.5.

Here the true value of R is 0.6250. The modified MLEs of the unknown parameters
are obtained as = 1.09, & = 1.0228, B = 0.4563, v, = 1.8379, 45 = 1.33588. Hence,
the modified MLE of R is R = 0.5791. The 95 % parametric bootstrap confidence
interval of R has been computed using 1000 bootstrap samples and it came out to be
(0.4027,0.7401).

To find the Bayes estimates, we take a = b =¢; = ¢ = 1, £ = 1, 6§y = 2. Forty
thousand simulated values of 0, «, 3,7, and v, are used to implement the importance
sampling procedure. The Bayes estimates of the parameters have been obtained as 6 =
0.9250, & = 1.0982, 5 = 0.4705, 4, = 2.462, 35 = 1.4108, and R = 0.6357. The 95 %
HPD interval came out to be (0.4320,0.7664).

In order to check which estimation procedure gives better fit to the given data sets,
we have computed the Kolmogorov-Smirnov (K-S) distances between the empirical and
the fitted distribution function, based on the modified MLEs and on the Bayes estimators
and tested at a 5 % level of significance. For data set 1, The K-S distance based on
modified MLEs (Bayes estimates) is 0.2217 (0.1523) and the corresponding p-value is
0.391 (0.629). Similarly, for data set 2, the K-S distance based on modified MLEs (Bayes
estimates) is 0.1636 (0.2011) and the corresponding p-value is 0.716 (0.322). Thus, for
data set 1, Bayes estimates provide better fit than modified MLEs while for data set 2,
modified MLEs give better fit than Bayes estimates.
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Example 2: Here we analyze the strength data, reported by Badar and Priest (1982),
using the generalized gamma distribution. Estimates of the unknown parameters, and
hence of R, are obtained by both the methods discussed. It may be noted that Raqab et al.
(2008) fitted the 3-parameter generalized exponential distribution to the same data set.

Badar and Priest (1982) reported strength data measured in GPA for single carbon
fibre and impregnated 1000 carbon fibre tows. Single fibres were tested at gauge lengths
of 1, 10, 20 and 50 mm. Impregnated tows of 1000 fibres were tested at gauge lengths of
20, 50, 150 and 300 mm. The transformed data sets that were considered by Ragab and
Kundu (2005) are used here. Data Set 1 (of size 69) and Data Set 2 (of size 63) correspond
to single fibre with 20 mm and 10 mm of gauge length, respectively.

Data Set 1 (x:) 0.0312, 0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958,
0.966, 0.977, 1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253,
1.270, 1.272, 1.274, 1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490,
1.511, 1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697,
1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084,
2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.

Data Set 2 (y:) 0.101, 0.332, 0.403, 0.428, 0.457, 0.550, 0.561, 0.596, 0.597, 0.645,
0.954, 0.674, 0.718, 0.722, 0.725, 0.732, 0.775, 0.814, 0.816, 0.818, 0.824, 0.859, 0.875,
0.938, 0.940, 1.056, 1.117, 1.128, 1.137, 1.137, 1.177, 1.196, 1.230, 1.325, 1.339, 1.345,
1.420, 1.423, 1.435, 1.443, 1.464, 1.472, 1.494, 1.532, 1.546, 1.577, 1.608, 1.635, 1.693,
1.701, 1.737, 1.754, 1.762, 1.828, 2.052, 2.071, 2.086, 2.171, 2.224, 2.227, 2.425, 2.595,
3.220.

Here, the modified MLE of 0 is 0 = yay = 0.101. To find the MLEs of « and (3, we
carry out an iterative procedure as follows: Taking a starting value of « as 1, we solve (3)
to get 8. Then, using that value of 3 in (4), we solve for a. The procedure is continued
till the values of o and 3 converge. We obtain the MLEs as & = 1.7250, B = 2.871, and
therefore, 7, = 3.5439, 4, = 7.5672. Hence, the MLE of R is R = 0.3189.

To find the Bayes estimates, we take the prior parameters as a = b = ¢; = ¢o = 1,
E=1,60y = 2,00 = 2, = 1. Based on these priors and implementing the importance
sampling procedure using forty thousand simulated values of 6, «, 3, 71 and 7o, the Bayes

estimNates are obtained as a = 1.2573, B = 2.145, 4, = 1.2062, 4, = 3.0242, ¢ = 0.0867
and R = 0.2852. Further, the 95 % HPD credible interval of R is (0.2423,0.3865).

To examine which set of parameter estimates gives better fit to the data sets, we com-
pute the K-S distance between the empirical and the fitted distributions based on the mod-
ified MLEs and the Bayes estimators and test at a 5 % level of significance. For data set
1, the p-value comes out to be 0.3003 (0.0225) for the modified MLEs (Bayes estima-
tors), and for data set 2, the p-value is 0.7123 (0.4476) for the modified MLEs (Bayes
estimators). Hence, the modified MLEs give a better fit than the Bayes estimates.

The following figures show the plots of the empirical survival functions and the fitted
survival functions. The plots also indicate that the modified maximum likelihood method
of estimation provides better fit than the Bayes method of estimation.
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Figure 1: Empirical survival function and the fitted survival functions for Data Set 1.
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Figure 2: Empirical survival function and the fitted survival functions for Data Set 2.
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5 A Monte Carlo Simulation Study

A simulation study has been carried out to compare the two methods of estimation used.
We take parameter values to be 1, v, = 0.5,1.0, 1.5 and 2.0. Without loss of generality,
we have taken § = 0, « = 1.5 and § = 1.0. We consider sample sizes to be (m, n) =
(10, 10), (20, 20), (40, 40). For a particular set of parameters and from a given generated
sample, we compute the modified MLEs and Bayes estimators of X and replicate the
process 1000 times. For the Bayes estimator of /2, we have taken small values of the
exponential hyper parameters to reflect vague prior information, viz.a = b = ¢} = ¢p =
1. We also assumed that £ = 1 and 6, = 2. Forty thousand simulated values of 6, «, 3, 71
and v, are used to implement the importance sampling procedure. Next we compute the

mean squared errors in each case. The results are reported in Table 1 to 4.

Table 1: MSEs of 2 and R when v1 = 0.5.

V2

0.5

1.0

1.5

2.0

(m,n)

R R

R R

R R

~ =

R R

(10, 10)
(20, 20)
(40, 40)

0.0129 0.0142
0.0078  0.0950
0.0055 0.0610

0.0127 0.0139
0.0086 0.0100
0.0053  0.0068

0.0111 0.0119
0.0079 0.0072
0.0036  0.0057

0.0098 0.0121
0.0068 0.0820
0.0037  0.0500

Table 2

: MSEs of R and R when ~; = 1.0.

V2

0.5

1.0

1.5

2.0

(m,n)

~ o

R R

~ o

R R

= =~

R R

~ o

R R

(10, 10)
(20, 20)
(40, 40)

0.0138 0.0175
0.0085 0.0113
0.0067 0.0072

0.0135 0.0143
0.0109 0.0098
0.0064 0.0074

0.0279 0.0314
0.0126  0.0131
0.0091 0.0102

0.0245 0.0224
0.0087 0.0104
0.0059 0.0068

Table 3

: MSEs of R and R when , = 1.5.

Y2

0.5

1.0

1.5

2.0

(m,n)

R R

R R

R R

R R

(10, 10)
(20, 20)
(40, 40)

0.0113 0.0147
0.0084  0.0099
0.0063  0.0075

0.0108 0.0210
0.0093 0.0112
0.0058 0.0079

0.0102 0.0202
0.0087 0.0124
0.0069 0.0056

0.0107 0.0124
0.0086 0.0093
0.0059 0.0051

Table 4

: MSEs of R and R when v1 = 2.0.

V2

0.5

1.0

1.5

2.0

(m,n)

R R

R R

R R

R R

(10, 10)
(20, 20)
(40, 40)

0.0150 0.0175
0.0086 0.0096
0.0056 0.0076

0.0113 0.0109
0.0091 0.0098
0.0067 0.0072

0.0243 0.0314
0.0125 0.0213
0.0079  0.0089

0.0162 0.0234
0.0097 0.0120
0.0064 0.0077

It is observed that for both the methods of estimation, as the sample sizes increase
the MSEs decrease for all sets of parameters considered. However, though in most of the
cases the MSE is lower in modified maximum likelihood method than in Bayes method,
it is not consistently so. Thus, it is not possible to conclude that the modified maximum
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likelihood method of estimation always gives better fit than the Bayes method of estima-
tion.

6 Discussion

The paper studies the estimation of R = P(Y < X) when X and Y have indepen-
dent four-parameter generalized gamma distributions. It is seen that the usual maximum
likelihood estimators of the distribution parameters may not exist. Thus, a modified max-
imum likelihood procedure has been used for parameter estimation. Further, Bayesian
estimation with importance sampling procedure has been employed to estimate the model
parameters and hence R. Simulated data sets and real-life data sets have been analyzed
using the two methods of estimation. Also, a simulation study has been conducted to com-
pare the two methods of estimation. It may be noted that the maximum likelihood method
is a classical approach to estimation of parameters, while Bayes method is advised when
one has informative priors. The present paper uses both the methods of estimation with
the intention of studying how the estimators can be obtained in a complex situation as
discussed in the paper.
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