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Abstract: A double kernel method as an alternative to the classical kernel
method is proposed to estimate the population abundance by using line tran-
sect sampling. The proposed method produces an estimator that is essentially
a kernel type of estimator use the kernel estimator twice to improve the per-
formances of the classical kernel estimator. The feasibility of using bootstrap
techniques to estimate the bias and variance of the proposed estimator is also
addressed. Some numerical examples based on simulated and real data are
presented. The results show that the proposed estimator outperforms existing
classical kernel estimator in most considered cases.

Zusammenfassung: Ein zweifacher Kernschätzer als Alternative zum klas-
sischen Kernschätzer wird vorgeschlagen, um die Artenvielfalt in einer Pop-
ulation zu schätzen, indem man die Stichprobe aus einem linearern Transekt
zieht. Die vorgeschlagene Methode ergibt einen Schätzer, der im Wesentlichen
vom Typ einer Kernschätzung ist. Nur wird der Kernschätzer zweimal ver-
wendet, um die Eigenschaften des klassischen Kernschätzers dadurch zu ver-
bessern. Auch wird die Möglichkeit angeführt den Bootstrap zu verwenden,
um Bias und Varianz des vorgeschlagenen Schätzers zu schätzen. Einige
numerische Beispiele basierend auf Simulationen and reellen Daten werden
vorgestellt. Die Resultate zeigen, dass der vorgeschlagene Schätzer dem klas-
sischen Kernschätzer in den meisten betrachteten Fällen überlegen ist.

Keywords: Line Transect Sampling, Kernel Methods, Boundary Effect, Re-
flection Method.

1 Introduction
Line transect approach to estimate the abundance D of wildlife population has become
increasingly popular. In line transect sampling, a strip (a line transect) is surveyed and
the perpendicular distances x1, . . . , xn from the line to the detected objects are recorded.
These perpendicular distances are used to model a detection function g(x). This function
give us the probability of detecting an object, given that it is at a perpendicular distance
x from the line. In addition, the function g(x) help us to find an unbiased estimator for
D even if some objects around the transect line are missed. A popular assumption about
g(x) is g(0) = 1, which indicates that there is no missed objects on the transect line, or the
probability of detecting an object on the transect line is one. When objects are observed
from transect line according to the detection function g(x) then the perpendicular distance
x will tend to have a probability density function f(x) of the same shape as g(x) but scaled
so that the area under f(x) equals one. The popular fundamental relationship between
f(0) and the population abundance is D = E(n)f(0)/(2L), where f(0) = 1/

∫∞
0

g(x)dx
under the assumption g(0) = 1, E(n) is the expected value of n (the number of detections)
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and L is the length of the transect line. Therefore the aim of line transect sampling is to
estimate D by D̂ = nf̂(0)/(2L) (Burnham, Anderson, and Laake, 1980). Where f̂(0)
is an estimator of f(0) based on the observed perpendicular distances x1, . . . , xn which
are assumed to be random sample (Buckland et al., 2001). Hence, the key aspect in line
transect sampling is the modeling of f(x) as well as the estimation of f(0). Recent work
has focused on employing the nonparametric classical kernel method to estimate f(0).
Some initial efforts in applying the kernel method to line transect data were made by
Buckland (1992), Chen (1996), Mack and Quang (1998) and Eidous (2005, 2009).

In this paper a new kernel estimator for f(0) is proposed. The proposed estimator is
essentially a kernel type of estimator use the kernel estimator twice to improve the perfor-
mances of the classical kernel estimator. In the next section, we introduce and describe the
proposed estimator. Methods to select the bandwidth and the bootstrap technique to com-
pute the approximate bias and variance of the proposed estimator are described in Section
3. Numerical examples are presented in Section 4. Finally, results and conclusions are
given in Section 5.

2 Classical and Double Kernel Estimators
Let X1, . . . , Xn denote a random sample with common density function f(x), x ∈ R.
The classical kernel density estimator of f(x) (Silverman, 1986) is

f̂k(x) =
1

nb

n∑
i=1

K

(
x−Xi

b

)
, x ∈ R , (1)

where b is the smoothing parameter (bandwidth) that controls the degree of smoothness
and the kernel function K is assumed to be symmetric probability density function which
satisfies

∫
uK(u)du = 0 and

∫
u2K(u)du < ∞. To reduce the bias (at least asymptot-

ically) of (1), Jones, Linton, and Nielsen (1995) suggested the following double kernel
estimator for f(x),

f̃Dk(x) =
f̂k(x)

nh

n∑
j=1

K

(
x−Xj

h

)
f̂−1
k (Xj) , x ∈ R , (2)

where h is the smoothing parameter not necessary the same as the smoothing parameter
b of the classical kernel estimator (1). Jones et al. (1995) derived the theoretical prop-
erties of estimator (2). While the classical kernel estimator (1) achieves O(h2) bias as
h → 0 when n → ∞, the estimator (2) correct the bias rate to be O(h4) and the rate of
convergence for the variance remains O(n−1h−1)as the classical kernel estimator.

To use either estimator (1) or (2) for line transect sampling, some modifications are
needed because the support of x in this case is defined on the positive real line. This is due
to the boundary effects (at x = 0) that occur in nonparametric curve estimation problems
(Silverman, 1986). In other words, if our interest is to estimate f(x) at the end point of
its support, that is f(0), then f̂k(0) is not even a consistent estimator for f(0). To remove
the boundary effect, we adopted the reflection method of Silverman (1986) by applying
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estimators (1) and (2) on the extended sample X1,−X1, X2,−X2, . . . , Xn,−Xn. By
considering the extended sample, the classical kernel estimator of f(x) becomes

f̂k1(x) =
1

nb

n∑
i=1

[
K

(
x−Xi

b

)
+K

(
x+Xi

b

)]
, 0 ≤ x < ∞ (3)

and the double kernel estimator of f(x) is suggested to be

f̃Dk1(x) =
f̂k1(x)

nh

n∑
j=1

[
K

(
x−Xj

h

)
+K

(
x+Xj

h

)]
f̂−1
k1 (Xj) , 0 ≤ x < ∞ .

Therefore, the classical kernel estimator for f(0) is f̂k1(x) at x = 0, which gives

f̂k1(0) =
2

nb

n∑
i=1

K

(
Xi

b

)
(4)

and the double kernel estimator for f(0) is f̃Dk1(x) at x = 0, which gives

f̃Dk1(0) =
2f̂k1(0)

nh

n∑
j=1

K

(
Xj

h

)
f̂−1
k1 (Xj) , (5)

where f̂k1(Xi) and f̂k1(0) are the classical kernel estimators at x = Xi and at x = 0,
respectively. The two quantities f̂k1(0) and f̂−1

k1 (Xi) in estimator (5) are introduced to
correct the bias of estimator (4). Jones et al. (1995) pointed out that the leading bias
term in f̂k1(0) should cancel with the leading bias term in f̂−1

k1 (Xi). The bandwidth h
in estimator (5) is not necessarily the same as the bandwidth b in the estimator (4). Our
simulation study in Subsection 4.2 considers the two cases when h = b and when h is not
necessarily the same as b. Now, the corresponding double kernel estimator for D is

D̃Dk1 =
nf̃Dk1(0)

2L
.

3 The Bandwidth and some Approximative Properties
The approximate bias and variance of the proposed estimator can be computed by adopt-
ing the bootstrap technique (Efron and Tibshirani, 1993), which is described in the fol-
lowing.

Let X1, . . . , Xn be a random sample of perpendicular distances (collected by using
line transect technique) with probability density function f(x), x ≥ 0, and let f̃Dk1(0)
be the estimator of f(x) at x = 0 (i.e., f(0)). To compute the approximative bias and
variance of f̃Dk1(0), a first sample of size n is randomly drawn with replacement from
the original sample X1, . . . , Xn. The estimator f̃Dk1(0) is then computed by using this
sample and denoted by f̃

(1)
Dk1(0). Now, pick a second sample of size n from the original

random sample X1, . . . , Xn with replacement and compute f̃
(2)
Dk1(0). Repeat the resam-

pling procedure as described above independently some large number B of times, thus
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getting the computed values f̃ (1)
Dk1(0), . . . , f̃

(B)
Dk1(0). The approximate bias and variance of

f̃Dk1(0) are given by

b̂ias(f̃Dk1(0)) =
1

B

B∑
i=1

f̃
(i)
Dk1(0)− f̃Dk1(0) ,

and

v̂ar(f̃Dk1(0)) =
1

B − 1

B∑
i=1

(
f̃
(i)
Dk1(0)−

1

B

B∑
j=1

f̃
(j)
Dk1(0)

)2

,

where f̃Dk1(0) is computed from the original sample X1, . . . , Xn.
To implement the proposed estimator in practice we need to choose the value of the

bandwidth h. One of the most common methods is to find h that minimizing the asymp-
totic mean integrated square error (AMISE) or the asymptotic mean square error (AMSE)
of the estimator. For the classical kernel estimator, Chen (1996) gave the optimal rule for
b = 1.06σ̂n−1/5, which minimizes the AMISE of (3) and by considering the half normal
distribution to be the underlying distribution of the perpendicular distances. In this setting
we adopted two rules to select the bandwidth h of the proposed estimator (5). The first
one is h = b = 1.06σ̂n−1/5, which means that the two estimators (4) and (5) use the same
level of bandwidth. The corresponding proposed estimator is then denoted by f̃ ∗

Dk1(0).
The second rule is called the m-nearest neighbor rule, which needs no assumptions about
the shape of the perpendicular distances distribution. Barabesi (2001) used this rule in
line transect sampling to improve the performance of the local parametric estimator that
investigated by Barabesi (2000). Loftsgaarden and Quesenberry (1965) introduced the
m-nearest neighbor selector in density estimation, which is given by h = x(m), where
x(m) represents the mth order statistic in the observed sample. As to the selection of m,
a common choice is given by m = [[nε]], where 0 < ε < 1 and [[·]] denotes the greatest
integer function. In this setting, we used ε = 4/5 (see e.g., Mack and Rosenblatt, 1979;
Barabesi, 2001. The corresponding proposed estimator that used h = x(m) is denoted by
f̃ ∗∗
Dk1(0).

4 Numerical Examples

4.1 Wooden Stakes Data

We apply the proposed estimator to the wooden stakes data set, given in Burnham et
al. (1980, p. 61). The data are collected from a line transect survey to estimate the
density of stakes in a given area. The stakes data are the perpendicular distances (in
meters) of detected stakes from the transect line; 150 stakes were placed at random in
an area of L = 1000 meters long. Out of 150 stakes, 68 stakes were detected using
the line transect technique. The true form of f(x) is unknown, but the true value of
f(0) is known and equals f(0) = 0.110294. Thus the actual density of the stakes was
D = nf(0)/2L = 37.5 stakes/ha. For comparison purposes we compute the estima-
tors f̂k1(0), f̃ ∗

Dk1(0) and f̃ ∗∗
Dk1(0). The population abundance D is then estimated by D̂k1,
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D̃∗
Dk1 and D̃∗∗

Dk1 which corresponds f̂k1(0), f̃ ∗
Dk1(0) and f̃ ∗∗

Dk1(0), respectively. The corre-
sponding bias, standard deviation (SD) and mean square error (MSE) for each estimator
are computed by using bootstrap technique with 1000 iterations. Careful examination of
the data shows the existence of an unusual observation, x = 31.31, which is too extreme
compared to other observations. Therefore, we consider the two sample sizes n = 68
and n = 67 separately, the latter sample size is obtained when the outlier observation
x = 31.31 is removed. The two estimators f̂k1(0) and f̃ ∗

Dk1(0) use the same value of
bandwidth which gives b = 1.06σ̂n−1/5 = 3.34 for n = 67 (exclude the outlier value
31.31) and b = 1.06σ̂n−1/5 = 3.733 for n = 68. Accordingly, the resulting f(0) esti-
mates are f̂k1(0) = 0.1025, f̃ ∗

Dk1(0) = 0.1112 and f̃ ∗∗
Dk1(0) = 0.1108 for n = 67 with

corresponding abundance estimates D̂k1 = 34.33, D̃∗
Dk1 = 37.26 and D̃∗∗

Dk1 = 37.13
stakes/ha. The other computations for the two sample sizes and for the different estima-
tors are summarized in Table 1. Burnham et al. (1980) analyze the same data by using a
cosine series estimator, and they obtain an estimate for f(0) of 0.1148 with correspond-
ing density estimate D̂ = 39.00 stakes/ha. It should be remarked that the cosine series
estimator specifies a fixed value for the maximum perpendicular distance (taken to be 20
meters for this example), that is, more information is used in this case.

Table 1: The point estimates of stakes data abundance (per hectare) and their biases,
variances and MSEs. The exact value of D is 0.00375. Estimator (1) is the classical
kernel estimator with b = 1.06σ̂n−1/5, estimator (2) is the double kernel estimator with
h = b = 1.06σ̂n−1/5 and estimator (3) is the double kernel estimator with m-nearest
neighbor method to compute h.

(n = 67)

Estimator Bandwidth f̂(0) D̂ bias(D̂) var(D̂) MSE(D̂)

1 3.342 0.10248 34.33 −0.000301 1.464·10−7 2.367·10−7

2 3.342 0.11122 37.26 −0.000024 2.226·10−7 2.231·10−7

3 3.610 0.11083 37.13 −0.000005 2.001·10−7 2.001·10−7

(n = 68)

Estimator Bandwidth f̂(0) D̂ bias(D̂) var(D̂) MSE(D̂)

1 3.733 0.09889 33.62 −0.000377 1.451·10−7 2.869·10−7

2 3.733 0.10894 37.04 −0.000058 2.157·10−7 2.190·10−7

3 3.790 0.10880 36.99 −0.000021 2.177·10−7 2.181·10−7

4.2 Monte Carlo Study

A simulation study is performed in this section to investigate the performances of the
proposed estimators f̃ ∗

Dk1(0) and f̃ ∗∗
Dk1(0). The two estimators f̃ ∗

Dk1(0) and f̃ ∗∗
Dk1(0) are

compared with f̂k1(0). The half normal bandwidth rule is used to compute b and h for
f̂k1(0) and f̃ ∗

Dk1(0), respectively, while the m-nearest neighbor rule is used for f̃ ∗∗
Dk1(0).

Three families of models which are commonly used as references in line transect studies
were considered in the simulation (see Barabesi, 2000, and Eidous, 2009). The exponen-
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tial power (EP) family (Pollock, 1978)

f(x) =
1

Γ(1 + 1/β)
exp

(
−xβ

)
, x ≥ 0 , β ≥ 1 ,

The hazard-rate (HR) family (Hayes and Buckland, 1983)

f(x) =
1

Γ(1− 1/β)

(
1− exp

(
−x−β

))
, x ≥ 0 , β > 1

and the beta (BE) model (Eberhardt, 1968)

f(x) = (1 + β)(1− x)β , 0 ≤ x < 1 , β ≥ 0 .

In our simulation design, these three families were truncated at some distance w. Four
models were selected from the EP family with parameter values β = 1.0, 1.5, 2.0, 2.5
and corresponding truncation points given by w = 5.0, 3.0, 2.5, 2.0. Four models were
selected from the HR family with parameter values β = 1.5, 2.0, 2.5, 3.0 and correspond-
ing truncation points given by w = 20, 12, 8, 6. Moreover, four models were selected
from the BE model with parameter values β = 1.5, 2.0, 2.5, 3.0 and w = 1 for all cases.
These models cover a wide range of perpendicular distance probability density functions
which vary near zero from a spike to flat. For example, the EP model with β = 1 and
the BE model do not satisfy the shoulder condition (i.e., f ′(0) ̸= 0). This choice was
introduced in order to investigate the robustness of the proposed estimators with respect
to the shoulder condition.

For each model and for sample sizes n = 50, 100, 200 one thousand runs were iterated.
Table 2 reports the relative bias

RB =
E
[
f̂(0)

]
− f(0)

f(0)
,

and the relative mean error

RME =

√
MSE

[
f̂(0)

]
f(0)

,

for each considered estimator, where f̂(0) is f̂k1(0) or f̃Dk1(0). The efficiency (EFF) of
the proposed estimator with respect to the classical kernel estimator is

EFF =
MSE

[
f̂k1(0)

]
MSE

[
f̃Dk1(0)

] .



O. Eidous, M. K. Shakhatreh 101

Table 2: Relative Bias (RB), Relative Mean Error (RME) and Efficiencies (EFF) for the
different estimators.

n β w f̂k1(0) f̃∗
Dk1(0) f̃∗∗

Dk1(0)
RB RME RB RME RB RME EFF1 EFF2

Exponential Power (EP) Model
50 −0.3474 0.3599 −0.2656 0.2872 −0.2143 0.2604 1.253 1.382

100 1.0 5 −0.3302 0.3383 −0.2490 0.2640 −0.2066 0.2315 1.281 1.461
200 −0.2872 0.2916 −0.2072 0.2160 −0.1800 0.1986 1.350 1.467
50 −0.1759 0.2111 −0.0927 0.1685 −0.0781 0.1752 1.253 1.205

100 1.5 3 −0.1435 0.1718 −0.0643 0.1315 −0.0812 0.1336 1.307 1.286
200 −0.1365 0.1520 −0.0683 0.1077 −0.0481 0.0970 1.411 1.567
50 −0.1055 0.1590 −0.0348 0.1518 −0.0157 0.1455 1.048 1.093

100 2.0 2.5 −0.0762 0.1173 −0.0115 0.1146 −0.0079 0.1139 1.023 1.030
200 −0.0615 0.0934 −0.0116 0.0907 0.0168 0.0993 1.029 0.941
50 −0.0551 0.1492 0.0072 0.1736 0.0167 0.1567 0.860 0.952

100 2.5 2 −0.0295 0.1032 0.0228 0.1303 −0.0035 0.1272 0.792 0.811
200 −0.0262 0.0872 0.0130 0.1064 0.0079 0.0932 0.820 0.936
Hazard Rate (HR) Model
50 −0.5030 0.5128 −0.4338 0.4487 −0.2273 0.2869 1.142 1.787

100 1.5 20 −0.4766 0.4812 −0.4016 0.4087 −0.1911 0.2229 1.177 2.162
200 −0.4431 0.4457 −0.3623 0.3665 −0.1452 0.1712 1.216 2.603
50 −0.3019 0.3242 −0.2016 0.2418 −0.0446 0.1853 1.340 1.750

100 2.0 12 −0.2709 0.2846 −0.1656 0.1927 −0.0456 0.1265 1.476 2.250
200 −0.2141 0.2222 −0.1029 0.1233 −0.0223 0.0854 1.802 2.603
50 −0.1608 0.2053 −0.0515 0.1556 0.0074 0.1578 1.319 1.301

100 2.5 8 −0.1132 0.1438 −0.0051 0.1022 0.0195 0.1043 1.406 1.379
200 −0.0805 0.1012 0.0183 0.0724 0.0348 0.0755 1.397 1.340
50 −0.0641 0.1376 0.0340 0.1438 0.0502 0.1564 0.956 0.880

100 3.0 6 −0.0396 0.0945 0.0482 0.1164 0.0625 0.1233 0.811 0.765
200 −0.0265 0.0762 0.0420 0.0978 0.0391 0.0923 0.779 0.824
Beta (BE) Model
50 −0.2105 0.2412 −0.1444 0.2057 −0.1106 0.1865 1.172 1.293

100 1.5 1 −0.1707 0.1893 −0.1061 0.1479 −0.1081 0.1435 1.279 1.319
200 −0.1496 0.1655 −0.0915 0.1274 −0.0831 0.1193 1.298 1.387
50 −0.2097 0.2378 −0.1321 0.1901 −0.1424 0.2042 1.250 1.165

100 2.0 1 −0.1946 0.2111 −0.1248 0.1607 −0.1241 0.1665 1.313 1.267
200 −0.1724 0.1856 −0.1089 0.1392 −0.1152 0.1387 1.332 1.338
50 −0.2459 0.2681 −0.1697 0.2146 −0.1544 0.2117 1.249 1.268

100 2.5 1 −0.2088 0.2242 −0.1367 0.1696 −0.1376 0.1721 1.321 1.302
200 −0.1920 0.2022 −0.1269 0.1501 −0.1248 0.1502 1.347 1.346
50 −0.2483 0.2702 −0.1683 0.2122 −0.1639 0.2345 1.273 1.152

100 3.0 1 −0.2122 0.2275 −0.1361 0.1705 −0.1423 0.1760 1.333 1.293
200 −0.1955 0.2078 −0.1252 0.1524 −0.1347 0.1594 1.363 1.304



102 Austrian Journal of Statistics, Vol. 41 (2012), No. 2, 95–103

5 Results and Conclusions
Depending on the simulation results given in Table 2, we observe that the classical kernel
estimator f̂k1(0) has large |RB|s for the EP model with β = 1.0, 1.5; for the HR model
with β = 1.5, 2.0 and for the BE model with different values of β. However, its per-
formance is quite good for the EP and HR models when the shape parameter increases,
which increases the smoothness of the underlying model near x = 0. The estimator turns
out to be better than f̃ ∗

Dk1(0) and f̃ ∗∗
Dk1(0) for the EP model with β = 2.5 and for the HR

model with β = 3, in which the efficiencies remain acceptable for these two cases. Both
numerical example and simulation results indicate that f̂k1(0) is underestimated (biases
in all cases considered are negative). This motivates the need of the proposed estimators,
which are generally produced rather small RBs. On the other hand, comparing the |RB|s
of f̃ ∗

Dk1(0) and f̃ ∗∗
Dk1(0) with that of f̂k1(0), the simulation and numerical example results

generally demonstrate that the |RB|s of f̃ ∗
Dk1(0) and f̃ ∗∗

Dk1(0) are smaller than the |RB|s of
f̂k1(0).

The two estimators f̃ ∗
Dk1(0) and f̃ ∗∗

Dk1(0) generally produce reasonable values for
RMEs. Their performances are better than that of f̂k1(0) for most cases considered. A
significant improvement for f̃ ∗

Dk1(0) and f̃ ∗∗
Dk1(0) over f̂k(0) is clearly demonstrated for

the EP model with β = 1.0, 1.5; for the HR model with β = 1.5, 2.0, 2.5 and for the BE
model with all different values of β.

The efficiency (EFF) values show that for most of the models investigated, a consid-
erable gain in the accuracy of the proposed estimators is achieved. Actually, the perfor-
mances of f̃ ∗

Dk1(0) and f̃ ∗∗
Dk1(0) are better than that of f̂k1(0) for 10 models out of 12

models. In the other two cases where the shoulder condition is – in some sense – large
the efficiency is less than one which indicates that the performance of f̂k1(0) is better than
that of f̃ ∗

Dk1(0) and f̃ ∗∗
Dk1(0) but the efficiencies remain acceptable in these two cases.

We have seen that the proposed estimators in this paper generally gives small RBs
and RMEs. Comparing the classical kernel estimator f̂k1(0) with the proposed estimators
f̃ ∗
Dk1(0) and f̃ ∗∗

Dk1(0), the latter two estimators perform better than the former one for
most cases considered. Accordingly, the proposed estimators may be recommended in
line transect sampling.
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