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Abstract: Recently, many authors introduced ratio-type estimators for esti-
mating the mean, or the ratio, for a finite populations. Most of the articles are
discussing this problem under simple random sampling design, with more as-
sumptions on the auxiliary variable such as the coefficient of variation, and
kurtosis are assumed to be known. Gupta and Shabbir (2008) have suggested
an alternative form of ratio-type estimators and they assumed the coefficient
of variation of the auxiliary variable must be known; this assumption is cru-
cial for this estimator.

An estimator of the population ratio, under general sampling design, is pro-
posed. Further, exact and an unbiased variance estimator of this estimator
are obtained, and the Godambe-Joshi lower bound is asymptotically attain-
able for this estimator. The assumption on the coefficient of variation of the
auxiliary variable is not needed for the proposed estimator. Simulation re-
sults from real data set and simulations from artificial population, show that
the performance of the proposed estimator is better than Gupta and Shabbir
(2008) and Hartley and Ross (1954) estimators.

Zusammenfassung: Jüngst führten einige Autoren quotientenartige Schätzer
ein, um den Erwartungswert oder einen Quotienten davon für eine endliche
Stichprobe zu schätzen. In den meisten dieser Artikeln wird dieses Prob-
lem unter einem einfachen Zufallsstichproben Design diskutiert mit weiteren
Annahmen bezüglich der Hilfsvariablen wie die Bekanntheit deren Variation-
skoeffizienten und Kurtosis. Gupta and Shabbir (2008) schlugen eine alter-
native Form von quotientenartige Schätzer vor, und sie nahmen dazu an, dass
Variationskoeffizient der Hilfsvariablen bekannt sei; derarige Annahmen sind
für diesen Schätzer is kritisch.

Ein Schätzer des Populationsverhältnisses unter einem allgemeinen Stich-
probendesign wird vorgeschlagen. Weiters werden ein exakter und ein un-
verzerrter Varianzschätzer dieses Schätzers erhalten, und die Godambe-Joshi
untere Schranke ist asymptotisch erreichbar für diesen Schätzer. Die An-
nahme bezüglich des Variationskoeffizienten der Hilfsvariablen wird für den
vorgeschlagenen Schätzer nicht benötigt. Simulationsergebnisse von realen
Datensätzen und Simulationen von künstlich generierten Daten zeigen, dass
die Eigenschaften des vorgeschlagenen Schätzers besser sind als die der Gupta
and Shabbir (2008) und der Hartley and Ross (1954) Schätzer.

Keywords: Asymptotic Results, General Sampling Design, Mean and Vari-
ance, Godambe-Joshi Lower Bound, Stratified Sampling Design.
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1 Introduction

Consider a finite population U of units {1, . . . , N}. For the ith unit, let yi and xi be the
values of the variable of interest and the auxiliary variable respectively. One of the interest
is to estimate the population ratio θ = ty/tx, where ty =

∑
i∈U yi, the population total for

the variable of interest, and tx =
∑

i∈U xi, the population total for the auxiliary variable.
Another interest is estimate the population total, ty, by θ̂ · tx, where tx is assumed to be
known, and θ̂ is an estimator of θ.

As it well known that Hartley and Ross (1954) estimator is an unbiased estimator
under simple random sampling (srs) design without replacement for estimating the pop-
ulation ratio θ. Under general sampling design, Al-Jararha (2008) obtained an exactly
unbiased estimator for the population ratio θ, this estimator gives the Hartley and Ross
(1954) estimator under srs design. Further, the variance and unbiased estimator of the
variance of such estimator were obtained. This estimator, also works well in stratified
sampling designs.

Gupta and Shabbir (2008) showed that, under srs their estimator gives better results
than the estimators given by Kadilar and Cingi (2004), Kadilar and Cingi (2006a), Kadilar
and Cingi (2006b), Singh and Tailor (2003) and the regression estimator.

In this article, we will propose an estimator for the population ratio, θ, under general
sampling design. Through simulations from real data set and under srs design, we will
compare the proposed estimator with the ratio estimators obtained by Gupta and Shabbir
(2008) and Hartley and Ross (1954). Further, Hartley and Ross (1954) will be written
under general sampling design and we will compare this form with the proposed estimator
under proportional to size design.

Based on a measurable sampling design p(·), draw a random sample s from U . An
auxiliary variate xi, correlated with yi, is obtained for each unit in the sample s. Define
πi, the first order inclusion probability, by

πi = Pr(i ∈ s) =
∑
s∋i

p(s) .

The Horvitz and Thompson (1952) estimator of the population total ty =
∑

i∈U yi is
defined by

t̂yπ =
∑
i∈U

yi
I{i∈s}
πi

,

where I{i∈s} is one if i ∈ s and zero otherwise. It is an easy task to show that t̂yπ is an
unbiased estimator for ty. Further,

ȳs =
1

N
t̂yπ

can be used to estimate the population mean ȳU = ty/N .
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1.1 The Hartley and Ross Estimator

Under srs, Hartley and Ross (1954) have proposed the following estimator

θ̂HR = r̄s +
n(N − 1)

N(n− 1)x̄U

(ȳs − r̄sx̄s) (1)

to estimate the population ratio θ, where

ȳs =
1

n

n∑
i=1

yi , x̄s =
1

n

n∑
i=1

xi , r̄s =
1

n

n∑
i=1

ri , and ri =
yi
xi

.

This estimator can be extended to be used under general sampling design p(·) by redefin-
ing

ȳs =
1

N
t̂yπ , x̄s =

1

N
t̂xπ , and r̄s =

1

N

∑
i∈U

ri
I{i∈s}
πi

in equation (1).
To find an approximate variance and an estimate for the approximate variance, by

using Taylor expansion to first order, expand the righthand side of equation (1) we have

θ̂HR
∼= constant + r̄s +

n(N − 1)

N(n− 1)x̄U

ȳs −
n(N − 1)

N(n− 1)
r̄s −

n(N − 1)

N(n− 1)

r̄U
x̄U

x̄s

= constant +
∑
i∈U

wi

I{i∈s}
πi

, (2)

where

wi =
n(N − 1)

N2(n− 1)x̄U

yi −
N − n

N2(n− 1)
ri −

n(N − 1)

N2(n− 1)

r̄U
x̄U

xi .

Take the variance of both sides of equation (2), we have

var(θ̂HR) =
∑
ij∈U

wi

πi

wj

πj

∆ij .

Therefore, an unbiased estimator for var(θ̂HR) is

v̂ar(θ̂HR) =
∑
ij∈s

ŵi

πi

ŵj

πj

∆ij ,

where

ŵi =
n(N − 1)

N2(n− 1)x̄U

yi −
N − n

N2(n− 1)
ri −

n(N − 1)

N2(n− 1)

r̄s
x̄U

xi , ∆ij = πij − πiπj ,

and πij is the second order inclusion probability.
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1.2 The Gupta and Shabbir Estimator

Under srs design, Gupta and Shabbir (2008) have proposed the estimator

ȳGS = [w1ȳs + w2(x̄U − x̄s)]

(
ηx̄U + λ

ηx̄s + λ

)
(3)

to estimate the population mean ȳU , where w1 and w2 are weights and η ̸= 0 and λ
are either constants or functions of the known parameters such as standard deviation,
variance, etc. The bias and the mean squares error (MSE), as corrected by Koyuncu and
Kadilar (2010), of ȳGS are

bias(ȳGS) = (w1 − 1)ȳU + γ[w1ȳU(τ
2C2

x − τCyx) + w2x̄UτC
2
x]

and

MSE(ȳGS) = (w1 − 1)2ȳ2U + w2
1ȳ

2
Uγ(C

2
y − 4τCyx + 3τ 2C2

x) + w2
2x̄

2
UγC

2
x

−2w1ȳ
2
Uγ(τ

2C2
x − τCyx)− 2x̄U ȳUw2τγC

2
x

−2x̄U ȳUw1w2γ(Cyx − 2τC2
x) . (4)

The optimum values of w1 and w2, which minimize the MSE, are given by

w∗
1 =

1− γτ 2C2
x

1 + γC2
y − γρ2C2

y − γτ 2C2
x

,

and

w∗
2 =

Ȳ

X̄

(
τ +

(1− γτ 2C2
x)(Cyx − 2τC2

x)

C2
x + γC2

xC
2
y − γC2

yx − γτ 2C4
x

)
.

Therefore, the optimum MSE of ȳGS is

MSE(ȳGS)min =
(1− γτ 2C2

x)MSE(ȳreg)
(1− γτ 2C2

x) + (MSE(ȳreg)/ȳ2U)
, (5)

where MSE(ȳreg) = 1−f
n
ȳ2UC

2
y (1 − ρ2yx), τ =

ηx̄U
ηx̄U+λ

, Cy is the coefficient of variation
of y, ρyx is the correlation coefficient between y and x, which can be estimated from the
sample, Cx is the coefficient of variation of x is assumed to be known, f = n/N and
γ = (N − n)/(nN).

Since our goal is to estimate the population ratio θ, divide equation (3) by x̄U , we
have

θ̂GS =

[
w1

ȳs
x̄U

+ w2

(
1− x̄s

x̄U

)](
ηx̄U + λ

ηx̄s + λ

)
, (6)

with
MSE

(
θ̂GS

)
min

= MSE(ȳGS/x̄U)min .
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2 The Proposed Estimator
Assume that xi > 0 for all i = 1, . . . , N and x̄U is known. Under general sampling
design, p(·), the following estimator is proposed

θ̂P = r̄s +
1

x̄U

(ȳs − r̄sx̄s) . (7)

Remark 2.1 θ̂P is not the Hartley and Ross (1954) estimator especially for small sample
size n.

By using the Taylor expansion, expand θ̂P to first order, we have

θ̂P ∼= r̄s +
ȳs
x̄U

− 1

x̄U

[r̄U x̄U + x̄U(r̄s − r̄U) + r̄U(x̄s − x̄U)]

=
ȳs
x̄U

+
r̄U
x̄U

(x̄U − x̄s) . (8)

Hence, Ep(θ̂P ) = ȳU/x̄U = θ, i.e. to first order, θ̂P is an unbiased estimator for θ. From
equation (8) rewrite θ̂P as

θ̂P = r̄U +
1

Nx̄U

∑
i∈U

(yi − r̄Uxi)
I{i∈s}
πi

. (9)

Therefore,

varp(θ̂P ) =
1

N2x̄2
U

∑
i∈U

∑
j∈U

Zi

πi

Zj

πj

∆ij , (10)

where Zi = yi − r̄Uxi. This variance can be estimated by

v̂arp(θ̂P ) =
1

N2x̄2
U

∑
i∈s

∑
j∈s

Ẑi

πi

Ẑj

πj

∆ij

πij

, (11)

where Ẑi = yi − r̄sxi.

Remark 2.2 Under mild conditions, asymptotic results for θ̂P can be established. As an
example, a central limit theorem for θ̂P can be established. Under srs, it can be shown
that

avarsrs(θ̂P ) =
1

x̄2
U

1

n

(
1− n

N

) 1

n− 1

∑
i∈U

(Zi − Z̄)2

is the asymptotic variance of θ̂P and

âvarsrs(θ̂P ) =
1

x̄2
U

1

n

(
1− n

N

) 1

n− 1

∑
i∈s

(Ẑi − ¯̂
Z)2

is a consistent estimator for avarsrs(θ̂P ). Therefore,

θ̂P − θ√
âvarsrs(θ̂P )

L→ N (0, 1) as N → ∞ .
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Now, consider the model ξ : yi = βxi + varepsiloni, where εi are independent
with mean zero and variance σ2

i . Let θ̂ be any estimator for the population ratio θ, the
estimation error θ̂ − θ can be examined, jointly under the model, ξ, and the sampling
design, p(·). The anticipated variance (Särndal, Swensson, and Wretman, 1992) of θ̂ − θ
is

EξEp

[(
θ̂ − θ

)2
]
−
[
EξEp

(
θ̂ − θ

)]2
.

If EξEp(θ̂ − θ) = 0, the anticipated variance is

EξEp

[(
θ̂ − θ

)2
]
.

The Godambe-Joshi lower bound (Godambe and Joshi, 1965) is defined by

EξEp

(
θ̂ − θ

)2

≥ 1

N2x̄2
U

∑
i∈U

(
1

πi

− 1

)
σ2
i .

Assume that πi ≥ πij ≥ π∗ > 0, for all ij ∈ U . The Godambe-Joshi lower bound (GJLB)
is of order O

(
(Nπ∗)−1).

Under the model ξ
Zi = εi −

xi

N

∑
j∈U

εj
xj

are independent with mean zero and variance

σ2
i −

2σ2
i

N
+

x2
i

N2

∑
j∈U

σ2
j

x2
j

.

Hence, we can show that

EξEp

(
θ̂P − θ

)2

= GJLB + terms of order O
((

N2π∗)−1
)
.

Therefore, the GJLB is asymptotically attainable for θ̂P .

3 Simulation Studies and Conclusions
Consider the real data set, USPOP: a summary of the United States population from the
2000 Census. This data is obtained from Scheaffer, Mendenhall, and Ott (2006). The
percent in poverty for US was 11.9 %, as reported in the data set or as computed from
the data. In this section, our main goal is to estimate this number based on different
estimators.

The variables of our interest are X := Total: total resident population for each state
in US, and Percent in Poverty: percentage of the population estimated to live with income
under the poverty line. To produce the variable Y := number of resident with income un-
der the poverty line, multiply the variable Total by the variable Percent in Poverty. Under
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srs, we will compare the three estimators, namely Hartley and Ross (1954), different ver-
sions of Gupta and Shabbir (2008), and the proposed estimator which is given by equation
(7). As suggested by Koyuncu and Kadilar (2010), in equation (6), consider the following
choices of η and λ:

η 0 1 1 1 β2(x) Cx

λ 1 ρyx Cx β2(x) Cx β2(x)
θ̂GS θ̂GS(0) θ̂GS(1) θ̂GS(2) θ̂GS(3) θ̂GS(4) θ̂GS(5)

Here λ = β2(x) is the kurtosis of the auxiliary variable X . From the data USPOP, under
srs, draw a random sample of size n by using procedure surveyselect of SAS Institute.
Our purpose is to estimate the percent in poverty θ = 11.9%.

Consider an artificial population of N = 200 units. For i = 1, . . . , 200, simulate
xi from exp(1) and independently from the random error, εi. For given xi, define yi =
8xi + εi. We will simulate εi from N(0, xi) and another case from N(0, x2

i ). When
εi ∼ N(0, xi), we have tx = 190.7164, ty = 1508.4788, and θ = 7.9095; further, when
εi ∼ N(0, x2

i ), we have tx = 190.7164, ty = 1492.4845, and θ = 7.8257.
Define the following: the empirical mean of the estimator θ̂ is defined by

EM(θ̂) =
1

1500

1500∑
k=1

θ̂(k) , (12)

where θ̂(k) is the estimate of θ based on the kth simulation. The empirical relative bias
(ERB) of θ̂ is defined by

ERB(θ̂) =
EM(θ̂)− θ

θ
× 100% . (13)

The empirical mean squares error of θ̂ is defined by

EMSE(θ̂) =
1

1500

1500∑
k=1

(
θ̂(k) − θ

)2

, (14)

and the empirical relative mean squares error (ERMSE) of the estimator θ̂ to the EMSE
of the estimator θ̂P is defined by

ERMSE(θ̂) =
EMSE(θ̂)

EMSE(θ̂P )
. (15)

From the described populations, under srs sampling design and by using procedure
surveyselect of the SAS Institute, simulate 1500 samples when the sample size n =
2, 5, 10, 15, 20, 25. For a given sample size n, and based on each sample, estimate θ by
using θ̂HR, θ̂GS(i), i = 0, . . . , 5, and θ̂P . Further, compute EM, ERB, and ERMSE as
defined by equations (12), (13), and (15), respectively. Results are given in Tables 1, 2,
and 3.

It is not an easy task to extend θ̂GS to be used under general sampling design. However,
the proposed estimator θ̂P can be used under a general sampling design. Further, the
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Table 1: US population. Comparison between θ̂P , θ̂HR and θ̂GS(i), i = 0, . . . , 5, under srs
and based on 1500 simulations.

θ̂P θ̂HR θ̂GS(0) θ̂GS(1) θ̂GS(2) θ̂GS(3) θ̂GS(4) θ̂GS(5)

n = 2 EM 0.1168 0.1191 0.0341 0.1140 0.1140 0.1140 0.1140 0.1140
ERB −1.84 0.07 −71.39 −4.20 −4.20 −4.22 −4.20 −4.22
ERMSE 2.04 93.06 68.99 68.99 68.98 68.99 68.98

n = 5 EM 0.1179 0.1187 0.0739 0.1044 0.1043 0.1044 0.1044 0.1044
ERB −0.99 −0.28 −37.94 −12.31 −12.31 −12.31 −12.31 −12.31
ERMSE 1.19 298.82 110.21 110.21 110.24 110.21 110.24

n = 10 EM 0.1182 0.1185 0.0980 0.1098 0.1098 0.1098 0.1098 0.1098
ERB -0.72 −0.45 −17.71 −7.75 −7.75 −7.75 −7.75 −7.75
ERMSE 1.07 11.14 4.59 4.59 4.59 4.59 4.59

n = 15 EM 0.1187 0.1189 0.1071 0.1135 0.1135 0.1135 0.1135 0.1135
ERB −0.31 −0.14 −10.02 −4.61 −4.61 −4.61 −4.61 −4.61
ERMSE 1.04 6.90 4.06 4.06 4.06 4.06 4.06

n = 20 EM 0.1186 0.1187 0.1105 0.1148 0.1148 0.1148 0.1148 0.1148
ERB −0.35 −0.24 −7.16 −3.55 −3.55 −3.55 −3.55 −3.55
ERMSE 1.02 4.83 3.21 3.21 3.21 3.21 3.21

n = 25 EM 0.1188 0.1189 0.1136 0.1163 0.1163 0.1163 0.1163 0.1163
ERB −0.18 −0.10 −4.54 −2.27 −2.27 −2.27 −2.27 −2.27
ERMSE 1.02 4.26 2.91 2.91 2.91 2.91 2.91

Table 2: Artificial population. Comparison between θ̂P , θ̂HR, and θ̂GS(i), i = 0, . . . , 5,
under srs and based on 1500 simulations when εi ∼ N(0, xi).

θ̂P θ̂HR θ̂GS(0) θ̂GS(1) θ̂GS(2) θ̂GS(3) θ̂GS(4) θ̂GS(5)

n = 2 EM 7.8848 7.8765 2.9993 5.1570 5.1973 4.5827 7.5436 4.6098
ERB −0.31 −0.42 −62.08 −34.80 −34.29 −42.06 −4.63 −41.72
ERMSE 1.98 381.39 196.87 181.37 168.99 271.92 166.56

n = 5 EM 7.93 7.92 6.56 6.53 6.09 6.92 7.75 6.93
ERB 0.12 0.07 −17.07 −17.42 −22.98 −12.52 −2.05 −12.41
ERMSE 1.15 249.04 3972.53 10308.0 239.20 52.56 241.99

n = 10 EM 7.9174 7.9125 7.7984 7.3250 7.2977 8.3402 7.7542 8.3820
ERB 0.10 0.04 −1.41 −7.39 −7.74 5.45 −1.96 5.97
ERMSE 1.04 2280.8 1158.4 1304.9 7514.3 90.49 8194.3

n = 15 EM 7.9026 7.9007 7.4872 7.7206 7.7160 7.5939 7.8457 7.5965
ERB −0.09 −0.11 −5.34 −2.39 −2.45 −3.99 −0.81 −3.96
ERMSE 1.04 13.08 8.38 8.44 10.34 7.46 10.28

n = 20 EM 7.9083 7.9059 7.6335 7.7987 7.7954 7.7079 7.8891 7.7097
ERB −0.02 −0.05 −3.49 −1.40 −1.44 −2.55 −0.26 −2.53
ERMSE 1.01 8.92 6.18 6.22 7.35 5.70 7.31

n = 25 EM 7.9018 7.9008 7.7083 7.8287 7.8263 7.7620 7.8960 7.7633
ERB −0.10 −0.11 −2.54 −1.02 −1.05 −1.87 −0.17 −1.85
ERMSE 1.01 7.55 5.57 5.59 6.41 5.29 6.38
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Table 3: Artificial population. Comparison between θ̂P , θ̂HR, and θ̂GS(i), i = 0, . . . , 5,
under srs and based on 1500 simulations when εi ∼ N(0, x2

i ).

θ̂P θ̂HR θ̂GS(0) θ̂GS(1) θ̂GS(2) θ̂GS(3) θ̂GS(4) θ̂GS(5)

n = 2 EM 7.8664 7.7853 2.9941 5.2532 5.2686 4.5617 8.2338 4.5886
ERB 0.52 −0.52 −61.74 −32.87 −32.68 −41.71 5.21 −41.37
ERMSE 2.05 757.36 309.19 295.23 328.02 1242.0 323.08

n = 5 EM 7.8544 7.83 6.3771 8.5598 8.3352 6.6944 7.4650 6.6986
ERB 0.37 0.01 −18.51 9.38 6.51 −14.46 −4.61 −14.40
ERMSE 1.25 449.10 3180.1 2183.1 484.70 58.25 495.35

n = 10 EM 7.8352 7.8212 −0.9800 7.3812 7.3679 6.4771 7.6864 6.5205
ERB 0.12 −0.06 −112.52 −5.68 −5.85 −17.23 −1.78 −16.68
ERMSE 1.11 511547 282.03 300.80 6304.7 54.19 5767.6

n = 15 EM 7.8172 7.8082 7.3894 7.6211 7.6161 7.4952 7.7443 7.4977
ERB −0.11 −0.22 −5.58 −2.61 −2.68 −4.22 −1.04 −4.19
ERMSE 1.07 8.72 5.55 5.60 6.87 4.93 6.84

n = 20 EM 7.8239 7.8174 7.5405 7.7039 7.7003 7.6139 7.7926 7.6157
ERB −0.02 −0.11 −3.65 −1.56 −1.60 −2.71 −0.42 −2.68
ERMSE 1.05 5.90 4.22 4.24 4.94 3.92 4.92

n = 25 EM 7.8193 7.8143 7.6166 7.7355 7.7328 7.6695 7.8013 7.6708
ERB −0.08 −0.14 −2.67 −1.15 −1.19 −2.00 −0.31 −1.98
ERMSE 1.04 4.90 3.79 3.81 4.26 3.66 4.24

estimator θ̂HR can be used under general sampling and this can be done by using equation
(1) with suggested extensions. Therefore, we will compare the two estimator θ̂P and θ̂HR

under proportional to size and without replacement (πps) sampling design.
For the USPOP population, consider the variable X := Total as the size variable. Un-

der πps, draw a random sample of size n = 2, 4, 6, 8 by using procedure surveyselect

of the SAS Institute. With the same number of simulations (i.e. 1500) and from each sim-
ulation, estimate θ = 11.9% by θ̂HR and by θ̂P . Based on 1500 simulations, compute EM,
ERB, and ERMSE. Due to the sampling limitation (the relative size of each sampling unit
should not exceed 1/n), we can not take n greater than 8. Further, repeat the same ideas
for the artificial population when X is the size variable. The results are summarized in
Tables 4, 5, and 6.

3.1 Results and Conclusions

From Tables 1, 2, and 3, we can conclude the following:

• The proposed estimator θ̂P has a negligible relative bias, especially for small values
of n and approaches zero with increasing n.

• For all values of n, θ̂P has lowest empirical relative mean squares error (ERMSE)
compared with other estimators. Further, ERMSE(θ̂P ) and ERMSE(θ̂HR) are ap-
proximately the same for large sample size n.
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Table 4: US population. Comparison between θ̂P and θ̂HR under πps sampling design
and based on 1500 simulations.

n = 2 n = 4 n = 6 n = 8

θ̂P θ̂HR θ̂P θ̂HR θ̂P θ̂HR θ̂P θ̂HR

EM 0.1191 0.1279 0.1193 0.1215 0.1188 0.1197 0.1186 0.1191
ERB 0.04 7.46 0.22 2.04 0.23 0.57 −0.35 0.02
ERMSE 26.08 3.84 2.09 4.74

Table 5: Artificial population. Comparison between θ̂P and θ̂HR under πps sampling
design and based on 1500 simulations when εi ∼ N(0, xi).

n = 2 n = 4 n = 6 n = 8

θ̂P θ̂HR θ̂P θ̂HR θ̂P θ̂HR θ̂P θ̂HR

EM 7.9014 7.7544 7.9192 7.9600 7.9151 7.8977 7.9273 7.9214
ERB −0.10 −1.96 0.12 0.64 0.07 −0.15 0.22 0.15
ERMSE 210.94 21.40 8.88 4.45

Table 6: Artificial population. Comparison between θ̂P and θ̂HR under πps sampling
design and based on 1500 simulations when εi ∼ N(0, x2

i ).

n = 2 n = 4 n = 6 n = 8

θ̂P θ̂HR θ̂P θ̂HR θ̂P θ̂HR θ̂P θ̂HR

EM 7.832 7.6643 7.8360 7.8463 7.8349 7.7943 7.8396 7.8277
ERB 0.08 −2.06 0.13 0.26 0.12 −0.40 0.18 0.03
ERMSE 181.16 20.64 9.12 4.78

• The assumption that the coefficient of variation for the auxiliary variable Cx plus
other conditions are crucial for θ̂GS and can give worst results if Cx is estimated
from samples especially for small values of n. Cx is computed from the population
in our calculations.

From Tables 4, 5, and 6 we notice that the two estimators have a negligible relative
bias. However, the proposed estimator θ̂P do much better than the θ̂HR estimator in term
of ERMSE for n = 2, 4, 6, 8.

The Natural Resources Inventory (NRI) is a real survey conducted by the US De-
partment of Agriculture’s Natural Resources Conservation Service (NRCS), in cooper-
ation with Iowa State University’s Center for Survey Statistics and Methodology. The
sample design is based on a stratified two stage area sample of all US lands (http://
www.nrcs.usda.gov/). In stratified sampling design, usually we are drawing a small
sample size (NRI as an example). In such situations, one can apply θ̂P to each strata since
the estimator θ̂P has negligible relative bias and has the smallest empirical relative mean
squares error among all other estimators discussed in this paper.

From the above discussions, we can conclude that the estimator θ̂P can be used under
general sampling design and has the smallest empirical relative mean squares error among
all other estimators discussed in this paper especially when the sample size is small. Since
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θ̂P has negligible bias and to avoid accumulation of bias from strata to strata, the estimator
θ̂P can be used in stratified sampling design, by applying θ̂P to each strata.
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