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Abstract: An important task in building regression models is to decide which
regressors should be included in the final model. In a Bayesian approach,
variable selection can be performed using mixture priors with a spike and a
slab component for the effects subject to selection. As the spike is concen-
trated at zero, variable selection is based on the probability of assigning the
corresponding regression effect to the slab component. These posterior in-
clusion probabilities can be determined by MCMC sampling. In this paper
we compare the MCMC implementations for several spike and slab priors
with regard to posterior inclusion probabilities and their sampling efficiency
for simulated data. Further, we investigate posterior inclusion probabilities
analytically for different slabs in two simple settings. Application of variable
selection with spike and slab priors is illustrated on a data set of psychiatric
patients where the goal is to identify covariates affecting metabolism.

Zusammenfassung: Ein wesentliches Problem der Regressionsmodellierung
ist die Auswahl der Regressoren, die ins Modell aufgenommen werden. In
einem Bayes-Ansatz kann Variablenselektion durchgeführt werden, indem
als a-priori-Verteilung für die Regressionseffekte der in Frage kommenden
Variablen eine Mischverteilung mit zwei Komponenten gewählt wird: die
erste Komponente mit einer Spitze bei Null wird als “spike”, die zweite
flache Komponente als “slab” bezeichnet. Die Selektion der Variablen erfolgt
dann auf Basis der posteriori Wahrscheinlichkeit, mit der ein Effekt der slab-
Komponente zugeordnet wird. Diese sogenannten Inklusionswahrscheinlich-
keiten können mit Hilfe der MCMC-Ziehungen geschätzt werden. Im vor-
liegenden Beitrag werden MCMC-Implementierungen für verschiedene spike-
and-slab-Verteilungen hinsichtlich der Inklusionswahrscheinlichkeiten und
der Effizienz ihrer Schätzung anhand von simulierten Daten verglichen. Außer-
dem untersuchen wir die Inklusionswahrscheinlichkeiten für verschiedene
Slab-Komponenten in zwei einfachen Fällen auch analytisch. Schließlich
wird Variablenselektion mit Spike-and-Slab-Priori-Verteilungen auf einen me-
dizinischen Datensatz angewendet, um Regressoren, die den Stoffwechsel
von psychiatrischen Patienten beeinflussen, zu indetnifizieren.

Keywords: Dirac Spike, SSVS, NMIG prior, Normal Scale Mixtures, Poste-
rior Inclusion Probability.

1 Introduction
A major task in building a regression model is to select those regressors from a large set
of potential covariates which should be included in the final model. Correct classification
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of regressors as having (nearly) zero or non-zero effects is important: omitting regressors
with non-zero effect will lead to biased estimates whereas inclusion of regressors with
zero effect causes loss in estimation precision and predictive performance of the model.

For the regression coefficients, many Bayesian variable selection methods use mixture
priors with two components: a spike concentrated around zero and a comparably flat slab.
In this paper we compare spike and slab priors with two different specifications for the
spike: absolutely continuous and spikes defined by a point mass at zero, so called Dirac
spikes. We consider here Dirac spikes combined with different normal slabs and priors
where both spike and slab are normal distributions as in George and McCulloch (1993)
or scale mixtures of normals as in Ishwaran and Rao (2005) and Konrath, Kneib, and
Fahrmeir (2008).

Bayesian variable selection with spike and slab priors can be accomplished by MCMC
methods, but depending on the type of the spike the specific implementations differ: A
Dirac spike requires computation of marginal likelihoods, i.e. integrating over the pa-
rameters subject to selection, in each MCMC iteration. This is not necessary for spikes
specified by an absolutely continuous distribution. However, regression effects are not
shrunk exactly to zero and therefore the dimension of the model is not reduced during
MCMC. In this paper we compare posterior inclusion probabilities under different spike
and slab priors as well as their MCMC sampling efficiency.

The rest of the paper is structured as follows. Section 2 describes the basic model and
the two types of spike and slab priors. Implementation of MCMC sampling schemes is
outlined for both spike types in Section 3 and Section 4 presents results from a simulation
study comparing five different spike and slab priors on simulated data. To get further in-
sight, posterior inclusion probabilities are investigated analytically in two simple settings
for Dirac spikes combined with different slabs in Section 5. Section 6 illustrates applica-
tion of Bayesian variable selection on a data set where the goal is to identify covariates
which have an effect on metabolism of psychiatric patients. Finally, Section 7 summa-
rizes the results and indicates modifications for the slab component to be considered in
further research.

2 Model Specification

2.1 The Linear Regression Model
In the standard linear regression model the outcome y = (y1, . . . , yN) of subjects i =
1, . . . , N is modeled as a linear function of the regressors with a Gaussian error term,

y = 1µ+Xα+ ε , ε ∼ N
(
0, Iσ2

)
. (1)

Hereα is the d×1 vector of regression coefficients. We assume that the covariate vectors
are centered with the null vector as mean, so that X′1 = 0 and the mean µ is constant
over all models. As the columns of the design matrix are orthogonal to the unit vector,
the log-likelihood can be written as

l(y|µ,α, σ2) = −N
2
log(2πσ2)− 1

2σ2

(
N(ȳ − µ)2 + (yc −Xα)′(yc −Xα)

)
,
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where yc = y − ȳ denotes the vector of centered responses.
In a Bayesian approach, model specification is completed with priors for the model pa-

rameters (µ, σ2,α). We assume a prior of the structure p(µ, σ2,α) = p(µ, σ2)p(α|σ2, µ)
with the usual uninformative prior for mean and error variance

p(µ, σ2) =
1

σ2
, (2)

and use spike and slab priors for the regression coefficients α.

2.2 Spike and Slab Priors
Mixture priors with spike and slab components have been used extensively for variable
selection, see e.g. Mitchell and Beauchamp (1988), George and McCulloch (1993, 1997)
and Ishwaran and Rao (2005). The spike component, which concentrates its mass at
values close to zero, allows shrinkage of small effects to zero, whereas the slab component
has its mass spread over a wide range of plausible values for the regression coefficients.
To specify spike and slab priors we introduce indicator variables δ = (δ1, . . . , δd) where δj
takes the value 1, if αj is allocated to the slab component and we denote by αδ the vector
comprising those elements of α where δj = 1. We consider priors, where regression
effects allocated to the spike component are independent of each other and independent
of αδ a priori, whereas elements of αδ may be dependent. These spike and slab priors
can be written as

p(α|δ) = pslab(αδ)
∏

j:δj=0

pspike(αj) ,

where pspike and pslab denote the univariate spike and the multivariate slab distribution
respectively. The prior inclusion probability p(δj = 1) of the effect αj is specified hierar-
chically as

p(δj = 1|ω) = ω , ω ∼ B(aω, bω) .

Note, that the indicator variables δj are independent conditional on the prior inclusion
probability ω, but dependent marginally. This is eventually not justified in practical ap-
plications and could be relaxed by using an individual inclusion probability ωj for each
regression effect αj ,

p(δj = 1|ωj) = ωj , ωj ∼ B(aωj
, bωj

) .

Prior information on individual inclusion probabilities could be incorporated by appropri-
ate choice of the parameters aωj

and bωj
.

The introduction of indicator variables allows classification of regression effects as
(practically) zero, if δj = 0 and non-zero otherwise. Variable selection is based on the
posterior probability of assigning the corresponding regression effect to the slab com-
ponent, i.e. the posterior inclusion probability p(δj = 1|y), which can be sampled by
MCMC methods. Basically two different types of spikes have been proposed in the lit-
erature: Spikes specified by an absolutely continuous distribution and spikes specified by
a point mass at zero, called Dirac spikes. Specifications of priors for both spike types,
which are compared in this paper, are presented in more detail in the following sections.
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2.2.1 Absolutely Continuous Spikes

To specify an absolutely continuous spike, in principle any unimodal continuous distribu-
tion with mode at zero could be used. Usually absolutely continuous spikes are combined
with slabs, where the components of αδ are independent conditional on δ, i.e.

pslab(αδ) =
∏

j:δj=1

pslab(αj) .

Here we consider priors spike and slab components are specified by the same distribution
family but with a variance ratio r considerably smaller than 1,

r =
varspike(αj)

varslab(αj)
<< 1 . (3)

We use only spikes and slabs which can be represented as scale mixtures of normal dis-
tributions with zero mean,

αj|δj, ψj ∼ N (0, r(δj)ψj) , ψj|ϑ ∼ p(ψj|ϑ) ,

where

r(δj) =

{
r if δj = 0

1 if δj = 1

and the distribution of ψj may depend on a further parameter ϑ. In particular, we consider
normal spikes and slabs with constant ψj ≡ V (called SSVS prior) and normal mixtures of
inverse Gamma distributions (NMIG prior), where ψj ∼ G−1 (ν,Q). Priors with normal
spikes and slabs were introduced in George and McCulloch (1993) to perform stochastic
search variable selection and NMIG spikes and slabs were proposed in Ishwaran and
Rao (2003) and Ishwaran and Rao (2005) for variable selection in Gaussian regression
models and used in Konrath et al. (2008) for survival data. Note that for the NMIG prior
marginally both spike and slab component are student distributions,

pspike(αj) = t2ν(0, rQ/ν) and pslab(αj) = t2ν(0, Q/ν) .

2.2.2 Dirac Spike

A Dirac spike is specified as pspike(αj) = p(αj|δj = 0) = ∆0(αj). We combine Dirac
spikes with slab components of the form

pslab(αδ) = fN(αδ; a0,δ,A0,δσ
2) ,

where fN(x;µ,Σ) denotes the density of the multivariate N (µ,Σ)-distribution. In par-
ticular we use

• the independence slab (i-slab), where a0,δ = 0 and A0,δ = cI,

• the g-slab, where a0,δ = 0 and A0,δ = g(X′
δXδ)

−1,

• the fractional slab (f-slab), where a0,δ = (X′
δXδ)

−1X′
δyc and A0,δ = 1/b (X′

δXδ)
−1.
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Figure 1: Contour plot of different priors for 2 regressors for δ = (1, 1) and δ = (0, 0):
Dirac/i-slab (left), Dirac/g-slab (middle), Dirac/f-slab (right)

Xδ is the design matrix consisting only of those columns of X corresponding to non-
zero effects, i.e. where δj = 1. The g-slab is Zellner’s g-prior (Zellner, 1986) for these
effects and the f-slab is the corresponding fractional prior (O’Hagan, 1995). The idea of
the fractional prior is to use a fraction b of the likelihood to determine a prior distribution
for the parameters. In our specification the f-slab is not a fraction of the whole likelihood,
but only of the part containing information on the regression coefficients α. Note that
in contrast to the i-slab, regression coefficients αj are not independent conditional on δ
for g- and f-slab, where the joint distribution of all effects with δj = 1 is specified with
a variance-covariance matrix equal to a scalar multiple of the Fisher information matrix.
However, their mean is different: the g-slab is centered at the null vector, whereas the
mean of f-slab is the LS estimate of the regression effects with δj = 1. Figure 1 illustrates
the differences between the three priors for two regressors showing the contours for the
slab component for δ = (1, 1) together with the position of the spike for δ = (0, 0).

3 Inference

For both types of spike and slab priors posterior inference is feasible using MCMC meth-
ods, where the model parameters (µ, δ,α, ω, σ2) and additionally, under the NMIG prior,
the scale parametersψ = (ψ1, . . . , ψd) are sampled from their conditional posteriors. De-
pending on the type of the spike component, different sampling schemes have to be used:
Whereas for an absolutely continuous spike the indicators δj can be sampled conditionally
on the effects αj , for a Dirac spike it is essential to draw δ from the marginal posterior
p(δ|y) integrating over the parameters subject to selection, see Geweke (1996) and Smith
and Kohn (1996). This requires evaluation of marginal likelihoods in each MCMC itera-
tion. In normal regression models with conjugate priors (which are used here) analytical
integration over the regression effects is feasible and hence marginal likelihoods can be
computed rather cheaply. Details of the MCMC sampling schemes are given in the fol-
lowing two subsections.
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3.1 MCMC for Absolutely Continuous Spikes
For priors with an absolutely continuous spike the full conditional distribution of (δ,ψ)
is given as

p(δ,ψ|α, ω, µ, σ2,y) ∝
d∏

j=1

p(αj|δj, ψj)p(δj|ω)p(ψj)p(ω) ∝
d∏

j=1

p(ψj|δj, αj)p(δj|αj, ω) .

Therefore, δ and ψ can be sampled together in one block and the sampling scheme in-
volves the following steps:

(1.) Sample µ from its posterior µ|σ2,y ∼ N (ȳ, σ2/N).

(2.) Sample δ and ψ:

(2a.) For j = 1, . . . , d sample δj from

p(δj = 1|αj, ω) =
1

1 +
1− ω

ω
Lj

, Lj =
pspike(αj)

pslab(αj)
.

(2b.) For normal spikes and slabs, set ψj ≡ V . For student spikes and slabs, where
ψj ∼ G−1 (ν,Q), sample ψj from its conditional posterior

ψj|δj, αj ∼ G−1

(
ν +

1

2
, Q+

α2
j

2r(δj)

)
.

(3.) Sample ω from ω ∼ B (aω + d1, bω + d− d1) where d1 =
∑
δj .

(4.) Sampleα from the normal posterior N (aN ,AN) where A−1
N = 1

σ2 (X
′X)−1+D−1

and aN = ANX
′yc. D is a diagonal matrix with entries r(δj)ψj , j = 1, . . . , d.

(5.) Sample the error variance σ2 from the posterior σ2|yc,α ∼ G−1 (sN , SN), where
sN = (N − 1)/2 and SN = 1

2
(yc −Xα)′(yc −Xα).

3.2 Sampling Steps for a Dirac Spike
For a Dirac spike, δj = 0 implies αj = 0 and vice versa. To avoid reducibility of the
Markov chain, it is essential to draw δ from the marginal posterior

p(δ|y) ∝ p(y|δ)p(δ) ,

where effects subject to selection are integrated out. Here p(y|δ) denotes the marginal
likelihood of the linear regression model (1) with design matrix Xδ. For Dirac spikes
combined with i-, g- or f-slab on αδ the marginal likelihood can be derived analytically
as

p(y|δ) = 1√
N(2π)(N−1)/2

|Aδ|1/2

|A0,δ|1/2
Γ(sN)

SsN
N

, (4)

where sN = (N − 1)/2 and SN = 1
2
(y′

cyc − a′
δA

−1
δ aδ). aδ and Aδ are parameters of

the posterior of αδ: Aδ = ((X′
δXδ) +

1
c
I)−1 for the i-slab, Aδ = g

g+1
(X′

δXδ)
−1 for the
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g-slab and Aδ = (X′
δXδ)

−1 for the f-slab; the posterior mean is aδ = AδX
′
δyc for any

of the three slabs. Details are given in Appendix A.
With this marginalization it is possible to sample the parameters δ, σ2 and µ in one

block. Hence, the MCMC scheme for Dirac spikes involves the following steps:
(1.) Sample (δ, σ2, µ) from the posterior p(δ|y)p(σ2|y, δ)p(µ|y, δ, σ2).

(1a.) Sample each element δj of the indicator vector δ separately from p(δj =
1|δ\j,y) given as

p(δj = 1|δ\j,y) =
1

1 +
1− ω

ω
Rj

, Rj =
p(y|δj = 0, δ\j)

p(y|δj = 1, δ\j)
.

Here δ\j denotes the vector δ consisting of all elements of δ except δj . Ele-
ments of δ are updated in a random permutation order.

(1b.) Sample the error variance σ2 from the G−1 (sN , SN)-distribution.
(1c.) Sample the mean µ from the N (ȳ, σ2/N)-distribution.

(2.) Sample ω from ω ∼ B (aω + d1, bω + d− d1), where d1 =
∑
δj .

(3.) Set αj = 0 if δj = 0. Sample the non-zero elements αδ from the normal posterior
N (aδ,Aδσ

2).

For both g- and f-slab, the posterior variance covariance matrix Aδ is a scalar multiple
of the prior variance covariance matrix A0,δ. Thus for computing the marginal likelihood
(4), the determinant of Aδ is not required which speeds up sampling compared to i-slabs.

4 Simulated Data
We investigate performance of the different MCMC implementations for simulated data.
Interest lies in correct selection of regressors as well as sampling efficiency of posterior
inclusion probabilities. We expect draws of the posterior probabilities p(m)(δj = 1),
m = 1, . . . ,M to have higher autocorrelations for continuous than for Dirac spikes. It is
however not obvious which implementation will have higher computational cost in CPU
time: With a Dirac spike only coefficients with δj = 1 have to be sampled, as those with
δj = 0 are restricted exactly to zero, whereas for a continuous spike the dimension of the
model is not reduced during MCMC. On the other hand, specifying a continuous spike
will save CPU time as no marginal likelihoods have to be computed.

To investigate correct model selection we simulate 100 data sets with N = 40 obser-
vations from a linear regression model with mean µ = 1 and σ2 = 1 and nine covariates.
We consider two setups for the covariate vectors xj , which are drawn from a N (0,C)-
distribution: independent regressors, where C = I, and correlated regressors generated
as in Tibshirani (1996), where C is a correlation matrix with Cjk = ρ|j−k| with ρ = 0.8.
For both independent and correlated regressors we set three regression effects to each of
the values “2” (strong effects), “0.2” (weak effects) and “0” (zero effects).

In the simulation studies, we use an uninformative B (1, 1)-prior for ω. To mimic
Dirac spikes closely, a small variance ratio r of continuous spikes and slabs would be
preferred, however r should not be too small to avoid MCMC getting stuck in the spike
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component. Following the recommendations in George and McCulloch (1993) we set
r = 1/10000.

It is well known that the choice of the slab distribution is critical for model selection.
Our choice for the slab variance is motivated by the fact that model selection based on
Bayes factors is consistent for the g-prior with g = N (see Fernández, Ley, and Steel,
2001). Hence we choose g = N and match the variances of the other slabs to equal the
variance of the g-slab if regressors are orthogonal, i.e. we choose b = 1/N and V = 1.
For the NMIG-prior we choose ν = 5, which corresponds to a t-distribution with 10
degrees of freedom, and Q = 4.

For each data set, MCMC was run for M = 5000 iterations after a burn-in of 1000
draws. The first 500 draws of the burn-in were drawn from the full model including all
regressors.

4.1 Model Selection Performance

Posterior inclusion probabilities are estimated by their posterior mean, i.e. the average
of the inclusion probabilities p(m)(δj = 1) in the MCMC iterations. Figure 2 shows
box-plots of these estimates in the 100 simulated data sets with independent regressors.
Regressors with strong effect are perfectly classified with estimated posterior inclusion
probabilities being equal to 1 (rounded) in all 100 data sets. Variation of the estimated
posterior inclusion probabilities is high for regressors with weak and zero effect which
indicates that regression coefficients of smaller magnitude are hard to classify. Posterior
inclusion probabilities tend to be slightly smaller for the Dirac/i-slab and the Dirac/g-slab
priors than for the other priors.

For orthogonal regressors Barbieri and Berger (2004) showed that the median proba-
bility model, i.e. the model including regressors with posterior inclusion probability larger
than 0.5, is the best model with regard to predictive performance. Table 1 reports the num-
ber of data sets where each of the regressors with weak or zero effect is included in the
median probability model. Results are not shown for regressors with strong effect as these
are included in all 100 data sets under any prior. Whereas under the Dirac spike combined
with i- or g-slab classification is better for zero effects, weak effects are detected less often
than under the other three priors. Overall performance is similar for all priors with mean
misclassification rates (computed over weak and zeros effects) from 41.6 % (Dirac/f-slab)
to 43.3 % (NMIG).

Figure 3 shows the estimated posterior inclusion probabilities for simulated data with
correlated regressors. The order of regressors with strong, weak and zero effects is dif-
ferent now, to get insight in the effects of correlations which are highest for neighboring
regressors. Posterior inclusion probabilities of regressors with strong effects show more
variation than for independent regressors but are close to 1 in almost all cases. A pro-
nounced difference however occurs for regressors with weak and zero effects, which are
slightly smaller for the Dirac/g-slab and Dirac/f-slab prior but considerably higher for
priors with independent slabs (Dirac/i-slab, SSVS and NMIG) than in Figure 2. As a con-
sequence, regressors with weak and zero effects are included in the median probability
model less often under the Dirac/g-slab and Dirac/f-slab prior but more often under priors
with independent slabs, when regressors are correlated. Table 2 reports in how many data
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Figure 2: Independent regressors: Posterior inclusion probabilities of each regressor for
100 simulated data sets (s=SSVS prior, n=NMIG prior, i=Dirac/i-slab, g=Dirac/g-slab,
f=Dirac/f-slab)

sets each regressor is included in the median probability model. As estimated posterior
inclusion probabilities of regressors with strong effects are higher than 0.5 in all data sets
(except in one data set for the g-slab), only results for weak and zero effects are given.
Mean misclassification rates (computed over weak and zeros effects) are higher than for
independent regressors, but again very similar, ranging from 47.5 % (Dirac/f-slab) to 48 %
(Dirac/i-slab). Obviously the correlation structure of the prior has an effect on the poste-
rior inclusion probability when regressors are correlated. We will return to this issue in
Section 5.2, where we investigate this effect analytically, though in a simpler setting.

Further simulations carried out in Malsiner-Walli (2010) indicate that posterior in-
clusion probabilities depend on the variance of the slab component: Posterior inclusion
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Table 1: Independent regressors: Number of data sets where p̂(δj = 1) > 0.5.

Continuous spike Dirac spike
j αj SSVS NMIG i-slab g-slab f-slab
4 0.2 31 36 25 23 36
5 0.2 33 35 26 25 37
6 0.2 28 32 26 23 38
7 0 12 15 11 9 15
8 0 18 22 11 8 24
9 0 21 26 13 11 22

Table 2: Correlated regressors: Number of data sets where p̂(δj = 1) > 0.5

Continuous spike Dirac spike
j αj SSVS NMIG i-slab g-slab f-slab
3 0 62 66 58 6 19
5 0.2 66 73 60 6 22
6 0 60 66 44 5 26
7 0 55 63 48 2 18
8 0.2 67 73 50 10 26
9 0.2 57 63 52 10 30

probabilities decrease with increasing slab variance. This is another issue which we in-
vestigate analytically in Section 5 and illustrate in the application in Section 6.

4.2 Comparing Sampling Efficiencies
As MCMC draws are correlated, it is of interest to compare MCMC implementations
for the different priors with respect to their sampling efficiency. Table 3 reports mean
inefficiency factors (also called integrated autocorrelation times) for regressors with weak
and zero effects. Inefficiency factors, defined as τ = 1 + 2

∑L
l=1 ρ(l), where ρ(l) is the

empirical autocorrelation at lag l, were computed using the initial monotone sequence
estimator (Geyer, 1992) for L. If inclusion probabilities p(m)(δj = 1) are numerically
equal to 1 in all iterations, inefficiency factors cannot be computed. This occurred for
one effect in one data set under the SSVS prior and hence the average reported in Table
3 for the SSVS prior is based only on the remaining posterior inclusion probabilities.
Interestingly for correlated regressors inefficiency factors are lower for the Dirac/g-slab
and Dirac/f-slab prior and higher for priors with independent slab. This might result
from the decrease/increase of posterior inclusion probabilities: Wagner and Duller (2011)
also observed smaller inefficiency factor for low inclusion probabilities, though in logit
models.

As expected, inefficiency factors are considerably higher for priors with continuous
spikes than for Dirac spikes. Further simulations in Malsiner-Walli (2010) showed that,
for continuous spikes, the choice of the variance ratio r as well as the actual implemen-
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Figure 3: Correlated regressors: Posterior inclusion probabilities of each regressor for
100 simulated data sets (s=SSVS prior, n=NMIG prior, i=Dirac/i-slab, g=Dirac/g-slab,
f=Dirac/f-slab).

tation can have an impact on sampling efficiency: Autocorrelations and inefficiency are
lower for higher values of r, e.g. r = 1/1000 yields similar estimates for posterior in-
clusion probabilities but with less autocorrelated draws. Under the NMIG prior, poste-
rior inclusion probabilities could be computed alternatively conditional on the variance
parameters ψj as in Konrath et al. (2008), which however leads to considerably higher
autocorrelations than using the marginal t-distribution.

To assess sampling efficiency with computing time taken into account, Table 4 reports
effective sample sizes per second averaged over weak and zero effects. The effective sam-
ple size ESS = M/τ estimates the number of independent samples required to obtain a
parameter estimate with the same precision as the MCMC estimate. Results in Table 4
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Table 3: Averaged inefficiency factors

Continuous spike Dirac spike
Regressors SSVS NMIG i-slab g-slab f-slab
Independent 26.3 23.7 3.3 3.1 3.2
Correlated 30.1 27.2 3.7 2.5 2.9

Table 4: Averaged effective sample size per sec.

Continuous spike Dirac spike
Regressors SSVS NMIG i-slab g-slab f-slab
Independent 33.3 27.6 16.6 34.3 23.2
Correlated 25.1 18.9 14.9 43.3 27.1

are based on all MCMC chains, where inefficiency factors could be computed. Though
sampling efficiency is much higher for priors with Dirac spikes differences in effective
sample sizes are much less pronounced and priors with absolutely continuous spikes per-
form roughly similar to Dirac/g- and Dirac/f-slab. Even in this rather low-dimensional
model with only nine regressors, computational cost for the Dirac/i-slab prior is too high
to be outweighed by the smaller inefficiency factors. Due to lower inefficiency factors
priors with g- and f-slabs have even higher ESS/sec for correlated regressors.

5 Posterior Inclusion Probabilities

Results of the simulation study indicate that posterior inclusion probabilities largely de-
pend on the slab distribution. To get further insight into the effect of different slabs we
investigate the inclusion probability of one regressor xj conditional on δ\j for priors with
Dirac spikes (i.e. the Dirac/i-slab, Dirac/g-slab and Dirac/f-slab prior) in two simple spe-
cial cases: for orthogonal regressors and in a model with only two correlated regressors.
For simplicity we assume that the error variance σ2 is known. Details on the compu-
tation of posterior inclusion probabilities are given in Appendix B. We will denote by
s2y = 1

N
y′
cyc the sample variance of y, by ryj the sample correlation between y and xj

and by s2j =
1
N
x′
jxj the sample variance of covariate xj .

5.1 Orthogonal Regressors

For orthogonal regressors, i.e. X′X = diag(Ns2j), j = 1, . . . , d, the posterior inclusion
probability of xj can be written as a function of the LS-estimate α̂j =

ryjsy
sj

as

p(δj = 1|y, δ\j) =
1

1 + exp(h(α̂j, θ)/2)
(1− ω)

ω

, (5)
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Figure 4: Independent regressors: Posterior inclusion probability under the Dirac/i-slab
prior (for σ2 = 1, integrated over ω). Left: c = 1, different values of N ; right: N = 40,
different values of c.

where θ is the variance parameter of the slab distribution, i.e. c for the i-slab, g for the
g-slab and b for the f-slab. Under any of the three slabs, the inclusion probability does not
depend on δ\j . In particular we obtain (see Appendix B.1)

i-slab: h(α̂j, c) = −N
α̂2
js

2
j

σ2

1

1 + 1/(Ns2jc)
+ log(Ns2jc+ 1) , (6)

g-slab: h(α̂j, g) = −
Nα̂2

js
2
j

σ2

g

g + 1
+ log(g + 1) , (7)

f-slab: h(α̂j, b) = −
Nα̂2

js
2
j

σ2
(1− b)− log(b) . (8)

In formulas (6) – (8) the first term is proportional toN
α̂2
j

σ2 which, following Dey, Ishwaran,
and Rao (2008), can be interpreted as the signal of the regression coefficient contained in
the data. Hence, posterior inclusion probabilities increase with both, sample size N and
the size of the estimated effect |α̂2

j |. The second term can be interpreted as a penalty term:
It increases with the slab variance, and hence the posterior inclusion probability decreases
as a function of the slab variance. Figure 4 shows posterior inclusion probabilities under
the i-slab as a function of the LS estimate α̂ for various samples sizes N and variances
c. In contrast to i-slabs the penalty term does not depend on the scale of the regressor
under g- and f-slabs. For standardized orthogonal regressors (s2j = 1) posterior inclusion
probabilities are identical for g-slab and i-slab when Nc = g and slightly higher under
the f-slab when b = 1/g. This corresponds to the simulation results, see Figure 2.

To illustrate the dependence of posterior inclusion probabilities on the effect signal
α̂ we generated 100 data sets of size N = 200, with 21 regressors generated as inde-
pendent standard normal random variables and effects from 0 to 0.4 in increments of
0.02. Posterior inclusion probabilities were estimated under the less restrictive assump-
tion of unknown error variance using the MCMC scheme described in Section 3.2. Figure
5 shows estimated posterior inclusion probabilities for the Dirac/i-slab plotted versus α̂
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Figure 5: Simulated data: Posterior inclusion probabilities under Dirac/i-slab prior (c = 1,
N = 200) as a function of the LS-estimate α̂ (left) and of the true effect α (right).

(left panel). Posterior inclusion probabilities do not exactly equal the theoretical values
computed from formula (5), which are shown as a line. This is not surprising as the as-
sumptions for the derivation of the formula are not met exactly: Firstly, due to stochastic
variation regressors are not perfectly orthonormal and secondly, in the MCMC scheme
the marginal likelihood is computed using formula (4) with marginalization over the error
variance σ2. In the right panel of Figure 5 estimated posterior inclusion probabilities are
plotted against the “true” effect sizes α used for data generation. Conditional on α vari-
ation of the posterior inclusion probabilities is much higher as additionally the variation
LS estimate α̂ is reflected.

5.2 Two Correlated Regressors
To investigate the effect of correlation between regressors we consider a model with only
two standardized regressors x1 and x2 (i.e. s2j = 1) and assume that x1 is included in the
model, i.e. δ1 = 1. We denote by r12 = 1

N
x′
1x2 the sample correlation between x1 and x2

and by α̂2 = sy(ry2− r12ry1)/(1− r212) the LS estimate of α2 in the model including both
regressors.

We are interested in the conditional posterior inclusion probability of x2, which can
be written as a function of

h(α̂2,∼) = 2
(
log p(y|δ1 = 1, δ2 = 0, σ2)− log p(y|δ1 = 1, δ2 = 1, σ2)

)
as in equation (5). Under g- and f-slab it is straightforward to derive h(α̂2,∼) as

h(α̂2, g) = −Nα̂
2
2

σ2
(1− r212)

g

g + 1
+ log(g + 1) ,

h(α̂2, b) = −Nα̂
2
2

σ2
(1− r212)(1− b)− log(b) ,

see Appendix B.2 for details. For a given value of the LS estimate α̂2, the probability of
including x2 additionally to x1 in the model therefore decreases with the square of the
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Figure 6: Correlated regressors: Posterior inclusion probability of regressor x2, condi-
tional on δ1 = 1 (integrated over ω, N = 40). Left: g-slab, different values of r12, right:
comparing g- and i-slab for different values of r12 (sy = 2, r1y = 0.9).

correlation r12 between the two regressors. Figure 6 (left panel) shows the conditional
posterior inclusion probabilities of x2 under the Dirac/g-slab as a function of α̂2 for dif-
ferent values of r12. Obviously, for highly correlated regressors the inclusion probability
of the second regressor can be reduced dramatically.

For the Dirac/i-slab prior, simple but tedious algebra yields

h(α̂2, c) = − N

Qσ2

(
α̂2(1− r212) +

ry2sy
Nc

)2
+ log

(
Nc(1− r212) + 1 +

r212
1 + 1/(Nc)

)
,

where

Q = (1− r212) +
1

Nc
(3− r212) +

3

(Nc)2
+

1

(Nc)3
.

The first summand in the function h(α̂2, c) is different from the corresponding term for g-
and f-slab. However, as it is dominated by −Nα̂2

2

σ2 (1− r12), this difference will vanish for
increasing sample size N . Further, in contrast to g- and f-slab, the penalty term log(∼)
depends on the regressor correlation r12 leading to less penalization of the additional
regressor x2 compared both to orthogonal regressors and to g- and f-slabs. Therefore,
posterior inclusion probabilities under i-slabs will be higher for correlated regressors.
The conditional inclusion probabilities of x2 under the i-slab depend not only on α̂2, but
also on r2y and are no longer symmetric in α̂2, at least for small sample size N . This is
shown in Figure 6 (right panel), which compares the inclusion probability of x2 for g-
and i-slab for different correlations r12. Posterior inclusion probabilities are considerably
smaller under the g-slab for small absolute values of α̂2. Results from our simulations, see
Figure 3, suggest that differences in posterior inclusion probabilities under i- and g-slab
can be even more pronounced in models with more regressors.
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6 Application

We illustrate application of the different variable selection methods on a data set of psy-
chiatric patients. Metabolic disorders and weight gain are common problems and side
effects of psychiatric medication. To investigate how bodyweight and parameters of lipid
and glucose metabolism are influenced by psychiatric inpatient treatment, a prospective
study was performed at a department of the Wagner-Jauregg hospital in Upper Austria
from October 2003 to March 2004. Several lipid and glucose parameters, namely to-
tal cholesterol (chol), high density lipoprotein cholesterol (hdl), low density lipoprotein
cholesterol (ldl), triglycerides (nf) and fasting glucose (nbz) were measured at admis-
sion and at discharge of the department. Medication, if any, was assessed as prescribed at
discharge and assigned to 16 drugs or types of drugs. Additionally, several patient-related
variables were collected: age, sex, height, smoking, body mass index at admission and
duration of the stay.

The focus of our analysis is to identify covariates influencing the change in HDL,
and we used the lipid and glucose values at admission, the 16 different drug types and
all patient variables as potential regressors. Excluding observations with missing values,
leaves data on 231 patients with 27 regressors for the analysis. Pairwise correlations
between covariates are smaller than 0.1 in most cases, only three correlations are higher
than 0.4 (sex and height: r = 0.67; chol admiss and ldl admiss: r = 0.86 and drug

A and drug B: r = 0.89).
Following Gelman, Jakulin, Pittau, and Su (2008), metric covariates were standard-

ized, and dummy covariates were centered. As a first step an exploratory Bayesian analy-
sis of the unrestricted model under the prior N (0, cI) with c = 5 was carried out. Figure
7 shows the posterior estimates and 95 %-credible intervals of the regression effects. Only
for 6 covariates (covariates number 6: chol admiss, 8: hdl admiss, 9: ldl admiss, 16:
drug F, 20: drug J and 27: bmi admiss) these intervals do not contain zero, indicating
that the corresponding effects “significantly” differ from zero.

As a next step, MCMC for variable selection was run for M = 5000 iterations (after a
burn-in of 1000, with the first 500 draws of the burn-in drawn from the unrestricted model)
for Dirac spike priors and M = 50000 iterations (after 10000 burn-in with the first 5000
draws from the unrestricted model) for priors with absolutely continuous spikes. To match
the slab variances the response was standardized with the estimated residual standard
deviation (s = 15.4) of the full regression model. Hyper-parameters were chosen as in
the simulation studies: we used a variance ratio of r = 1/10000, ν = 5 and c = 1 and the
other parameters were set to g = Nc, b = 1/g, V = c and Q = 4.

Posterior inclusion probabilities were roughly equal for all covariates under the Dirac/i-
slab, the SSVS and the NMIG prior, however, considerably smaller for Dirac/g- and
Dirac/f-slab priors. Table 5 reports estimated posterior inclusion probabilities for the
covariates selected in the median probability model under the Dirac/i-slab prior. Results
correspond well with the exploratory analysis of the unrestricted model: the selected co-
variates build a subset of those identified as having a “significant” effect, and in contrast to
the exploratory analysis, Bayesian variable selection automatically controls for multiple-
testing.

From the medical point of view the goal of the analysis was to obtain a classification of
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Figure 7: HDL data: Posterior means and 95%- credible intervals for regression effects
in the unrestricted model

Table 5: HDL data: Posterior inclusion probabilities (for c = 1)

Continuous spike Dirac spike
Covariate number SSVS NMIG i-slab g-slab f-slab
8 (hdl admiss) 1.00 1.00 1.00 1.00 1.00
16 (drug F) 0.78 0.82 0.81 0.49 0.49
20 (drug J) 0.63 0.61 0.68 0.29 0.29
27 (bmi admiss) 0.56 0.53 0.62 0.34 0.32

covariates into those which have nearly zero effect and can be excluded from the model
and others which eventually affect the response variable. Therefore, variable selection
was not based on the Dirac/g- and f-slab-priors which more heavily penalize dependent
regressors than independent slabs.

Table 6 shows inefficiency factors and effective sample size per sec. averaged over all
covariates (except covariate 8). Again inefficiency factors of the posterior inclusion prob-
abilities are considerably higher under priors with continuous spikes. However, when
computational effort is taken into account again all priors except Dirac/i-slab prior per-
form similar.

Finally, to study the effect of the slab variance, we ran MCMC for different values
c = 1, 2.5, 5, 10 for the i-slab and corresponding parameters of the other priors. The
resulting posterior inclusion probability paths shown in Figure 8 for the Dirac/i-slab and
Dirac/g-slab priors, demonstrate the effect of increasing penalization of regressors for
larger slab variances.
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Table 6: HDL data: Sampling efficiency of posterior inclusion probabilities

Continuous spike Dirac spike
SSVS NMIG i-slab g-slab f-slab

Averaged inefficiency factor 57.7 43.2 3.1 2.1 2.3
Averaged effective sample size/sec. 15.6 12.8 5.9 16.9 10.9

Figure 8: HDL data: Posterior inclusion probability paths for different slab variances c
for the Dirac/i-slab prior (left) and different values of g for the Dirac/r-slab prior (right)

7 Summary and Discussion
We compared different spike and slab priors which are widely used for Bayesian vari-
able selection. Simulation studies suggest that for orthogonal regressors different priors
act rather similar when the slab variances are matched, which is confirmed by theoret-
ical results for Dirac spike priors (and known error variance). The posterior inclusion
probability of a specific regressor increases with the signal of the effect in the data and
decreases with the variance of the slab component. Compared to orthogonal regressors,
both simulations as well as theoretical results, indicate that for a given effect signal in
the data, posterior inclusion probabilities are smaller under g-and f-slabs and higher for
priors with independent slabs if regressors are correlated. This result suggests to use g-
or f-slabs in practical applications where interest is in avoiding “false positives” and inde-
pendent slabs either with Dirac or continuous spikes if the goal is not to miss eventually
important predictors.

From a computational point of view, priors with continuous spikes are a fast alternative
to the Dirac/i-slab prior as higher autocorrelations are outweighed by less computation
time. Mixing of the sampler is better for the NMIG than the SSVS prior at the cost of
a small additional computational effort. MCMC getting stuck at p(δj = 1) = 1 is more
severe for SSVS than NMIG priors, where it occurred only for regressors with strong
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effects.
A drawback of all priors considered here is that they do not well discriminate be-

tween regressors with zero and weak effects. Choosing a smaller variance for the slab
component does not solve this problem as inclusion probabilities of all effects, even of
zero effects, will increase. For Bayesian testing, (Johnson and Rossell, 2010) recently
proposed so called non-local prior densities, which are zero in the parameter space of the
null hypothesis to facilitate separation between null and the alternative. Spike and slab
priors compared in this paper could be modified in this direction with slab components
having a mode different from zero. Prior information on the size of “relevant” effects
could be incorporated by specifying either one slab or, if no information on the effect sign
is available, two slabs with a positive and a negative mode, respectively. For slabs which
are normal or NMIG, MCMC schemes presented in this work could be used with slight
modifications.
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Appendix

A Marginal Likelihoods

We consider the normal regression model (1) withN×d regressor matrix X with centered
columns, i.e. X′1 = 0 with a prior of the structure

p(µ, σ2,α) ∝ 1

σ2
p(α|σ2) . (9)

Integrating over µ we obtain

p(y|σ2,α,X) =

∫
p(y|σ2, µ,α,X)dµ =

=
1√

N(2πσ2)(N−1)/2
exp

(
− 1

2
(yc −Xα)′(yc −Xα)

)
,

where yc = y − ȳ. Further integration over α and σ2 yields the conditional marginal
likelihood p(y|σ2,X) =

∫
p(y|σ2,α,X)dα and the marginal likelihood

p(y|X) =

∫
p(y|σ2,X)

1

σ2
dσ2 .
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A.1 Conjugate Prior
Under the conjugate prior α ∼ N (a0,A0σ

2) analytical integration is feasible, and the
conditional marginal likelihood and marginal likelihood are given as

p(y|σ2,X) =
1√

N(2πσ2)(N−1)/2

|AN |1/2

|A0|1/2
exp

(
−SN

σ2

)
(10)

p(y|X) =
1√

N(2π)(N−1)/2

|AN |1/2

|A0|1/2
Γ(sN)

SsN
N

. (11)

Here aN ,AN are the moments of the posterior distribution p(α|σ2,y):

AN =
(
X′X+A−1

0

)−1
, aN = AN

(
X′yc +A−1

0 a0

)
,

and

SN =
1

2

(
y′
cyc + a′

0A
−1
0 a0 − a′

NA
−1
N aN

)
, sN =

N − 1

2
.

Special cases are the independence prior α ∼ N (0, cI) and the g-prior α ∼ N (0,
g(X′X)−1). In both cases aN = ANX

′yc and hence SN simplifies to

SN =
1

2

(
y′
cyc − a′

NA
−1
N aN

)
=

1

2
(y′

cyc − y′
cXANX

′yc) .

For the independence prior, |A0| = cd and AN = (X′X + 1
c
I)−1; for the g-prior AN =

g
g+1

(X′X)−1 and hence |AN |1/2/|A0|1/2 = (1 + g)−d/2.

A.2 Fractional Prior
The fractional prior is obtained as a fraction of the likelihood, more specific we define the
fractional prior as

p(α|σ2) ∝ p
(
yc|α, σ2

)b ∝ exp
(
− b

2σ2
(yc −Xα)′(yc −Xα)

)
.

The posterior, obtained by combining the prior with the remaining fraction of the likeli-
hood, is the normal distribution with moments

AN = (X′X)−1 , aN = (X′X)−1X′yc .

Conditional marginal likelihood and marginal likelihood can be computed from formulas
(10) and (11) with SN = y′

c(I− (1− b)X′(X′X)−1X)yc and |AN |1/2/|A0|1/2 = bd/2.

B Posterior Inclusion Probabilities
We compute posterior inclusion probabilities for a Dirac spike combined with i-, g- and
f-slab. Without loss of generality, we consider posterior inclusion of last regressor xd
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conditional on δ\d. Further, we condition on σ2 and compute the posterior inclusion
probability as

p(δd = 1|y, δ\d, σ2) =
1

1 +
p(y|δ\d, δd = 0, σ2)

p(y|δ\d, δd = 1, σ2)

(1− ω)

ω

.

We use the notation x′
jxj = Ns2j , y

′
cxj = Nsjsyryj , j = 1, . . . , d and y′

cyc = Ns2y
and denote by α̂j = syj/s

2
j = ryjsy/sj the LS-estimator of αj . It will turn out that the

conditional posterior inclusion probability of regressor xd can be written as a function of
α̂d and additional parameters θ, depending on the slab, as

p(δd = 1|y, δ\d, σ2) =
1

1 + exp(h(α̂d, θ)/2)
(1− ω)

ω

.

B.1 Orthogonal Regressors
Let δ∗ = (δ\d, 1). For orthogonal regressors, both prior and posterior covariance matrix
A0,δ∗ and Aδ∗ are diagonal matrices for any of the priors on αδ∗ considered here. De-
noting by Aδ∗,0(d), Aδ∗(d), a0,δ∗(d) and aδ∗(d) the d-th element of A0,δ∗ , Aδ∗ , a0,δ∗ and
aδ∗ , respectively, we obtain

h(α̂d, θ) = 2 log
p(y|δ\d, δd = 0, σ2)

p(y|δ\d, δd = 1, σ2)
(12)

= − 1

σ2

((
aδ∗(d)

)2
Aδ∗(d)

−
(
a0,δ∗(d)

)2
A0,δ∗(d)

)
+ log

A0,δ∗(d)

Aδ∗(d)
. (13)

Further, under any of the three slabs,(
aδ∗(d)

)2
Aδ∗(d)

=
(y′

cxd)
2

1/Aδ∗(d)
=

(Nsdsyryd)
2

1/Aδ∗(d)
=

(Nsd)
2s2dα̂

2
d

1/Aδ∗(d)
.

For the i-slab with a0,δ∗(d) = 0, A0,δ∗(d) = c and 1/Aδ∗(d) = x′
dxd + 1/c =

Ns2d + 1/c we get

(aδ∗(d))
2/Aδ∗ = Nα̂2

ds
2
d

1

1 + 1/(Ns2dc)
.

Thus, h is a function of α̂d and c, given as

h(α̂d, c) = −N α̂2
ds

2
d

σ2

1

1 + 1/(Ns2dc)
+ log(Ns2dc+ 1) .

For the g-slab, inserting a0,δ∗(d) = 0, A0,δ∗(d) = g/(Ns2d) and 1/Aδ∗(d) = (1 +
1/g)Ns2d in formula (13) yields

h(α̂d, g) = −Nα̂
2
ds

2
d

σ2

1

1 + 1/g
+ log(1 + g) .
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Finally, as for the f-slab a0,δ∗(d) = baδ∗(d), A0,δ∗(d) = 1/(bNs2d) and 1/Aδ∗(d) =
Ns2d, we have (

aδ∗(d)
)2

Aδ∗(d)
−
(
a0,δ∗(d)

)2
A0,δ∗(d)

= (1− b)Nα̂2
ds

2
d

and hence

h(α̂d, b) = −(1− b)
Nα̂2

ds
2
d

σ2
− log(b) .

B.2 Correlated Regressors

We assume s2j = 1, j = 1, 2. To compute the posterior inclusion probability of x2 when
x1 is included in the model we compare the conditional marginal likelihoods of the two
models δ = (1, 1) and δ∗ = (1, 0) by

2 log
p(y|δ∗)
p(y|δ)

= − 1

σ2

(
a′
0,δ∗A

−1
0,δ∗a0,δ∗ − a′

δ∗A
−1
δ∗ aδ∗ − a′

0,δA
−1
0,δa0,δ + a′

δA
−1
δ aδ

)
+ log

|A0,δ||Aδ∗ |
|A0,δ∗ ||Aδ|

.

This simplifies as follows:

i-slab: 2 log
p(y|δ∗)
p(y|δ)

= − 1

σ2

(
a′
δA

−1
δ aδ − a′

δ∗A
−1
δ∗ aδ∗

)
+ log

c|Aδ∗|
|Aδ|

g-slab: 2 log
p(y|δ∗)
p(y|δ)

= − 1

σ2

(
a′
δA

−1
δ aδ − a′

δ∗A
−1
δ∗ aδ∗

)
+ log(g + 1)

f-slab: 2 log
p(y|δ∗)
p(y|δ)

= − 1

σ2

(
a′
δA

−1
δ aδ − a′

δ∗A
−1
δ∗ aδ∗

)
(1− b) + log(b) .

We give details for the g-slab. Note that using the notation introduced in Section 5,

X′X = N

(
1 r12
r12 1

)
and X′yc = Nsy

(
ry1
ry1

)
.

δ∗ denotes the model with x1 as the only regressor, hence we get (as for orthogonal
regressors)

a′
δ∗A

−1
δ∗ aδ∗ =

g

g + 1
Nr2y1s

2
y .

As the corresponding term for model δ is given as

a′
δA

−1
δ aδ =

g

g + 1
ycX(X′X)−1Xyc =

g

g + 1

Ns2y
1− r212

(
r2y1 − 2r12ry1ry2 + r2y2

)
,

we get

a′
δA

−1
δ aδ − a′

δ∗A
−1
δ∗ aδ∗ =

g

g + 1

Ns2y(ry2 − ry1r12)
2

(1− r212)
,
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and finally, using α̂2 =
sy(ry2−r12ry1)

(1−r212)
, we obtain

2 log
p(y|δ∗)
p(y|δ)

= −Nα̂
2
2

σ2
(1− r212)

g

g + 1
+ log(g + 1) .

Obviously for the f-slab we have

2 log
p(y|δ∗)
p(y|δ)

= −Nα̂
2
2

σ2
(1− r212)(1− b) + log(b) .
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