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Abstract: The need of autocorrelation models for degradation data comes
from the facts that the degradation measurements are often correlated, since
such measurements are taken over time. Time series can exhibit autocorrela-
tion caused by modeling error or cyclic changes in ambient conditions in the
measurement errors or in degradation process itself. Generally, autocorrela-
tion becomes stronger when the times between measurements are relatively
short and becomes less noticeable when the times between process are longer.
In this paper, we assume that the error terms are autocorrelated and have an
autoregressive of order one, AR(1). This case is a more general case of the
assumption that the error terms are identically and independently normally
distributed. Since when the error terms are uncorrelated over the time, the
estimate of the parameter of AR(1) is approximately zero.

If the parameter of AR(1) is unknown, one can estimate it from the data set.
Using two real data sets, the model parameters are estimated and compared
with the case when the error terms are independent and identically distributed.
Such computations are available by using procedures AUTOREG and model in
SAS. Computations show that an AR(1) can be used as a useful tool to remove
the autocorrelation between the residuals.

Zusammenfassung: Der Bedarf von Autokorrelationsmodellen für Abbau-
daten kommt von der Tatsache, dass Abbaumessungen oft korreliert sind, da
solche Messungen über die Zeit hinweg genommen sind. Zeitreihen können
eine Autokorrelation aufweisen, verursacht durch Modellfehler oder zyk-
lische Änderungen in den Umgebungsbedingungen in den Messfehlern oder
im Abbauverfahren selbst. Im Allgemeinen wird die Autokorrelation stärker,
wenn die Zeiten zwischen den Messungen verhältnismäßig kurz sind, und sie
wird weniger deutlich, wenn die Zeiten während des Ablaufs länger sind. In
dieser Arbeit nehmen wir an, dass die Fehlerterme autokorreliert sind und
einem autoregressiven Prozess der Ordnung 1, AR(1), unterliegen. Dieser
Fall ist ein allgemeinerer Fall der Annahme, dass die Fehlerterme identisch
und unabhängig normalverteilt sind. Sind die Fehlerterme unkorreliert über
die Zeit, dann ist die Schätzung des Parameters im AR(1)-Modell ungefähr
Null.

Fall der Parameter im AR(1)-Modell unbekannt ist, kann man ihn aus den
Daten schätzen. Wir verwenden zwei reale Datensätze und schätzen die
Modellparameter und vergleichen sie dann mit dem Fall wenn die Fehler-
terme unabhängig und identisch verteilt sind. Solche Berechnungen stehen
zur Verfügung durch Benutzen der Prozeduren AUTOREG und Modell in SAS.
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Die Berechnungen zeigen, dass ein AR(1)-Modell verwendet werden kann,
als nützliches Werkzeug, die Autokorrelation zwischen den Residuen zu ent-
fernen.

Keywords: Reliability, Degradation, Mixed-effect, Two-stage Method, AR(1),
Autocorrelation, Generalized Linear Model.

1 Introduction

With today’s high technology many products are designed to work without failures for
many years. Thus it is very difficult to analyze the time data with traditional reliability
analysis. A recent approach assess products reliability using degradation measurements of
product performance has to pre-specify a level of a degradation and obtain measurements
at different times. Thus the time-to-failure is defined as the time when the degradation of
a unit reaches a critical level.

In this literature, Lu and Meeker (1993) considered a non-linear mixed effect model
and used two-stage method to estimate the model parameters under the assumption that
the errors term are independent and identically distributed and the autocorrelation is neg-
ligible. They applied their model to fatigue crack growth data. Meeker and Hamda (1995)
gave a statistical tools and concepts that are used in designing a high reliability product
using degradation data. Meeker and Escobar (1998) described accelerated degradation
models that are related to physical failure mechanisms.

Lu, Meeker, and Escobar (1996) compared degradation analysis and traditional failure
time analysis. They showed that degradation analysis provides more precision than the
traditional failure time analysis. Wu and Shao (1999) established the asymptotic prop-
erties of the ordinary and weighted least squares estimators under the non-linear mixed-
effect degradation model.

Oliveria and Colosimo (2004) compared between three estimation methods to estimate
the time-to-failure distribution, namely analytical, approximate, and numerical methods.

For more details on degradation analysis, see Al-Haj Ebrahem and Higgins (2005),
Meeker, Escobar, and Lu (1998), and Al-Haj Ebrahem (2007).

To assume independent and identically distributed random errors in a degradation
model is not a good idea in general. Since the observed degradation on a specimen over
time is a time series and a time series data can exhibit autocorrelation caused by mod-
eling errors or by cyclic changes in ambient conditions in the measurement errors or in
degradation process itself.

In this paper, we will assume that the errors in degradation model are autocorrelated
and has AR(1). The model parameters are estimated and compared with the case when
the errors term are independent and identically distributed.

This paper is organized as follows: In Section 2, the general degradation model as-
suming the error terms has AR(1) is presented. In Section 3, applications to real data sets
and results are discussed. Our conclusions and recommendations are given in Section 4.
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2 Degradation Model with AR(1) Error Terms
The general degradation model commonly used in reliability analysis has the following
form:

yij = D(tij, βi0, βi1, . . . , βip) + εij , i = 1, . . . , n and j = 1, . . . ,mi , (1)

where yij are the observed degradation measurements of the ith unit and jth measurement,
tij is the time of the jth measurement for the ith unit, (βi0, βi1, . . . , βip) is a vector of the
(p + 1) unknown parameters for the ith unit, some of these parameters are random from
unit to unit and some are fixed, D(tij, βi0, βi1, . . . , βip) is the actual path of the ith, n is the
number of tested units, mi is the total number of inspections of unit i, and εij are random
errors assumed to have an AR(1), i.e.

εij = ϕiεij−1 + λij , |ϕi| < 1 , (2)

where λij are random and assumed to be independent and identically (iid) normally dis-
tributed with zero mean and variance σ2 and independently from the random effect pa-
rameters.

Remark 1: Model (1) has not a zero mean and can be rewritten as

yij −D(tij, βi0, βi1, . . . , βip) = ϕiεij−1 + λij . (3)

In application, you can subtract the mean from the process.

Remark 2: From equation (2), we can see that, if ϕi = 0, then we have the iid case.

Remark 3: In this paper, we assumed the error terms are AR(1); however, higher orders
AR(p) can be assumed.

For the ith unit, assume model (1) is a linear or it can be written in a linear form.
Rewrite (1) in the following matrix form:

Y i = X iβi
+ εi , (4)

where

Y t
i = (yi1, . . . , yimi

) , βt

i
= (βi0, βi1, . . . , βip) , εti = (εi1, . . . , εimi

)

and

X i =


1 ti11 ti12 . . . ti1p
1 ti21 ti22 . . . ti2p
...

...
...

...
...

1 timi1 timi2 . . . timip

 . (5)

To obtain the parameters estimate we modify the first stage of the two stage method
suggested by Lu and Meeker (1993).

It can be shown that (Brockwell and Davis, 2003)

cov(εi) = σ2Vi , (6)
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where

Vi =
1

1− ϕ2
i


1 ϕi ϕ2

i . . . ϕmi−1
i

ϕi 1 ϕi . . . ϕmi−2
i

...
...

...
...

ϕmi−1
i ϕmi−2

i ϕmi−3
i . . . 1

 . (7)

Since Vi is a positive definite matrix, there exists a non-singular matrix Ti such that TiT
t
i =

Vi. From left, multiplying model (4) by T−1
i , we have

Y ∗
i = X∗

iβ
∗
i
+ ε∗i , (8)

where
Y ∗

i = T−1
i Y i , X∗

i = T−1
i X i , and ε∗i = T−1

i εi .

Further,

cov(ε∗i ) = cov
(
T−1
i εi, ε

t
i(T

−1
i )t

)
= T−1

i cov(εi, ε
t
i)(T

−1
i )t

= σ2T−1
i Vi(T

−1
i )t

= σ2I(n) , (9)

where I(n) is the identity matrix of size n× n and t is the transpose operator. Therefore,

β̂
∗
i
=

(
(X∗

i )
tX∗

i

)−1
(X∗

i )
t Y ∗

i

=
(
X t

iV
−1
i X i

)−1
X t

iV
−1
i Y i . (10)

So the generalized least squares estimate of β
i

are given by

β̂
Gi

=
(
X t

iV
−1
i X i

)−1
X t

iV
−1
i Y i , (11)

with
cov

(
β̂
Gi

)
= σ2

(
X t

iV
−1
i X i

)−1
.

The ordinary least squares estimate, β̂
si

of β
i

is given by

β̂
si
=

(
X t

iX i

)−1
X t

iY i ; (12)

with
cov

(
β̂
si

)
= σ2

(
X t

iX i

)−1
.

In general, Ti is not unique but the estimate of β
i

is invariant of the choice of Ti. It can be
shown that (Rawlings, Pantula, and Dickey, 2001),

T−1
i =



√
1− ϕ2

i 0 0 0 . . . 0
−ϕi 1 0 0 . . . 0
0 −ϕi 1 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 −ϕi 1

 (13)
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such that
T−1
i Vi

(
T−1
i

)t
= I .

Remark 4: If ϕi = 0 and from (13), the generalized least squares estimate of β
i

is the
same as the ordinary least squares estimate, β̂

si
.

Fuller (1996), reported (pages 477, and 519) that, the variance of any linear contrast,
λtβ̂

Gi
is less than or equal to the variance of the corresponding linear contrast λtβ̂

si
;

further, the ordinary least squares estimate will be an over or under estimate of the true
variance.

If ϕi is unknown, then it can be estimated from the data set; in this case, we can replace
ϕi by ϕ̂i in the covariance matrix, Vi, in the above discussions. Fuller (1996), Theorem
9.7.1, gives an asymptotic results supporting such situations. The computations can be
implemented by using the procedure AUTOREG of SAS Institute.

When model (1) is a non-linear model, Gallant (1987) and Seber and Wild (1989)
described methods for estimating the model parameters with autocorrelated errors. We
will not describe such theories since such computations can be implemented by using
procedure model of SAS Institute.

3 Real Data Applications and Results

Two real data sets will show that using AR(1) for an error terms can be used to remove
the autocorrelation between the residuals even when ϕ̂i are slightly differ from zero. One
can note that, in the above discussions, if ϕi = 0 then the two estimators are obtained
from equations (11) and (12) are equivalent.

3.1 Laser Data

Consider the Laser data from Meeker and Escobar (1998), Table C.17, page 642. From
Figure 13.14, page 338 of Meeker and Escobar (1998), it can be assumed that the data
can be fitted by the simple linear model

yij = θ1i + θ2itj + εij , i = 1, . . . , 15 , j = 1, . . . , 16 . (14)

The data will be analyzed when the error terms are iid (0, σ2) and when the error terms
are AR(1). Table 1 summarizes the results. One can notice that when we are assuming the
error terms are AR(1), is actually we are adding one more parameter to the model. When
the error terms are iid (0, σ2) for model (14), and from Table(1), it is very clear that for the
most paths, except path 5 and maybe path 1, the residuals are positively correlated, since
the p-value of Durbin-Watson test for testing positive autocorrelation are significant. Such
correlations can be removed, for most cases, when the error terms are AR(1). However,
the few cases were AR(1) can’t remove the correlations between the residuals, in fact, we
need an AR(2) or of higher order to overcome such situations. For example, for path 10,
we need an AR(2).
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θ̂1 θ̂2 ϕ̂ σ̂ p+ve p−ve

Path1 OLS −0.044 0.003 0.0409 0.0640 0.9360
AR(1) −0.069 0.003 −0.251 0.0410 0.2512 0.7488

Path2 OLS 0.127 0.002 0.0163 0.0032 0.9968
AR(1) 0.146 0.002 −0.398 0.0138 0.0268 0.9732

Path3 OLS 0.458 0.002 0.0099 0.0423 0.9577
AR(1) 0.446 0.002 −0.247 0.0099 0.2736 0.7264

Path4 OLS 0.3267 0.002 0.0807 < 0.0001 1.0000
AR(1) 0.2490 0.002 −0.717 0.0299 0.0035 0.9965

Path5 OLS −0.337 0.002 0.0138 0.1265 0.8735
AR(1) −0.333 0.002 −0.152 0.0145 0.2562 0.7438

Path6 OLS −0.238 0.003 0.0377 0.0091 0.9909
AR(1) −0.243 0.003 −0.424 0.0326 0.1823 0.8177

Path7 OLS −0.157 0.002 0.0463 0.0059 0.9941
AR(1) −0.173 0.002 −0.222 0.0458 0.0060 0.9940

Path8 OLS 0.179 0.002 0.0160 0.0006 0.9994
AR(1) 0.137 0.002 −0.583 0.0107 0.1185 0.8815

Path9 OLS 0.132 0.002 0.0149 0.0104 0.9896
AR(1) 0.120 0.002 −0.424 0.0130 0.2467 0.7533

Path10 OLS −0.020 0.003 0.0310 0.0017 0.9983
AR(1) −0.087 0.003 −0.431 0.0250 0.0473 0.9527

Path11 OLS 0.151 0.002 0.0115 0.0023 0.9977
AR(1) 0.131 0.002 −0.427 0.0095 0.1325 0.8675

Path12 OLS 0.147 0.002 0.0939 0.0001 0.9999
AR(1) 0.079 0.002 −0.659 0.0542 0.1855 0.8145

Path13 OLS −0.230 0.002 0.0365 0.0232 0.9768
AR(1) −0.214 0.002 −0.246 0.0361 0.1205 0.8795

Path14 OLS −0.267 0.002 0.0218 0.0153 0.9847
AR(1) −0.233 0.002 −0.298 0.0207 0.1021 0.8979

Path15 OLS −0.032 0.002 0.0164 0.0305 0.9695
AR(1) −0.021 0.002 −0.317 0.0157 0.1443 0.8557

Table 1: Laser data. Comparison between the ordinary least squares estimate and general-
ized least squares estimate when the error terms are AR(1). Based on the Durbin-Watson
test, p+ve is the p-value for testing positive autocorrelation and p−ve is the p-value for
testing negative autocorrelation.

From Figure 1 we can notice that, from the plot of predicted and actual values of y,
all observations are within the 95% confidence bound. Further, the ACF and PACF plots
for the residuals are supporting our assumption, i.e. the error terms are AR(1).

In addition to our believes that the degradation data are correlated, one can assume
the error terms are AR(1), when the iid (0, σ2) assumption is not a valid condition and
without changing the model.
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Figure 1: Predicted actual values, ACF and PACF for Path(1) for Laser Data (left) and for
Fatigue Crack Growth Data (right).

3.2 Fatigue Crack Growth Data
From Hudak, Saxena, Bucci, and Malcolm (1978), Lu and Meeker (1993) considered
fatigue-crack-growth data as an a motivation example. They fitted the non-linear model

yij = − 1

θ2i
log(1− 0.90θ2iθ1iθ2itj) + εij , i = 1, . . . , 21 , j = 1, . . . ,mi , (15)

when εij are iid (0, σ2). From their analysis, the values of r1, the 1st order autocorrelation
of the residuals, are high for some paths like path 7, 12 and 19, and such autocorrelations
are significant from our analysis.



198 Austrian Journal of Statistics, Vol. 40 (2011), No. 3, 191–200

θ̂1 θ̂2 ϕ̂ σ̂ p+ve p−ve

Path1 OLS 5.324 1.229 0.00679 0.0941 0.9159
AR(1) 5.292 1.297 0.387 0.00694 0.2404 0.7596

Path2 OLS 4.663 1.257 0.00193 0.7836 0.2164
AR(1) 4.669 1.238 −0.703 0.00174 0.4999 0.5001

Path3 OLS 4.469 1.534 0.00624 0.0174 0.9831
AR(1) 4.404 1.655 0.694 0.00552 0.2035 0.7965

Path4 OLS 4.387 1.515 0.00690 0.0841 0.9159
AR(1) 4.350 1.598 0.448 0.00693 0.3207 0.6793

Path5 OLS 4.387 1.471 0.00663 0.2530 0.7470
AR(1) 4.384 1.477 0.081 0.00697 0.3575 0.6425

Path6 OLS 4.323 1.416 0.00877 0.1946 0.8054
AR(1) 4.314 1.441 0.133 0.00920 0.2644 0.7356

Path7 OLS 4.255 1.481 0.00549 0.0202 0.9798
AR(1) 4.255 1.507 0.477 0.00513 0.3757 0.6243

Path8 OLS 4.165 1.480 0.00447 0.4121 0.5879
AR(1) 4.165 1.479 −0.032 0.00471 0.3377 0.6623

Path9 OLS 3.965 1.574 0.00663 0.3799 0.6206
AR(1) 3.969 1.560 −0.133 0.00682 0.3435 0.6565

Path10 OLS 3.798 1.711 0.00476 0.1916 0.8084
AR(1) 3.796 1.718 0.154 0.00494 0.2231 0.7769

Path11 OLS 3.692 1.780 0.00586 0.0510 0.9490
AR(1) 3.590 2.053 0.809 0.00541(0.5748) 0.0625(0.4252) 0.9375

Path12 OLS 3.511 2.129 0.00792 0.0066 0.9934
AR(1) 3.466 2.278 0.675 0.00671 0.2189 0.7811

Path13 OLS 3.383 1.784 0.00833 0.2598 0.7402
AR(1) 3.383 1.792 0.035 0.00873 0.3104 0.6896

Path14 OLS 3.532 0.851 0.00482 0.4701 0.5299
AR(1) 3.536 0.824 −0.249 0.00495 0.4059 0.5941

Path15 OLS 3.481 1.426 0.00447 0.4669 0.5331
AR(1) 3.481 1.426 −0.061 0.00468 0.3812 0.6188

Path16 OLS 3.037 1.991 0.00505 0.1338 0.8662
AR(1) 3.400 1.968 0.218 0.00519 0.3631 0.6369

Path17 OLS 3.053 1.569 0.00726 0.5081 0.4919
AR(1) 3.053 1.565 −0.093 0.00759 0.4563 0.5437

Path18 OLS 2.920 1.624 0.00595 0.1771 0.8229
AR(1) 2.919 1.641 0.161 0.00616 0.2146 0.7854

Path19 OLS 2.717 1.957 0.00201 0.9240 0.0760
AR(1) 2.717 1.941 −0.513 0.00184 0.7919 0.2081

Path20 OLS 2.687 1.621 0.00287 0.7298 0.2702
AR(1) 2.697 1.621 −0.245 0.00292 0.4950 0.5050

Path21 OLS 2.603 1.592 0.00292 0.7561 0.2439
AR(1) 2.603 1.576 −0.305 0.00293 0.4346 0.5654

Table 2: Fatigue crack growth data. Comparison between the ordinary least squares esti-
mate and generalized least squares estimate when the error terms are AR(1).
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Model (15) can be fitted by using procedure model of SAS Institute, when the error
terms are either iid (0, σ2) or AR(1). Table 2 gives both cases along with the p-value of
Durbin-Watson test. Table 2 shows that the correlation between the residuals for all paths
are removed at α = 0.05 when the error terms are AR(1). However, if we look to path
(11) and at α = 0.10, for example, we need an AR(2) assumption, the p-values are given
in parenthesis. Further, the plot of predicted and actual values of logcrak, Figure 2 shows
that all observations are within the 95% confidence bound. Further, the ACF and PACF
plots for the residuals are supporting our assumption, i.e. the error terms are AR(1).

4 Conclusions and Recommendations

In this paper, we assume that the errors in the degradation model are autcorrelated and has
AR(1). This assumption covers the case where the error terms are iid (0, σ2). The model
parameters are estimated and compared when the error terms has AR(1) and when they
are iid (0, σ2). Computations show that an AR(1) can be used as a useful tool to remove
the autcorrelation between the residuals.
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