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Abstract: Various groups of robust estimators of the correlation coefficient
are introduced. The performance of most prospective estimators is examined
at contaminated normal distributions both on small and large samples, and
the best of the proposed robust estimators are revealed.
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1 Introduction
The aim of robust methods is to ensure high stability of statistical inference under the
deviations from the assumed distribution model. Less attention is devoted in the litera-
ture to robust estimators of association and correlation as compared to robust estimators
of location and scale (Huber, 1981; Hampel, Ronchetti, Rousseeuw, and Stahel, 1986;
Maronna and Yohai, 2006). However, it is necessary to study these problems due to
their widespread occurrence (estimation of the correlation and covariance matrices in re-
gression and multivariate analysis, estimation of the correlation functions of stochastic
processes, etc.), and also because of the instability of classical methods of estimation in
the presence of outliers in the data.

Consider the problem of estimation of the correlation coefficient ρ between the ran-
dom variables X and Y . Given the observed sample (x1, y1), . . . , (xn, yn) of a bivariate
random variable (X, Y ), the classical estimator of the correlation coefficient ρ is given by
the sample correlation coefficient

r =

n∑
i=1

(xi − x̄)(yi − ȳ)[
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2
]1/2 , (1)

where x̄ = n−1
∑n

i=1 xi and ȳ = n−1
∑n

i=1 yi are the sample means.
On the one hand, the sample correlation coefficient r is a statistical counterpart of the

correlation coefficient ρ. On the other hand, it is the maximum likelihood estimator of ρ
for the bivariate normal distribution density
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where the parameters µ1 and µ2 are the means, σ1 and σ2 are the standard deviations of
the random variables X and Y , respectively (Kendall and Stuart, 1963).



148 Austrian Journal of Statistics, Vol. 40 (2011), No. 1 & 2, 147–156

To illustrate the necessity in robust counterparts of the sample correlation coefficient,
consider Tukey’s gross error model (Tukey, 1960) described by the mixture of normal
densities (0 ≤ ε < 0.5)

f(x, y) = (1− ε)N (x, y; 0, 0, 1, 1, ρ) + εN (x, y; 0, 0, k, k, ρ′) , (3)

where the first and the second summands generate “good” and “bad” data, respectively;
0 ≤ ε < 0.5, k > 1, sgn(ρ′) = −sgn(ρ). In general, the characteristics of “bad” data,
namely their component means, standard deviations and especially the correlation ρ′ may
significantly differ from their counterparts in the first summand.

Further, we are mostly interested in estimation of the correlation coefficient ρ of
“good” data regarding “bad” data as outliers. In model (3), the sample correlation co-
efficient is strongly biased with regard to ρ so that the presence of outliers in the data
can completely destroy the sample correlation coefficient of “good” data up to the change
of its sign (Gnanadesikan and Kettenring, 1972; Devlin, Gnanadesikan, and Kettenring,
1975).

The paper pursues two main goals: first, to give a brief overview of various approaches
to robust estimation of correlation; second, to exhibit theoretical and experimental re-
sults on the performance of a selected subset of robust estimators generated by those
approaches.

The paper is organized as follows. In Section 2, we successively describe various
groups of robust estimators of the correlation coefficient focusing on the precise results
concerned with Huber’s minimax approach to robust estimation. In Section 3, the Monte
Carlo performance of several prospective robust estimators on small and large samples is
presented. In Section 4, some conclusions are drawn.

2 Main Approaches to Robust Correlation

2.1 Robust Correlation via Direct Robust Counterparts of the Sam-
ple Correlation Coefficient

A natural approach to robustify the sample correlation coefficient is to replace the linear
procedures of averaging by the corresponding nonlinear robust counterparts (Gnanadesikan
and Kettenring, 1972)

rα(ψ) =
Σαψ(xi − x̂)ψ(yi − ŷ)

(Σαψ2(xi − x̂)Σαψ2(yi − ŷ))1/2
, (4)

where x̂ and ŷ are some robust estimators of location, for instance, the sample medians
med(x) and med(y); ψ = ψ(z) is a monotonic function, say, Huber’s bounded linear
score function: ψ(z, k) = max[−k,min(z, k)]; Σα is a robust analogue of a sum.

The latter transformation is based on trimming the outer order statistics with subse-
quent summation of the remaining ones:

Σαzi = nTα(z) = n(n− 2r)−1

n−r∑
i=r+1

z(i) , 0 ≤ α ≤ 0.5 , r = [α(n− 1)] ,
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where [·] stands for the integer part. For α = 0, the operations of ordinary and of robust
summation coincide: Σ0 = Σ. The following versions of estimator (4)

rα =
Σα(xi −med(x))(yi −med(y))

[Σα(xi −med(x))2Σα(yi −med(y))2]1/2

with α = 0.1, 0.2 were used in Gnanadesikan and Kettenring (1972); Devlin et al. (1975);
Shevlyakov and Vilchevsky (2002). For α = 0.5, x̂ = med(x), ŷ = med(y), ψ(z) = z,
formula (4) yields the correlation median estimator (Pasman and Shevlyakov, 1987; Falk,
1998)

r0.5 = rCOMED =
med((x−med(x))(y −med(y)))

MAD(x)MAD(y)
,

where MAD(z) = med(|z −med(z)|) stands for the median absolute deviation.

2.2 Robust Correlation via Nonparametric Measures

An estimation procedure can be endowed with robustness properties by using a rank statis-
tics. The best known of them are the quadrant (sign) correlation coefficient (Blomqvist,
1950)

rQ = n−1

n∑
i=1

sgn(xi −med(x))sgn(yi −med(y)) , (5)

that is the sample correlation coefficient between the signs of deviations from medians,
and the Spearman rank correlation coefficient rS that is the sample correlation coefficient
between the observation ranks (Spearman, 1904). It is noteworthy that the aforementioned
nonparametric estimators can be also regarded as the representatives of the class (4) of
estimators with the specific choices of the class parameters: say, choosing α = 0 and
ψ(z) = sgn(z) in (4), we get the rQ.

2.3 Robust Correlation via Robust Regression

The problem of estimation of the correlation coefficient is directly related to the linear
regression problem of fitting the straight line of the conditional expectation (Kendall and
Stuart, 1963).

E(X | Y = y) = µ1 + β1(y − µ2) , E(Y | X = x) = µ2 + β2(x− µ1) .

For the bivariate normal distribution (2), ρ2 = β1β2. Hence, using robust estimators of
slope, we arrive at the robust estimator of the form (Pasman and Shevlyakov, 1987)

rREG =

√
β̂1β̂2 . (6)

For instance, we may use the least absolute values (LAV) estimators and the least
median squares (LMS) estimators (Rousseeuw, 1984).
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2.4 Robust Correlation via Robust Principal Variables
Consider the following identity for the correlation coefficient ρ (Gnanadesikan and Ket-
tenring, 1972)

ρ =
var(U)− var(V )

var(U) + var(V )
, (7)

where U = (X/σ1 + Y/σ2)/
√
2, V = (X/σ1 − Y/σ2)/

√
2 are the principal variables

such that cov(U, V ) = 0, var(U) = 1 + ρ, var(V ) = 1− ρ.
Introducing a robust scale functional S(X) : S(aX + b) = |a|S(X), we may write

S2(·) for a robust counterpart of variance. Then a robust counterpart for (7) is given by

ρ∗(X,Y ) =
S2(U)− S2(V )

S2(U) + S2(V )
. (8)

By substituting the sample robust estimates for S into (8), we obtain robust estimates for
ρ (Gnanadesikan and Kettenring, 1972)

ρ̂ =
Ŝ2(U)− Ŝ2(V )

Ŝ2(U) + Ŝ2(V )
. (9)

One of the possibilities is to use Huber’s M -estimators of scale for S(X) implicitly
defined by the equation

∫
χ(x/S(X)) dF (x) = 0, where χ is a score function (Huber,

1981).
The choice of the median absolute deviation Ŝ = MAD(x) in (9) (the corresponding

score function is χMAD(x) = sgn(|x| − 1)) yields a remarkable robust estimator called
the MAD correlation coefficient (Pasman and Shevlyakov, 1987)

rMAD =
MAD2(u)−MAD2(v)

MAD2(u) + MAD2(v)
, (10)

where u and v are the robust principal variables

u =
x−med(x)√
2MAD(x)

+
y −med(y)√
2MAD(y)

, v =
x−med(x)√
2MAD(x)

− y −med(y)√
2MAD(y)

. (11)

Choosing Huber’s trimmed standard deviation estimators as Ŝ (see Huber, 1981,
p. 121), we obtain the trimmed correlation coefficient:

rTRIM =

n−n2∑
i=n1+1

u2(i) −
n−n2∑

i=n1+1

v2(i)

n−n2∑
i=n1+1

u2(i) +
n−n2∑

i=n1+1

v2(i)

, (12)

where u2(i) and v2(i) are the ith order statistics of the squared robust principal variables; n1

and n2 are the numbers of trimmed observations.
The general formula (12) yields the following limit cases: (i) the sample correlation

coefficient r with n1 = 0, n2 = 0 and with the classical estimators (the sample means
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for location and the standard deviations for scale) in its inner structure; (ii) the median
correlation coefficient with n1 = n2 = [(n− 1)/2]

rMED =
med2(|u|)−med2(|v|)
med2(|u|) + med2(|v|)

. (13)

Note that the estimators rMAD (10) and rMED (13) are asymptotically equivalent.
The other possibilities are connected with the use in (9) of the highly efficient and

robust estimators of scale Sn and Qn proposed by Rousseeuw and Croux (1993):

Sn = cSmedimedj(|xi − xj|) , Qn = cQ{|xi − xj|; i < j}(k) , (14)

where k = C2
h, h = [n/2] + 1, cS , and cQ are the constants chosen to provide consistency

of estimation of the standard deviation of a normal distribution (Rousseeuw and Croux,
1993). The corresponding robust estimators of correlation are denoted by rSn and rQn.

2.5 Minimax Variance Robust Estimation of Correlation
The class of robust estimators of correlation (9) based on robust principal variables (11)
turned out to be one of most advantageous: Huber’s minimax variance approach to robust
estimation (Huber, 1981) is realized just in this class of estimators.

In Shevlyakov and Vilchevsky (2002) it is shown that the trimmed correlation coeffi-
cient rTRIM (12) is asymptotically minimax with respect to variance for ε-contaminated
bivariate normal distributions

f(x, y) ≥ (1− ε)N (x, y; 0, 0, 1, 1, ρ) , 0 ≤ ε < 1 . (15)

This result holds under the underlying independent component distribution densities
with unknown but equal variances (the parameters of location of the random variables X
and Y are assumed known)

f(x, y) =
1

σ
√
1 + ρ

g

(
u

σ
√
1 + ρ

)
1

σ
√
1− ρ

g

(
v

σ
√
1− ρ

)
, (16)

where σ is the standard deviation; ρ is the correlation coefficient, u and v are the principal
variables u = (x + y)/

√
2, v = (x− y)/

√
2; g(x) is a symmetric density belonging to a

certain class G.
The idea of introducing class (16) is quite plain: for any pair (X, Y ), the trans-

formation U = X + Y , V = X − Y gives the uncorrelated random principal vari-
ables (U, V ), actually independent for densities (16). Thus, estimation of their scales
S(U) = σ

√
1 + ρ and S(V ) = σ

√
1− ρ solves the problem of estimation of corre-

lation between X and Y with the use of the estimators of Subsection 2.4, since ρ =
[S(U)2 − S(V )2]/[S(U)2 + S(V )2]. Thus, class (9) of estimators entirely corresponds
to class (16) of distributions, and this allows to extend Huber’s results on minimax M -
estimators of location and scale to estimation of the correlation coefficient.

Given the sample (x1, y1), . . . , (xn, yn) from the distribution with density (16), the
following estimation procedure is considered:
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1. the initial data {xi, yi}n1 are transformed to their principal components ui = (xi +
yi)/

√
2, vi = (xi − yi)/

√
2, i = 1, . . . , n;

2. M -estimates of scale Ŝ(U) and Ŝ(V ) are computed as the solutions to the equations∑
χ(ui/Ŝ(U)) = 0 and

∑
χ(vi/Ŝ(V )) = 0, where χ(·) is a score function;

3. the estimator ρ̂ is taken in the form of (9).

In Shevlyakov and Vilchevsky (2002) it is shown that under regularity conditions the
estimator ρ̂ is consistent and asymptotically normal with the following variance

var(ρ̂) =
2(1− ρ2)2

n
V (χ, g) , V (χ, g) =

∫
χ2(x)g(x) dx(∫
xχ′(x)g(x) dx

)2 . (17)

where n−1V (χ, g) is the asymptotic variance of M -estimators of scale.
Formula (17) for asymptotic variance has two factors: the first depends only on ρ, the

second n−1V (χ, g) is the asymptotic variance of M -estimators of scale (Huber, 1981).
Thus Huber’s minimax variance estimators of scale in the gross error model (15) can be
directly applied for the minimax variance estimation of the correlation coefficient giving
the trimmed correlation coefficient rTRIM.

The levels of trimming n1 and n2 of the minimax trimmed correlation coefficient
rTRIM depend on the contamination parameter ε: n1 = n1(ε) and n2 = n2(ε) (Shevlyakov
and Vilchevsky, 2002). In particular, the minimax variance estimator rTRIM takes the
following limit forms:

• as ε→ 1, it tends to the median correlation coefficient rMED;

• if ε = 0, it is equivalent to the sample correlation coefficient r.

Thus, the trimmed correlation coefficient rTRIM may be regarded as a correlation ana-
log of the classical Huber’s robust estimators of location and scale, namely, the trimmed
mean and standard deviation.

2.6 Minimax Bias Robust Estimation of Correlation
Monte Carlo experiments (Gnanadesikan and Kettenring, 1972; Devlin et al., 1975; Pas-
man and Shevlyakov, 1987) show that estimator’s bias under contamination seems to be
even a more informative characteristic of robustness than estimator’s variance.

To the best of our knowledge, the first result in minimax bias robust estimation of
the correlation coefficient belongs to Huber (1981) in the class of estimators r0 (4), the
quadrant correlation coefficient rQ (5) is asymptotically minimax with respect to bias at
the mixture F = (1− ε)G+ εH with G and H centrosymmetric in R2.

Consider again the class of bivariate independent component distributions (16) with
the corresponding estimator (9). Interestingly, its asymptotic bias has the same structure
as its asymptotic variance:

E(ρ̂n)− ρ = bn + o (1/n) with bn(χ, g) = −2ρ(1− ρ2)

n
V (χ, g) , (18)
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where V (χ, g) is given by formula (17). Hence, due to the structure of formula (18), the
problem of minimax bias estimation of ρ is equivalent to the problem of minimax variance
estimation of a scale parameter. Since the latter problem is solved in Huber (1981), we
directly arrive at the aforementioned robust estimators, namely, the trimmed correlation
coefficient(12) and its limit form, the median correlation coefficient(13). Thus, the me-
dian correlation coefficient is simultaneously the asymptotically minimax bias and mini-
max variance estimator of the correlation coefficient at ε-contaminated bivariate normal
distributions(15).

Furthermore, by the same reasons, the median correlation coefficient is the most B-
and V -robust estimator in the sense of Theorems 9 and 10 (Hampel et al., 1986, pp. 142-
143).

2.7 Robust Correlation via the Rejection of Outliers

The preliminary rejection of outliers from the data with the subsequent application of
a classical estimator (for example, the sample correlation coefficient) to the rest of the
observations defines the two-stage group of robust estimators of correlation. Their variety
wholly depends on the variety of the rules for detection and/or rejection of multivariate
outliers based on using discriminant, component, factor analysis, canonical correlation
analysis, projection pursuit, etc. (for instance, see Atkinson and Riani, 2000; Hawkins,
1980; Rousseeuw and Leroy, 1987).

Each robust procedure of estimation inherently possesses the rule for rejection of out-
liers (for example, see Huber, 1981; Hampel et al., 1986), and it may seem that then there
is no need for any independent procedure for rejection, at least if to aim at estimation, and
therefore no need for two-stage procedures of robust estimation. However, a rejection
rule may be quite informal, for example, based on a prior knowledge about the nature of
outliers, and, in this case, its use can improve the efficiency of estimation.

3 Performance Evaluation: Monte Carlo Study

In this section, we compare the Monte Carlo performance (50000 trials) of the most
prospective robust estimators of the correlation coefficient from Subsection 2.5 and Sub-
section 2.6 at the bivariate normal distribution and at the ε-contaminated bivariate normal
distribution (3) both on small (n = 20) and large samples (n = 1000).

Since the quadrant correlation coefficient rQ (5) is the minimax bias estimator in
the class (4) of estimators, it is also included in Monte Carlo study. To provide its
unbiasedness at the bivariate normal distribution, we use the following transformation:
r∗Q = sin(1

2
πrQ) (Kendall and Stuart, 1963).

The rMAD and rMED correlation coefficients are defined by formulas (10) and (13),
respectively; the trimmed correlation coefficient rTRIM (12) is taken with the following
values of trimming parameters n1 = n2 = [0.2n].

The best performance values of estimators’ expectations and variances are boldfaced
starred in Tables 1 and 2.
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Table 1: Normal distribution: ρ = 0.9.
n = 20 n = 1000

E(r) nvar(r) E(r) nvar(r)

r 0.895∗ 0.049∗ 0.899 0.036∗

r∗Q 0.858 0.352 0.899 0.233
rTRIM 0.873 0.123 0.899 0.069
rMAD 0.852 0.292 0.899 0.101
rMED 0.832 0.311 0.899 0.101
rSn 0.871 0.164 0.900 0.062
rQn 0.881 0.103 0.900 0.045

Table 2: Contaminated normal distribution: ρ = 0.9, ρ′ = −0.9, k = 10.
n = 20 n = 1000

E(r) nvar(r) E(r) nvar(r)

r −0.330 8.771 −0.747 1.435
r∗Q 0.710 0.084∗ 0.779 0.649
rTRIM 0.810 0.210 0.812 0.104
rMAD 0.838 0.322 0.887∗ 0.124
rMED 0.795 0.434 0.887∗ 0.125
rSn 0.844∗ 0.189 0.880 0.100
rQn 0.844∗ 0.191 0.874 0.084∗

4 Concluding Remarks
Normal distribution. From Table1 it follows that

1) on small and large samples, the best is the sample correlation coefficient r both in
bias and variance;

2) the rMAD and rMED estimators are close to each other in performance, however, the
rMAD is better in bias on small samples;

3) on large samples, estimator’s biases can be neglected, but not their variances;

4) the best estimator among robust estimators is the rQn.

Contaminated normal distribution. From Table 2 it follows that
1) the sample correlation coefficient r is catastrophically bad under contamination;

2) on small samples, the best estimators are the rSn and rQn both with respect to bias
and to variance;

3) on large samples, the rSn and rQn are superior in variance, but the MAD and median
correlation coefficients are better in bias confirming their asymptotic minimax bias
properties;

4) under heavy contamination, estimator’s bias is a more informative characteristic
than its variance.
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The former Monte Carlo studies of robust estimators of correlation (Gnanadesikan
and Kettenring, 1972; Devlin et al., 1975; Pasman and Shevlyakov, 1987; Shevlyakov and
Vilchevsky, 2002) show that the estimators based on robust principal variables, namely,
rTRIM, rMAD, and rMED, generally dominate over all the other robust estimators intro-
duced in Section 2 including direct robust counterparts of the sample correlation coeffi-
cient (rCOMED and r0.2), nonparametric rQ and rS, regression and two-stage estimators. In
our Monte Carlo study, we have obtained that the rQn estimator is better than the others,
so we may conclude that it is generally the best over the initially chosen set of estimators.
However, its computation is much more time consuming than of its competitors.
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