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Abstract: Active learning refers to the settings in which a machine learn-
ing algorithm (learner) is able to select data from which it learns (selecting
points and then obtaining their labels), and by doing so aims to achieve better
accuracy (e.g., by avoiding obtaining training data that is redundant or unim-
portant). Active learning is particularly useful in cases where the labeling
cost is high. A common assumption is that an active learning algorithm is
aware of the details of the underlying learning algorithm for which it obtains
the data. However, in many practical settings, obtaining precise details of the
learning algorithm may not be feasible, making the underlying algorithm in
essence a black box – no knowledge of the internal workings of the algorithm
is available, and only the inputs and corresponding output estimates are ac-
cessible. This makes many of the traditional approaches not applicable, or
at the least not effective. Hence our motivation is to use the only data that
is accessible in black box settings – output estimates. We note that accuracy
will improve only if the learner’s output estimates change. Therefore we pro-
pose active learning criterion that utilizes the information contained within
the changes of output estimates.

Keywords: Active Learning, Sampling, Experiment Design, Black Box Set-
tings, Model Independent, Output Estimates.

1 Introduction
The goal of supervised learning is to learn a function that allows accurately predicting the
output for previously unseen inputs. A function is learned from the training data consist-
ing of inputs and outputs (labels) from the unknown target function. A popular phrase
in computer science, “Garbage in, Garbage Out” summarizes well the importance of the
training data in the learning process. Obtaining output values (labeling) often incurs a
cost (in terms of money, effort, time, availability, etc.). While the cost of obtaining an
output value is often the same, the degree to which a training point allows us to approx-
imate the function varies (Figure 1). The goal of active learning (AL) is to select input
points to label as to maximize the accuracy of the learned function. What makes the AL
task challenging is that we have to predict the improvement in the accuracy of the learned
function with regard to the input point before its output value (label) is obtained. This is
because, once the output value is obtained, it incurs a cost.

A common assumption is that an active learning algorithm is aware of the details of
the underlying learning algorithm for which it obtains the data (Figure 2a) (Settles, 2009).
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(a) (b) (c)

Figure 1: Utilizing training points selected by an active learning method (1c), allows to
more accurately predict the true values (1a), in comparison with selecting training points
randomly (1b) (Settles, 2009).
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Figure 2: For Black Box models (2b) only the inputs and outputs are accessible, internal
workings are not accessible, unlike for White Box models (2a).

However, in many practical settings, obtaining details of the learning algorithm may not
be feasible, e.g., learning algorithm could be very complex, consisting of many models
and modules that are developed independently. For example, the most accurate predic-
tive model of the NetFlix Challenge was an ensemble of over 100 models, developed by
members in different parts of the world (Bell and Koren, 2007). Even if model details
are available, developing active learning algorithms for complex models could be very
difficult. In addition, active learning criterion may need to be reformulated each time the
underlying model changes. Hence, in many situations, the underlying model is in practi-
cality a black box – we can pass the inputs into the model and obtain the output estimates,
but the inner workings of the model are unknown (Figure 2b).

Many active learning methods are inapplicable in black box settings, since they rely
on the knowledge of at least some aspect of the model’s workings, as indicated by recent
surveys (Rubens, Kaplan, and Sugiyama, 2010; Settles, 2009). Variance-based active
learning approaches are applicable, but are not effective for a number of reasons as out-
lined in Section 3.3. Since no information about the model is available, we propose to
define an active learning criterion based on the indirect information available about the
model – it’s output estimates. We note that model’s accuracy may improve only if its out-
put estimates change (as a result of adding a new training point). In an attempt to speed
up the improvements in accuracy of the model estimates, we propose to estimate the use-
fulness of labeling based on the magnitude of its impact on the estimates. We show that
defining an active learning criterion by taking into account changes in the output estimates
is a promising practical approach.



N. Rubens at al. 127

2 Problem Formulation

Supervised Learning Let us provide a brief formulation of supervised learning task
– learning a function from training data. An input variable is considered to be a multi-
dimensional data point and is denoted by a vector x ∈ Rp, where p is a number of at-
tributes/features. The set of all points is denoted by X . The target function that we are
trying to approximate is denoted by f , and its output value (also referred to as label) is
denoted as f(x) = y ∈ R, for simplicity we may also consider y to be a numerical label.
The set of training input points is denoted by X, and these points along with their corre-
sponding output values are referred to as a training set, i.e. T = {(xi, yi}xi∈X. The task
of supervised learning is, given a training set, to learn an estimate f̂ of the target function
f . We measure how accurately the learned function predicts the true output values by the
generalization error: G(f̂) =

∑
x∈X L

(
f(x), f̂(x)

)
. In practice, however, f(x) is not

available for all x ∈ X ; it is therefore common to approximate the generalization error by
the test error: Ĝ(f̂) =

∑
x∈X∗ L

(
f(x), f̂(x)

)
P (x), where X∗ refers to the test set, and

prediction errors are quantified by a loss function L. For convenience we use the squared

error (SE): LSE

(
f(x), f̂(x)

)
=
(
f(x)− f̂(x)

)2
.

Active Learning We consider that we are allowed to sequentially select which points
will be labeled. The active learning criterion aims to estimate the usefulness (in terms
of generalization error) of labeling an input xi (and adding it to the training set T ) as:
Ĝ(xi) = Ĝ(f̂T ∪(xi,yi)). For example, if we consider labeling a point xj or a point xk,
then we would estimate their usefulness by an active learning criterion, i.e. Ĝ(xj) and
Ĝ(xk), and select the one that will result in a smaller generalization error. Note that we
need to estimate the usefulness of labeling the point without knowing its actual label.
The goal of active learning can then be stated as selecting an input point x to be la-
beled, so that after adding it to the training set the generalization error will be minimized:
argminxĜ(f̂T ∪(x,y)).

Black-box Settings In black-box settings the details of learned function f̂ are not ac-
cessible, only its output estimates ŷ = f̂(x) are accessible.

3 Proposed Approach

Traditional model-based active learning approaches tend to aim at reducing the model er-
ror (i.e. the error of model parameters), which is hoped would result in the improvement
of predictive error. However, in black box settings no information about the underlying
model is assumed to be available. Therefore many of the traditional active learning meth-
ods are not effective or not even applicable in these settings. On the other hand, the output
estimates are easily accessible. Motivated by this we aim at developing an active learning
that utilizes the information contained within the output estimates.
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3.1 Derivation

Let us provide the derivation and justifications of the proposed active learning criterion.
The generalization error measures how well the estimated output values approximate the
true output values. We note that in the calculation of the generalization error, the true
output values are not affected by the addition of the new training point, while the estimates
of the output values do change. Therefore, we propose to estimate the effect of a new
training point on the value of the generalization error in terms of changes in the estimates
of the output values.

First, let us reformulate the goal of minimizing the generalization error in terms of
the changes in its value that adding a training point causes. Let us denote the generaliza-
tion error when the number of training points is equal to t by Gt, the index of the next
training point xδ by δ; and the generalization error after the output value yδ is obtained
by Gt+1. Let us express Gt+1 as: Gt+1 = Gt − (Gt − Gt+1). The value of Gt is fixed in
advance (since we are considering a sequential scenario). The value of Gt+1 depends on
the choice of δ. In order for Gt+1 to be minimized the difference between generalization
errors Gt and Gt+1 needs to be maximized i.e.: minδ Gt+1 = Gt −maxδ(Gt −Gt+1). So
the original task of minimizing the generalization error could be reformulated as maxi-
mizing the difference between the generalization errors Gt and Gt+1 i.e.: argminδ Gt+1 =
argmaxδ(Gt−Gt+1). Let us denote ŷt as the estimates of output values when the number
of training samples is equal to t; and ŷt+1 as the estimates of output values after the value
of yδ was obtained and added to the training set. Let us rewrite the difference between gen-
eralization errors Gt and Gt+1 (also referred to as △G) in terms of a difference between
ŷt and ŷt+1: △G = Gt −Gt+1 = ∥ŷt − ŷt+1∥2 + 2 ⟨ŷt+1 − ŷt,y − ŷt+1⟩. Let us denote
the first term as T1 = ∥ŷt − ŷt+1∥2, and the second term as T2 = 2 ⟨ŷt+1 − ŷt,y − ŷt+1⟩.
Note that this decomposition is different from the standard bias-variance decomposition.

Estimating the value of term T2 relies on the estimate of y. In the current settings,
the number of training samples is small, so the estimate of y is likely to be unreliable.
However, estimating the value of term T1 requires only the estimate of a single value
y∗δ ∈ y, so overall the estimate of T1 is less likely to be error-prone than that of T2.

Let us investigate if T1 alone is a good predictor of △G. Let us consider three possible
cases of the location of ŷt+1 (an element of ŷt+1) in relation to the corresponding elements
ŷt and y, as illustrated in Figure 4. In case (b), adding a training point improves the
estimate of the true output value. In this case, maximizing T1 also maximizes △G. In
case (a), adding a training point deteriorates the estimate of the true output value. In
case (c), adding a training point causes the estimate to overshoot the true output value.
In both cases (a) and (c) maximizing T1 does not maximize △G. In Figure 3, we show
the distribution of the location of ŷt+1 relative to ŷt and y (plotted from the data from the
numerical experiment described in Section 4). Case (b) is much more frequent than cases
(a) and (c). Even when cases (a) and (c) do occur, the probability of the output estimate
significantly deteriorating is low. Since T1 is less prone to error and is more likely to be
applicable, we use it as an estimator of △G and utilize it to define the proposed active
learning criterion as:

△ĜProposed(f̂T ∪(xδ,yδ)) = L(ŷt, ŷt+1) =
∑
x∈X

L(f̂T (x), f̂T ∪(xδ,yδ)(x)) .
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P (ŷt+1)

16% 84%

y∗

Figure 3: Distribution of the estimates
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Figure 4: ŷ after the training point δ
is added to the training set (making the
number of training points equal to t+1).

Figure 5: T1 = ∥ŷt − ŷt+1∥ and the
value that it tries to approximate △G
(Section 3.1). Most importantly, high
values of ∥ŷt − ŷt+1∥2 should corre-
spond to high values of △G, since those
are the points that are likely to be cho-
sen.
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Algorithm 1 Pseudocode of Proposed Method.
# △Ĝ estimates changes in predictive error that labeling an item xδ would allow to achieve
function △Ĝ(f̂T ∪(xδ,yδ))

# learn a preference approximation function f̂ based on the current training set T
f̂T =learn(T )

# for each possible output of an item xδ e.g. {1, 2, . . . , 5}
for yδ in Y

# add a hypothetical training point (xδ, yδ)
T (δ) = T ∪ (xδ, yδ)
# learn a new approximation function f̂ based on the new training set T (δ)

f̂T (δ) =learn(T (δ))
# for each unlabeled point
for x in X∗

# record the differences between outputs estimates
# before and after a hypothetical training point (xδ, yδ) was added to the training set T
△Ĝ = △Ĝ−

(
f̂T (x)− f̂T (δ) (x)

)2
return △Ĝ

We are not able to calculate the actual value of the above criterion since the output
value yδ is not known. However, we can approximate criterion by obtaining its expected
value as: △ĜProposed(xδ) ≈

∑
x∈X Ey∈YL(f̂T (x), f̂T ∪(xδ ,y)(x)). By assuming no prior

knowledge about the label of the candidate point, we can represent it by a non-informative
uniform distribution. Utilizing the mean squared loss function the above criterion could
be written as:

△ĜProposed(xδ) ≈
∑
x∈X

1

|Y|
∑
y∈Y

(
f̂T (x)− f̂T ∪(xδ ,y) (x)

)2
,

where 1/ |Y| is a normalizing constant since we consider all equiprobable outputs y ∈ Y
of an item xδ. The point to be labeled is then selected as argmaxx∈X △ĜProposed(f̂T ∪(xδ ,y)).
The effectiveness of the proposed criterion is evaluated empirically in Figure 5.

3.2 Considerations
Outlier Robustness Outlier is a point that is numerically distant from the rest of the
data. In current settings, were the number of training samples is assumed to be very small,
selecting an outlier for labeling provides little benefit (limited amount of information, and
potentially negative effect on the accuracy of the learned function). Many AL methods
select points to label based on their uncertainty, and therefore tend to select outliers due
to inherent uncertainty of their labels. Proposed method is only slightly affected by this,
since uncertainty component is much smaller than the influence component (e.g. labeling
less certain, but more influential point (b), is by far preferable to rating an uncertain
outlier point). If an outlier has a strong effect on the learned function resulting in changes
of many estimates, proposed active learning method will be affected strongly, and will
then tend to favor outliers. It is therefore recommended to use learning methods that
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are robust to outliers; or identify and remove outliers from a set of candidate points for
labeling (Andersen, 2008).

Both the proposed active learning criterion and many of the outlier detection methods
(Hodge and Austin, 2004; Cook, 1977) tend to select points that are expected to exert
large influence on the output estimates. While outliers are considered detrimental to the
accuracy, proposed criterion considers them useful; which seems contradictory, but is not.
Problem settings have a strong effect on whether influential point is useful or not. In the
outlier detection settings, it is often assumed that a lot of labeled data has already been
acquired and an outlier is a point that does not fit well with the rest of the data and the
underlying patterns which have been learned, and therefore may exert large potentially
detrimental influence on the output estimates. On the other hand, in active learning set-
tings, the number of labeled data points is very small and only a few underlying predictive
patterns have been yet discovered. Hence an influential point may allow to discover a new
pattern which could be used to predict labels of many not yet labeled points; and is there-
fore influential.

3.3 Relation with Variance-based Active Learning

Let us show that the proposed criterion could be interpreted in traditional active learning
settings and its advantages. In traditional active learning settings predictive error is de-
composed into bias and variance components. Typical approach is to assume that the bias
component becomes negligible (e.g. by assuming that asymptotically unbiased methods
are used), and to concentrate on minimize the variance component of the error by utilizing
various properties of information matrix (Boyd and Vandenberghe, 2004). Limitations of
the traditional active learning methods are as follows. Since the main objective is to min-
imize the variance of model’s parameters, these AL methods are not applicable to model
free approaches, or may not be practical for models where number of parameters is very
large. In addition, reducing variance of model’s parameters does not necessarily result
in significant reduction of variance of output estimates, e.g. where many input attributes
are missing or are zero (which occurs frequently in many domains). These methods are
especially ineffective in the early stages of learning (when the number of training sam-
ples is very small), which is often the most practically important stage (since if the model
appears to be inaccurate, it may not be possible to justify obtaining more data for it).
This is caused by unreliability of parameter variance estimate that is dependent on num-
ber training data (which is very small in the early stage). In addition, in the early stage,
bias component is often much larger than variance; therefore focusing on reducing the
variance may not be effective. The proposed active learning method addresses these lim-
itations by aiming at directly improving output estimates (rather than improving model’s
parameter which may have little effect on achieving the objective of improving output
estimates), considers both bias and variance error components, and is applicable to any of
the learning models.

As to compare the proposed criterion with variance-based AL methods let us formu-
late the proposed criterion in the linear regression settings as: J(δ) = ∥ŷt − ŷt+1∥2 =∥∥∥X∗

(
β̂t − β̂t+1

)∥∥∥2, where β̂t, β̂t+1 are the least-squares estimators of the parameter
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values. Let A = X⊤X + αI, where αI is a regularization parameter (where 0 < α ≪ 1
ensures that matrix A is invertible). By using the Woodbury expansion (Hager, 1989) we
express the difference between the parameter estimates as

β̂t+1 − β̂t = A−1xδyδ −
A−1xδx

⊤
δ A

−1xδyδ
1 + x⊤

δ A
−1xδ

=
A−1xδ(yδ − x⊤

δ β̂t)

1 + x⊤
δ A

−1xδ

.

The difference between the output estimates could now be expressed as

ŷt+1 − ŷt = X∗A
−1xδ(yδ − x⊤

δ β̂t)

1 + x⊤
δ A

−1xδ

.

The proposed criterion is then formulated as

△Ĝ = ∥ŷt+1 − ŷt∥2 =

(
yδ − x⊤

δ β̂t

1 + x⊤
δ A

−1xδ

)2

x⊤
δ A

−1X∗⊤X∗A−1xδ .

3.3.1 Interpretation

Let us look at a possible interpretation of the proposed criterion in linear regression set-
tings and its relation to existing active learning criterions. Let us rewrite the criterion
as

△Ĝ = (yδ − x⊤
δ β̂t)

2x
⊤
δ A

−1X∗⊤X∗A−1xδ

(1 + x⊤
δ A

−1xδ)2
= JR

JS
JP

,

where JR = (yδ − x⊤
δ β̂t)

2, JS = x⊤
δ A

−1X∗⊤X∗A−1xδ, JP = (1 + x⊤
δ A

−1xδ)
2.

The term JR = (yδ − x⊤
δ β̂t)

2 represents the residual value, i.e. the squared error
between the actual output value yδ and its estimate x⊤

δ β̂t. The xδ with larger residual
value is then favored by the term JR. Taking the residual value into account corresponds
to the residual-based active learning methods (Romano and Kinnaert, 2005).

The next term JS can be rewritten further as JS =
∑

xt∈X∗
(
x⊤
δ A

−1xt

)2. By notic-
ing that xδ ∈ X∗, we can further rewrite the above term as: JS = (x⊤

δ A
−1xδ)

2 +∑
xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2. The part JS/JP of the proposed criterion could now be rewrit-
ten as

JS
JP

=

(x⊤
δ A

−1xδ)
2 +

∑
xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2
(1 + x⊤

δ A
−1xδ)2

=
(x⊤

δ A
−1xδ)

2

(1 + x⊤
δ A

−1xδ)2
+

∑
xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2
(1 + x⊤

δ A
−1xδ)2

= JO + JT .

In order to interpret the meaning of the terms JO and JT , let us eigen-decompose the
matrix X⊤X into its eigenvalues and eigenvectors as X⊤X =

∑p
i=1 λiφiφ

⊤
i , where λi

are eigenvalues such that λ1 ≥ λ2 ≥ · · · ≥ λm > λm+1 = · · · = λd = 0 and associated
eigenvectors φi, and m is the rank of the matrix X⊤X. We can also rewrite the matrix A
as A = X⊤X+ αI =

∑p
i=1 λiφiφ

⊤
i + αI.
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Let us examine the conditions under which the value of JO increases. Let x⊤
δ A

−1xδ =
a, then we can rewrite JO as JO = a2/(a + 1)2. The value of JO is non-negative and is
monotone increasing with respect to a. So let us examine under which conditions the
value of a is large. We can rewrite a as

a =

p∑
i=1

(
x⊤
δ φi

)2 1

λi + α
=

m∑
i=1

(
x⊤
δ φi

)2 1

λi + α
+

1

α

p∑
i=m+1

(
x⊤
δ φi

)2
.

Since α is set to a value close to zero, the 1
α

∑p
i=m+1

(
x⊤
δ φi

)2 part dominates in the
above equation. We may then approximate a as a ≈ 1

α

∑p
i=m+1

(
x⊤
δ φi

)2. The value of
1
α

∑p
i=m+1

(
x⊤
δ φi

)2 is large when we choose xδ that belongs to the null space of X⊤X
spanned by {φi}

p
i=m+1. This is equivalent to xδ being orthogonal to the training space

(the range of X⊤X spanned by {φi}
m
i=1). So the JO part of the criterion favors xδ that

is “not close” to the training space. This would be related to variance-based AL methods
(John and Draper, 1975; Chan, 1981; Dette and Studden, 1993; Sugiyama and Ogawa,
2000).

Let us examine the conditions under which the value of JT increases. First, let us sim-
plify the formulation of the JT . By using the fact that the denominator (1+x⊤

δ A
−1xδ)

2 ≥
1, we may obtain the lower bound of JT as JT ≥

∑
xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2. The x⊤
δ A

−1xt

part of the above equation can be rewritten as

x⊤
δ A

−1xt =

p∑
i=1

(
x⊤
δ φi

) (
x⊤
t φi

) 1

λi + α

=
m∑
i=1

(
x⊤
δ φi

) (
x⊤
t φi

) 1

λi + α
+

1

α

p∑
i=m+1

(
x⊤
δ φi

) (
x⊤
t φi

)
.

Since α is set to a value close to zero, the 1
α

∑p
i=m+1

(
x⊤
δ φi

) (
x⊤
t φi

)
part dominates in

the above equation. We may then approximate the above equation as

x⊤
δ A

−1xt ≈
1

α

p∑
i=m+1

(
x⊤
δ φi

) (
x⊤
t φi

)
,

and may now approximate the lower bound of the term JT as

JT ≥
∑

xt∈X∗\xδ

(
x⊤
δ A

−1xt

)2 ≈ ∑
xt∈X∗\xδ

(
1

α

d∑
i=m+1

(
x⊤
δ φi

) (
x⊤
t φi

))2

.

The term JT favors xδ whose projection onto the null space of X⊤X is “close” to the
projections of the vectors X∗ \ xδ onto the null space. Taking the test points into account
is related to the transductive active learning method (Yu, Bi, and Tresp, 2006).

4 Experimental Settings
Let us describe settings of the experiments described in Section 3.1. We have selected
the MovieLens dataset (Riedl and Konstan, 1998) for the numerical experiments. The
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MovieLens dataset consists of approximately 1 million ratings (outputs) for 3900 movies
by 6040 users (treated as features/attributes). We randomly select 100 users that have
each rated at least 100 items. For each user, we randomly select 50 points (items) as
potential training points and use the rest of the points as a test set. All of the users’ output
values (outputs) are withheld. For each user, training points are selected in a sequential
manner by an active learning algorithm. For the random active learning method, training
points are selection following the uniform distribution. After the training point is selected,
its output value is revealed and the point is added to the training set. Linear regression
is used as underlying learning model. To emphasize the effectiveness of the proposed
active learning method, we compare it with traditional active learning methods that utilize
knowledge about the underlying model, while the proposed method does not.

5 Conclusion
Black box settings are very common in practice, but have not been explicitly addressed
in the domain of active learning. By not explicitly considering these settings, existing
methods tend suffer from a number of limitations (Section 3.3). The proposed active
learning approach is designed specifically for black box settings. It utilizes only on the
estimates of output values, available from any learning method, which in turn provides
significant advantages for practical deployment.
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