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Abstract: Simple conditions for the inconsistency of classical likelihood ra-
tio (LR) test in case of very sparse categorical data are given. The LR type
test based on profile statistics is proposed as an alternative. The performance
of both tests for a sparse contingency table is compared by simulations.

1 Introduction

Recently amounts of information are very extensive, therefore problems related to a large
dimension and/or sparsity of data arise rather frequently. The sparsity problem is espe-
cially topical for categorical data. Relationships between continuous variables are usu-
ally described by covariance matrices. Thus, the number of model parameters increases
quadratically with n, the dimension of the data. For categorical data, the number of un-
known parameters grows exponentially with n. Consequently, even for a moderate num-
ber of categorical variables, many cells in the contingency table are empty or have small
counts. Traditionally, expected (under the null hypothesis) frequencies in a contingency
table are required to exceed 5 in the majority of their cells. If this condition is violated,
the χ2 approximations of goodness-of-fit statistics may be inaccurate and the table is said
to be sparse. We refer to Agresti (1990, 1999) for examples of sparse contingency tables
and the further discussion on this topic.

Several techniques have been proposed to tackle the problem: exact tests and alter-
native approximations (Agresti, 1990; Hu, 1999; Müller and Osius, 2003), smoothing
of ordered data (Smirnoff, 1995), contingency table smoothing by means of generalized
log-linear models with random effects (Coull and Agresti, 2003), the parametric and non-
parametric bootstrap (von Davier, 1997), Bayes approach (Agresti and Hitchcock, 2005;
Congdon, 2005), and other methods (see, for instance, Kuss, 2002). They all are not ap-
plicable or have some limitations in case of very sparse contingency tables. In this case,
the classical statistical criteria become simply uninformative (inconsistent).

We formalize this statement in the next section in the case of Poisson sampling. In
Section 3 a new likelihood ratio type criterion is introduced as an alternative to classical
tests in case of very sparse contingency tables. The criterion is derived using the empirical
Bayes approach and is based on the profile statistics of the contingency table. In the last
section an adaptive procedure for nonparametric testing is described and some simulation
results are presented.
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2 Inconsistency of Classical Likelihood Ratio Test
In this section simple conditions for the inconsistency of the classical likelihood ratio test
in case of very sparse categorical data are given. Though rather restrictive, the conditions
have the following interesting feature (“reversed consistency”): the greater deviation from
the null hypothesis the less power of the test. Actually, the probability to reject some
alternatives tends to 0 as their deviations from the null hypothesis increase.

Let yj , j ∈ J = J(n) := {1, . . . , n}, denote independent Poisson observations.
Hence y := (y1, . . . , yn) ∼ Poissonn(µ), where µ := (µ1, . . . , µn) ∈ M := [0,M0]

n,
M0 > 0. We consider very sparse categorical data (contingency tables) y ∈ Zn

+. Here it
means that Eµ(y) = µ = µ(n) and as n → ∞

∥µ∥22 = o
(
∥µ∥1

)
. (1)

(∥µ∥q denotes the lq norm of µ).

Remark 1. Condition (1) together with ∥µ∥∞ ≤ M0 implies

∥µ∥1 ≤ M0n , (2)

and for arbitrary h > 0,

h2|{j : µj ≥ h}| ≤ ∥µ∥22 = o
(
∥µ∥1

)
, (3)

h∥µ∥1 ≤ h2|{j : µj ≤ h}|+ ∥µ∥22 ≤ h2n+ o
(
∥µ∥1

)
. (4)

Here and later |A| stands for the number of elements of the set A. From (2)–(4), it follows
that

nh(µ) := |{j : µj ≥ h}| = o (n) , ∀h > 0 ,

∥µ∥qq = o (n) , q = 1, 2 .

Consequently, the expected number of the nonzero cells Enh(y), h ∈ (0, 1), as well
as the expected value of the total frequency E∥y∥1 is much smaller than n. Thus, the
contingency table y contains “a lot of zeros”. We refer to Khmaladze (1988) for related
notions.

Let us assume for simplicity that a simple hypothesis

H0 : µ = µ0 versus H1 : µ ̸= µ0 (5)

with a given µ0 = (µ0
1, . . . , µ

0
n) ∈ M+, M+ := M∩ (0,∞)n, is to be tested on the basis

of the observed frequencies y. Consider the logarithmic likelihood ratio (LLR) statistic

G2 = G2(µ0, y) := 2
∑
j∈J

[
yj log

(
yj
µ0
j

)
+ (µ0

j − yj)

]
=: 2H(y) + 2L(µ0, y) ,

H(y) :=
∑
j∈J

yj log(yj) ,

L(µ0, y) := µ0
+ −

∑
j∈J

yj(log(µ
0
j) + 1) , µ0

+ :=
∑
j∈J

µ0
j = ∥µ∥1 .
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It turns out that for sparse data the term L(µ
0
, y) often dominates H(y).

Lemma 1. Assume sparsity (1). Then (n → ∞)

EµG
2(µ0, y) = 2EµL(µ

0, y) +O
(
∥µ∥22

)
,

StDevµG
2(µ0, y) = 2StDevµ(L(µ

0, y)) +O
(
∥µ∥2

)
,

EµL(µ
0, y) = µ0

+ −
∑
j∈J

µj(log(µ
0
j) + 1) ,

Varµ(L(µ
0, y)) =

∑
j∈J

µj(log(µ
0
j) + 1)2 .

To prove the lemma it suffices to note that for any β > 0

Eµ

∑
j∈J

(yj log(yj))
β = O(∥µ∥22) .

Proposition 1. Suppose that µ0 ∈ M+, µ ∈ M,

∆n = ∆n(µ) :=
∑
i∈J

(µj − µ0
j)(log(µ

0
j) + 1) ≥ 0 , (6)

and

∥µ∥22 + ∥µ0∥22 = o(D2
n(µ) +D2

n(µ
0)) , D2

n(µ) :=
∑
i∈J

µj

(
log(µ0

j) + 1
)2

. (7)

If (1) holds, then

EµG
2(µ0, y)− Eµ0G2(µ0, y)(

Varµ0G2(µ0, y) + VarµG2(µ0, y)
)1/2

= −
∆n +O(∥µ∥22 + ∥µ0∥22)(

D2
n(µ) +D2

n(µ
0)
)1/2

(1 + o(1))
.

Corollary 1. For very sparse contingency tables (see (1)), the LR test is inconsistent for
testing problem (5) provided (6) and (7) hold and

∥µ∥22 + ∥µ0∥22 = o(∆n) , D2
n(µ

0) +D2
n(µ) ≤ (κ+ o(1))∆2

n, κ < 1 .

When κ = 0 we obtain the “reversed consistency”: the probability to reject H1 tends to
0 as n → ∞.

Example. Let n = 2ñ, µ0i = µ0i(n) = o(1), i = 1, 2; 0 < µ01 < µ02, ρ ∈ (0, 1), and

µ0
j = µ01, ∀j ≤ ñ, µ0

j = µ02, ∀j > ñ,

µj = (1− ρ)µ01, ∀j ≤ ñ , µj = µ02 + ρµ01, ∀j > ñ .
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Then

∆n =
ρµ01n

2
log

(
µ02

µ01

)
> 0 ,

D2(µ0) ≍ D2(µ) ≍ nµ02(log(µ02))
2 .

Note that ∥µ0∥1 = ∥µ∥1 and ∥µ0∥22+∥µ∥22 ≤ (µ01 + 2µ02) ∥µ0∥1 = o
(
∥µ0∥1

)
. Thus, the

conditions of Corollary are fulfilled if µ01 ≤ ρ1µ02, ρ1 ∈ (0, 1),

µ2
02 = o (µ01| log(µ01)|) ,

√
µ
02
| log (µ02) |
µ01

√
n

= o(1) .

Remark 2. Actually, the inconsistency stated in Corollary 1 is not an exceptional fea-
ture of the statistic G2. Analogous inconsistency results can be obtained for the other
goodness-of-fit criteria, for example tests based on power-divergence statistics (Cressie
and Read, 1984).

3 Profile Statistics
Let us assume that {Jm,m = 1, . . . ,M} is a partition of J into disjoint subsets such that
µ0
j = µ0m, j ∈ Jm, m = 1, . . . ,M , with some µ0m = µ0m(n) ∈ (0,M0]. Suppose

that all alternatives with any µ obtained via permutations of the coordinates within Jm,
m = 1, . . . ,M , are equally likely to occur. Then it is natural to assume that the tests
under consideration are invariant with respect to permutations of the coordinates in Jm.
This assumption is consistent with the Bayes approach which assumes µ to be a sequence
of random variables exchangeable within the each set Jm.

Following the empirical Bayes approach, the parameter µ is treated as random and

{µj, j ∈ Jm} are i.i.d. , µj ∼ Gm , j ∈ Jm , m = 1, . . . ,M .

Here Gm = Gm(·|n) are unknown distributions on [0,M0]. Thus, the unknown parame-
ters µ = (µ1, . . . , µn) are replaced with the unknown distributions G = (G1, . . . , GM).
Let

πl(Gℓ) :=

∫ M0

0

πl(u) dGℓ(u) , πl(u) :=
ule−u

l!
, l ∈ Z+ .

In this setting, the null hypothesis in (5) can be restated as follows:

HG
0 : Gm = δµ0m , m = 1, . . . ,M . (8)

Here δa stands for the degenerate distribution centered on a. The LLR statistic for (8) is
given by

ℓ(G) = 2
M∑

m=1

∑
l∈Z+

ηl(m) log

(
πl(Gm)

πl(µ0m)

)
,

ηl(m) := |{yj, j ∈ Jm : yj = l}| . (9)
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Hence the statistic η = {η(m),m = 1, . . . ,M} with η(m) := (ηl(m), l ∈ Z+), m =
1, . . . ,M , is a sufficient statistic for G. Under the Poisson sampling, η distribution is a
product of M multinomial distributions with the infinite number of outcomes, the proba-
bilities of outcomes equal to πZ+(µ0m) := (πl(µ0m), l ∈ Z+), and nm := |Jm| indepen-
dent trials (m = 1, . . . ,M ):

η(m) ∼ MultinomialZ+(nm, πZ+(µ0m)) .

Components (9) of the statistic η are called the profile statistics of the contingency table.
Sometimes they are also referred to as the spectral statistics or frequencies of frequen-
cies. The asymptotic behavior of ηm in the case of multinomial sampling have been
investigated, for instance, by Kolchin, Sevastyanov, and Chistyakov (1978). The profile
statistics are also related to estimating problem of the structural distribution function of
cell probabilities (van Es, Klaassen, and Mnatsakanov, 2003).

Let Ĝ denote the (nonparametric) maximum likelihood estimator of G = (G1, . . . , Gm)
(van de Geer, 2003). The inequality given in the next proposition allows one to obtain a
conservative critical value for the LLR statistic ℓ(Ĝ).

Given s ∈ N, denote

K(s) := {z = (n− h, z1, . . .) ∈ Z∞
+ : h := z1 + . . .+ zs ≤ s; zl = 0, ∀l > s} .

Proposition 2. Suppose that µ0 ∈ M+ satisfies sparsity condition (1) and µ0
j = µ0m,

j ∈ Jm, m = 1, . . . ,M . Then, for any t = t(n), t/ log(t) > max(M0, ∥µ0∥1),

Pµ0{ℓ(Ĝ) ≥ t} ≤ H(t)e−t/2 (10)

where

H(t) :=

∣∣∣∣K ([
t

log(t)

]
+ 1

)∣∣∣∣M + n exp

{
t(log log(t) + log(M0) + 1)

log(t)

}
+ exp

{
t(log(∥µ0∥1) + log log(t) + 1)

log(t)
− ∥µ0∥1

}
(11)

and log(H(t)) = o(t) provided log(n) = o(t).

Proof. Since

ℓ(Ĝ) ≤ ℓ̂(η) := 2
M∑

m=1

∑
l∈Z+

ηl(m) log

(
ηl(m)

nm πl(µ0m)

)
,

the inequality
Pµ0{ℓ(Ĝ) ≥ t} ≤ Pµ0{ℓ̂(η) ≥ t} (12)

holds. For s ∈ N, let k(m) = (kl(m), l ∈ Z+) ∈ K(s) with nm = k+(m) :=∑∞
l=0 kl(m), m = 1, . . . ,M , and k := (k(m),m = 1, . . . ,M). Then using Sanov (1957)

arguments we obtain the inequality

Pµ0{η = k} ≤ exp{−(1/2) ℓ̂(k)} .



120 Austrian Journal of Statistics, Vol. 40 (2011), No. 1 & 2, 115–123

Introduce η+ = (η+l , l ∈ Z+) where η+l :=
∑M

m=1 ηl(m), l ∈ Z+. Notice that η+ ∈
K(s) implies η(m) ∈ K(s), ∀ m = 1, . . . ,M . Therefore

Pµ0{ℓ̂(η) ≥ t} ≤ |K(s)|M exp{−t/2}+Pµ0{η+ /∈ K(s)} . (13)

Denote

η+ :=
∞∑
l=1

η+l =
∑
j∈J

1{yj > 0} ≤ ∥y∥1 .

Since ∥y∥1 ∼ Poisson(∥µ0∥1), for s > ∥µ0∥1,

log
(
Pµ0{η+ > s}

)
≤ s log

(∥µ0∥1
s

)
+ s− ∥µ0∥1 . (14)

Similarly, for s > M0,

Pµ0

{
max
j∈J

yj > s

}
≤

∑
j∈J

Pµ0{yj > s} ≤ n exp

{
s log

(
M0

s

)
+ s

}
. (15)

Note that η+ ≤ s and maxj∈J yj ≤ s imply η+ ∈ K(s). Hence,

Pµ0{η /∈ K(s)} ≤ Pµ0{η+ > s}+Pµ0{max
j∈J

yj > s} . (16)

Take s = [t/ log(t)] + 1. Then inequality (10) with H(t) given in (11) follows from
(12)–(16). The well-known fact that log |K(s)| = O(s) as s → ∞ completes the proof.

The proposed LR criterion based on the profile statistics can be viewed as a composite
LR test for homogeneous groups of cells obtained via hard clustering. In the next section a
flexible and adaptive procedure taking advantage of soft clustering in an auxiliary mixture
model is described.

4 Likelihood Ratio Test with Soft Clustering
Here it is assumed that the both parameters, µ0 and µ, are sequences of independent
identically distributed random variables satisfying a semi-parametric mixture model with
a dummy class variable νj ∈ {1, . . . ,M}, j ∈ J . Specifically,

P{νj = m} = pm ≥ 0 ,
M∑

m=1

pm = 1 ; (17)

(µ0
j | νj = m) ∼ LogNormal(am, σm) , j ∈ J , (18)

(µj | νj = m) ∼ Gm , j ∈ J , (19)
(yj | µj) ∼ Poisson(µj) , j ∈ J , m = 1, . . . ,M . (20)

Let
θ := (pm, am, σm, Gm , m = 1, . . . ,M)
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be a collection of the parameters of the mixture. Notice that the values of µ are unobserv-
able (latent). The observed data is (yj, µ0

j), j ∈ J . Suppose that µ0
j and µj are condition-

ally, given νj , independent, and yj , given µj , is independent of the rest random variables
(j ∈ J). Thus, the parameter θ completely specifies the distribution of the observed data.

The (nonparametric) maximum likelihood method is applied to fit the model to data.
Let θ̂ := (p̂m, âm, σ̂m, Ĝm ,m = 1, . . . ,M) be the maximum likelihood estimator of θ.
Obviously, the number of the support points of Ĝm does not exceed ymax := maxj∈J yj .
For sparse data, ymax is small. Thus, the probabilities πl(Ĝm) , l ∈ Z+, are expressed
as the finite mixture of Poisson distributions. Consequently, the initial semi-parametric
model defined in (17)–(20) can be approximated and, actually, replaced by a paramet-
ric finite mixture model. In order to calculate the maximum likelihood estimator of its
parameters, the EM algorithm is used.

Let pm(θ̂ | yj, µ0
j) be the estimated posterior probability of the unobserved class num-

ber νj , given the observation (yj, µ
0
j),

pm(θ | yj, µ0
j) := Pθ{νj = m | yj, µ0

j} , j ∈ J , m = 1, . . . ,M .

For m = 1, . . . ,M and l ∈ Z+, set

η̂l(m) :=
∑
j∈J

1{yj = l}pm(θ̂ | yj, µ0
j) ,

π̂0
l (m) :=

∑
j∈J

πl(µ
0
j)pm(θ̂ | yj, µ0

j) .

The symmetric LLR statistic based on soft clustering and the empirical Bayes approach
is defined by

L(θ̂ | y) :=
M∑

m=1

ymax∑
l=1

(η̂l(m)− π̂0
l (m))

(
log(πl(Ĝm))− log(πl(exp{âm}))

)
. (21)

The performance of the criterion for testing (5) based on L(θ̂ | y) is illustrated by simula-
tions.

Computer experiment. The framework of the example in Section 1 is adopted. The
parameters µ01 = 0.5, µ02 = 1.0, µ11 = µ11(i) = µ01 − 0.05(i − 1), µ12 = µ12(i) =
µ02 + 0.05(i − 1), i = 1, . . . , 10, n = 2ñ = 40, the number of simulations is equal to
100. The parameters σm are kept fixed, σm = 0.5, m = 1, . . . ,M . The number of clusters
M = 4, the maximal number of support points of Ĝm is set to 5.

A critical value for LLR statistic (21) is evaluated by the Monte Carlo method.
The estimated powers of the classical LR test and the proposed criterion based on the

statistic L are presented in Figure 1. The significance level α = 0.05. The index i > 1,
indicates the number of an alternative. The case i = 1 corresponds to the null hypothesis.
In fact, the power of the proposed test is close to the power of χ2 test with the additional
prior information µj = µ11, ∀j ≤ ñ, µj = µ12, ∀j > ñ, µ11 and µ12 are unknown.
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Figure 1: The power of the classical LR test (left) and the test based on L (right) for
alternatives i = 2, . . . , 10.
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