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Abstract: Within the special geometry of the simplex, the sample space of
compositional data, compositional orthonormal coordinates allow the appli-
cation of any multivariate statistical approach. The search for meaningful
coordinates has suggested balances (between two groups of parts)—based
on a sequential binary partition of a D-part composition—and a representa-
tion in form of a CoDa-dendrogram. Projected samples are represented in a
dendrogram-like graph showing: (a) the way of grouping parts; (b) the ex-
planatory role of subcompositions generated in the partition process; (c) the
decomposition of the variance; (d) the center and quantiles of each balance.
The representation is useful for the interpretation of balances and to describe
the sample in a single diagram independently of the number of parts. Also,
samples of two or more populations, as well as several samples from the
same population, can be represented in the same graph, as long as they have
the same parts registered. The approach is illustrated with an example of food
consumption in Europe.

Keywords: Aitchison Geometry, Euclidean Vector Space, Orthonormal Co-
ordinates.

1 Introduction
The sample space of D-part compositional data, the simplex, being a subset of the real
space RD, has a real Euclidean vector space structure (Billheimer, Guttorp, and Fagan,
2001; Pawlowsky-Glahn and Egozcue, 2001). The easiest way to study data whose sam-
ple space is a real Euclidean space is to represent them in coordinates with respect to an
orthonormal basis. Coordinates behave like real random vectors (Kolmogorov and Fomin,
1957) and thus, as discussed in Pawlowsky-Glahn (2003), any usual statistical technique
can be applied. In any Euclidean space, an infinite number of orthonormal bases exists,
and the simplex is one of them. Different techniques can be used to build such a basis. The
best known techniques in mathematics use the Gram-Schmidt orthonormalisation process
or a Singular Value Decomposition (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, and
Barceló-Vidal, 2003). These mathematically straightforward methods, however, not al-
ways lead to easy-to-interpret coordinates.

The analysis of problems related to the amalgamation of parts, and the search for di-
mension reducing techniques related to subcompositions, suggested a new strategy: bal-
ances. Balances are a specific kind of orthonormal coordinates associated with groups
of parts (Egozcue and Pawlowsky-Glahn, 2005b). They are based on a sequential binary
partition of a D-part composition into non-overlapping groups. This approach is very
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intuitive and the resulting coordinates are frequently easy to interpret. Moreover, it leads
to a decomposition of the total variance into marginal variances which can be assigned
either to intra-group (subcompositional) variability, or to inter-group variability (relative
variability between two groups of parts). To visualise this, together with other univariate
characteristics, a specific tool, the CoDa-dendrogram, has been developed.

2 A Compositional Data Set
To present the approach from an intuitive perspective, let us consider the following prob-
lem: To decide his business strategy, one merchant, leader in the food industry, wants to
compare the food consumption habits in the old East and the West countries. To do so,
he wants to analyse data—published by Eurostat (Peña, 2002)—reproduced in Table 1.
These data are percentages of consumption of 9 different kinds of food in 25 countries in
Europe in the early eighties. A preliminary question is which is the relevant information

Table 1: Food consumption expenditure in the East (E) and the West (W), published by
Eurostat, in percent. The sample size is 25. Legend: RM: red meat; WM: white meat; F:
fish; E: eggs; M: milk; C: cereals; S: starch; N: nuts; FV: fruit and vegetables.

RM WM E M F C S N FV group country
10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7 E Albania
8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3 W Austria

13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0 W Belgium
7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2 E Bulgaria
9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0 E Check Rep.

10.6 10.8 3.7 25.0 9.9 21.9 4.8 0.7 2.4 W Denmark
9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4 W Finland

18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5 W France
9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9 E FSU
8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6 E Germany (E)

11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8 W Germany (W)
10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5 W Greece
5.3 12.4 2.9 9.7 0.3 40.1 4.0 5.4 4.2 E Hungary

13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9 W Ireland
9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7 W Italy
9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7 W Norway
6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6 E Poland
6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9 W Portugal
6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8 E Rumania
7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2 W Spain
9.9 7.8 3.5 24.7 7.5 19.5 3.7 1.4 2.0 W Sweden

13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9 W Switzerland
9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7 W The Netherlands

17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3 W United Kingdom
4.4 5.0 1.2 9.5 0.6 55.9 3.0 5.7 3.2 E Yugoslavia
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in this data set and which is the sample space of the data. Although data are presented
here as percentages of expenditure, it is not clear what is the meaning of total expenditure
or how it was measured. Moreover, each data-vector does not add to 100%. This means
that there is an implicitly defined additional component, that we call other, that completes
the total, i.e. 100%. Even more, we have doubts about the units of expenditure: if they are
measured in different currencies, how have the reference prices been established? Also,
if the units were tons of food of each type, what would the meaning of the above percent-
ages be? What does a percentage of tons of a total, made of tons of meat plus tons of nuts,
mean? These questions lead to two important conclusions:

• The definition of the total is irrelevant, both with respect to its units and to the
reported components constituting the data-vector.

• The information to be extracted from such a data-set is not related to the units in
which the original components were registered.

These points match the so called principles of compositional data analysis (Aitchison,
1986; Aitchison and Egozcue, 2005; Egozcue, 2009). They can be summarized as scale
invariance and subcompositional coherence. The first one states that a change of units
should not alter compositional information. The second one advocates that a change of
scale should be applicable to any subset of two or more components, called subcomposi-
tion; also, that conclusions obtained from a subcomposition should not be in contradiction
with those obtained from a composition including it. For instance, if an analyst studies
the parts of animal based food (meat, fish, . . . ), he should not reach a conclusion which
stands in contradiction with the conclusions of another analyst dealing with the whole
composition. The key point of these principles is that the only information conveyed by
compositional data are the ratios between the different parts of the observed composition.
This is the case of the data-set presented in Table 1 and they should be considered as a
compositional data-set. Therefore, the sample space of the food consumption is the 9-
part simplex, S9. In order to represent the data set in the simplex, the closure operation
is used: if x = (x1, x2, . . . , x9) is one of the data vectors and t =

∑9
j=1 xj , then the

closed vector is Cx = (x1/t, x2/t, . . . , x9/t), so that its components, called parts, add to
1. In this case, they are expressed in parts per unit. To obtain a different closure con-
stant, the resulting closed vector has to be multiplied by the corresponding constant; e.g.
κ = 100 gives percentages. The vectors x and Cx are said to be compositionally equiv-
alent (Barceló-Vidal, Martı́n-Fernández, and Pawlowsky-Glahn, 2001). The importance
of the closure is only apparent. The whole compositional analysis is based on the scale
invariance and all characteristics of a composition are invariant under a multiplication by
a positive constant.

Another important point in compositional analysis is that the distances in the simplex,
called Aitchison distances, are invariant under perturbation. Perturbation of a composition
of D parts, x, by a D-vector with positive components, p, is defined as the composition

x⊕ p = C(x1p1, x2p2, . . . , xDpD)

in SD. Perturbation is the addition in the Aitchison geometry of the simplex and can be
viewed as a shift of x by p.
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The Aitchison geometry of the simplex provides a distance between two compositions,

da(x,y) =
1

D

∑
i<j

(
log

xi

xj

− log
yi
yj

)2

,

which is invariant under perturbations, i.e.

da(x,y) = da(x⊕ p,y ⊕ p) . (1)

This means that expressing the food expenditure in percent of some currency can be trans-
formed by a perturbation into percent of tonnage of food. The components of the pertur-
bation are simply the number of tons of each kind of food per unit of currency. Equation
(1) implies that a change of units in the food consumption is a shift in the Aitchison
geometry that preserves the inter-distances between compositions.

Once the sample space is identified as the simplex S9 with its Aitchison geometry, the
first statistical elements, namely the mean and variance-covariance, can also be identified
(Aitchison, 1997; Pawlowsky-Glahn and Egozcue, 2001, 2002). For instance, the center
of a random composition x is defined as

Cen(x) = C exp(E(log x)) ,

where the functions exp and log are applied to vectors componentwise. An important fact
in the present example is that the center is shift compatible, as any well defined mean, i.e.

Cen(x⊕ p) = Cen(x)⊕ p .

Thus, a change of units from food expenditure in currency to tonnage causes the same
change in the center.

The total variance of a random composition x ∈ SD is defined as

totVar(x) = E[d2
a(x,Cen(x))] . (2)

It generalises the definition of variance in real space in the univariate case, when the
Aitchison distance is replaced by the ordinary Euclidean distance. The total variance is
easily expressed using orthogonal coordinates with respect to an orthonormal basis of the
simplex. The function assigning to a composition x a (D − 1)-vector of real coordinates
with respect to an orthonormal basis, c = (c1, c2, . . . , cD−1), is called isometric log-ratio
transformation (ilr) (Egozcue et al., 2003). As the name isometric suggests, operations
and distances in the simplex are transformed to their counterparts in the real space of
coordinates, e.g. for x,y in SD

ilr(x⊕ y) = ilr(x) + ilr(y) , da(x,y) = d(ilr(x), ilr(y)) ,

where d denotes the ordinary Euclidean distance in RD−1. If c = (c1, c2, . . . , cD−1) are
the random coordinates of the random composition x, i.e. c = ilr(x), the total variance of
x is

totVar(x) =
D−1∑
j=1

Var(ci) ,
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where Var(ci) is the ordinary variance of the real random variable ci. The total vari-
ance has two important properties: it is invariant under perturbation, totVar(x ⊕ p) =
totVar(x); and is also invariant under a change of basis. The variability of x is fully de-
scribed by the variance-covariance matrix of its coordinates c. Again, the units in which
the parts of food consumption were expressed are irrelevant for the analysis of the vari-
ability.

3 Sequential Binary Partition
A useful way to build up an orthonormal basis of the simplex whose coordinates may be
easily interpretable is to define a sequential binary partition (SBP) of the compositional
vector. An SBP consists in a grouping of parts (Egozcue and Pawlowsky-Glahn, 2005b).
A possible, user-defined, SBP is represented in Table 2. Each row corresponds to an order

Table 2: Sequential binary partition code: see text for details.

RM WM E M F C S N FV interpretation

1 +1 +1 +1 +1 +1 −1 −1 −1 −1 animal/vegetal
2 +1 +1 −1 −1 +1 0 0 0 0 animal/animal products
3 +1 +1 0 0 −1 0 0 0 0 meat/fish
4 +1 −1 0 0 0 0 0 0 0 red/white meat
5 0 0 +1 −1 0 0 0 0 0 eggs/milk
6 0 0 0 0 0 +1 +1 −1 −1 flours/other veg.
7 0 0 0 0 0 +1 −1 0 0 cereals/starch
8 0 0 0 0 0 0 0 +1 −1 nuts/fruits-veg.

i of partition, +1 stands for inclusion in group of parts Gi1, −1 for inclusion in group of
parts Gi2, and 0 for no inclusion. At each step, a group of parts is partitioned into two
non-overlapping groups. For example, the first step divides the food consumption into
animal vs. vegetal origin,

G11 = {RM,WM,E,M,F} G12 = {C,S,N,FV} ,

while the second step divides the food of animal origin into animal and animal products

G21 = {RM,WM,F} , G22 = {E,M} ,

with G21 ∪G22 = G11 and G21 ∩G22 = ∅. Note that, once a part appears as a single-part
group, it does not appear again and the code is 0 at subsequent orders of partition.

4 Balances
Balances are the coordinates which represent an element of the simplex in the orthonormal
basis defined by an SBP (Egozcue and Pawlowsky-Glahn, 2005b). In practice, there is
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no need to know the exact expression of this basis, as the coordinates are computed using
a one-to-one transformation (the corresponding ilr) and for values of interest the inverse
transformation is used (Egozcue and Pawlowsky-Glahn, 2005b). For the i-th order of
partition, the balance is

bi =

√
ri · si
ri + si

log

( ∏
xj∈Gi1

xj

)1/ri

( ∏
xℓ∈Gi2

xℓ

)1/si
,

where ri and si are the number of parts in the +1-group and in the −1-group, respectively.
In other terms, the balance is defined as the natural logarithm of the ratio of geometric
means of the parts in each group, normalised by a coefficient to guarantee unit length of
the vectors of the basis. For example,

b1 =

√
5 · 4
5 + 4

log
(RM ·WM · E ·M · F)1/5

(C · S ·N · FV)1/4
, b2 =

√
3 · 2
3 + 2

log
(RM ·WM · F)1/3

(E ·M)1/2
,

where numbers have not been simplified for illustration. Changing the sign in the codes
of one order of partition is equivalent to changing the sign in the corresponding balance.
Also note that a change of scale units, e.g. from percentages to per unit, leaves balances
unchanged.

5 CoDa-Dendrogram
A graphical representation of a sequential binary partition, together with additional statis-
tical summaries of balances, constitutes a CoDa-dendrogram (Figure 1). Elements of the
CoDa-dendrogram are (Egozcue and Pawlowsky-Glahn, 2005a, 2006; Pawlowsky-Glahn,
Egozcue, and Tolosana-Delgado, 2007; Thió-Henestrosa, Egozcue, Kovács, and Kovács,
2008):

1. The sequential binary partition represented by the dendrogram-type links between
parts. The vertical bars describe the groups of parts formed at each order of parti-
tion. The length of the vertical lines does not contain any quantitative information;
they are as long as required to connect the parts in a group. Each one represents an
interval (−u, u), where u is user defined. That way, segments of different length can
be intuitively compared, e.g. when a box-plot is located in the middle, or occupies
a similar proportion of the segment.

2. The location of the mean of a balance, which is determined by the intersection of
the vertical segment with the horizontal segment.

3. The decomposition of the sample total variance and the variability of each balance,
represented by the length of the thick horizontal bars. The sum of all horizontal
bars represents the total variance of the sample. A short horizontal bar means that
the balance has a small variability in the sample, thus explaining only a little bit of
the total variance. Conversely, a long horizontal bar implies a balance explaining a
good deal of the total variance.
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Figure 1: CoDa-dendrogram. Bold = West; gray = East. Scale of vertical bars (−4, 4).
Horizontal scale is proportional to the total variance, which in this case is 2.65 Aitchison
square-distance units. See text for a detailed description.

Optional additional elements are

1. Summary statistics of the empirical distribution of each balance represented as
quantile box-plots (p0.05, Q1, Q2, Q3, p0.95) on the vertical (−u, u) intervals. The
box-plot corresponding to one of the samples is located just above the segment,
while the box-plot corresponding to the other sample is located below.

2. Several samples represented by overlapped CoDa-dendrograms, as shown in Figure
1, where the bold segments and box-plots correspond to western countries and the
gray ones to eastern countries in Europe. To obtain an interpretable overlay, the
most variable sample has to be plotted first.

The CoDa-dendrogram in Figure 1 shows the following:

• Balances that should be checked for their discrimination power using e.g. a t-test
are: b1 (animal/vegetal origin), b3 (meat/fish), and b7 (cereals/starch). The two
groups of parts, G11 = {RM,WM,E,M,F}, and G12 = {C,S,N,FV}, are
good candidates for discrimination, as the two means in balance b1 are well sep-
arated and thus quite different, while the variances are very similar. The same
arguments hold for b3, separating G31 = {RM,WM} and G32 = {F}, while for
b7, with G71 = {C} and G72 = {S}, the variances are quite different. Note that
the mean consumption of animal products compared to vegetal products is less in
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the East than in the West, while the mean consumption of meat compared to fish
is exactly the reverse. This is also the case for the mean consumption of cereals
compared to starch, as shown by balance b7.

• the means of the other balances are not informative, although in some cases there is
a clear difference between the variances (see balances b2, b4, b5, and b8);

• balance b6 (flours/other veg.) is very similar (in mean and variance) for east and
west countries and does not give any information for discrimination.

6 Criteria to Define a Partition
The intuitive approach presented above to define a partition is based on common sense.
Usually, expert knowledge will be the essential tool for the approach. The question is what
to do when there are no criteria on how to proceed. Two exploratory tools are very helpful
for this purpose: (a) the variation array (Aitchison, 1986), shown in Figure 2; and (b), the
biplot (Aitchison and Greenacre, 2002), shown in Figure 3 jointly for eastern and western
countries. The variation array shows the pairwise log-ratio means and the percentage of
total variance represented by pairwise log-ratio variances of the components. The highest
values have been highlighted using a gray-shaded background and boldface characters,
showing that the highest variability is related to the consumption of fish (F), followed by
the consumption of nuts (N).

% Variances

RM WM E M F C S N FV %clr var

RM 0.80 0.45 0.30 2.05 0.70 0.84 1.60 0.73 7.46

WM 0.30 0.37 0.70 2.76 1.22 0.65 2.74 0.99 10.23

E 1.26 0.96 0.37 1.76 1.24 0.47 2.42 0.86 7.93

M -0.51 -0.81 -1.77 2.10 1.02 0.81 2.29 1.23 8.80

F 1.17 0.87 -0.09 1.68 3.40 1.52 4.54 2.29 20.41

C -1.19 -1.49 -2.45 -0.68 -2.36 1.30 0.60 0.57 10.05

S 0.89 0.59 -0.36 1.41 -0.28 2.08 2.45 0.94 8.97

N 1.33 1.03 0.07 1.84 0.16 2.52 0.43 0.94 17.58

FV 0.91 0.61 -0.35 1.42 -0.26 2.10 0.01 -0.42 8.55

Means Tot var 2.546

Figure 2: % total variance, variation array. Upper triangle, pairwise log-ratio variances in
percentage of total variance; lower triangle, pairwise log-ratio means.

The compositional biplot is obtained as a standard covariance biplot for the centered
log-ratio (clr) data. The clr transformation of compositional data (Aitchison, 1986) is
given by

clr(x) = log

(
x1

g(x)
,
x2

g(x)
, . . . ,

xD

g(x)

)
, g(x) =

(
D∏
j=1

xj

)1/D

,

where the logarithm applies componentwise. In the biplot (Figure 3) the length of the rays
is approximately proportional to the variance of the clr-components. We recognise the clr
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Figure 3: Biplot. Black dots = West; gray dots = East. Length of rays are approximately
proportional to the variance of the clr-transformed parts. Length of links between the end
point of rays are approximately proportional to the corresponding variance of the pairwise
log-ratio.

of F and N in the biplot easily, because they have the longest rays. We also see that the
clr-parts of animal origin point to the right (positive axis of the first principal component),
while those of vegetal origin point to the left, exception made of clr of starch S. These
facts, combined with the intuitive notions of nutrition, tell us, that the partition used in
section 3 is probably quite discriminant between eastern and western countries (see also
the distribution of these countries in the biplot).

The second principal axis confronts the clr of fish, F, fruits and vegetables, FV, and
nuts, N, with the clr of meats RM and WM, and eggs E, suggesting the so-called Mediter-
ranean diet for positive values of this second principal component. To analyse differences
between northern and southern (Mediterranean) countries, the observation of the biplot
might suggest a first partition into {C, S} versus {RM, WM, M, E, F, N, FV} and a
second step {RM, WM, M, E} versus {F, N, FV}. The first balance would be of low
discrimination power, while the second balance may discriminate quite well northern and
Mediterranean countries. This shows that the use of compositional biplots, combined with
expert knowledge, may help to define a sequential binary partition to get a meaningful set
of balances and an interpretable dendrogram.



112 Austrian Journal of Statistics, Vol. 40 (2011), No. 1 & 2, 103–113

7 Conclusions

Balances are a special case of log-ratios with a particular interpretation due to their re-
lationship with groups of parts. The CoDa-dendrogram uses the representation of com-
positions by balances. It is a powerful descriptive tool, as it allows the simultaneous
visualisation of an orthonormal basis of balancing elements, the induced decomposition
of the total variance, the sample mean values, and some quantiles of the distribution. The
CoDa-dendrogram is able to summarise sample information even when compositional
vectors have a large number of parts. Balances can be selected by the user in order to
improve interpretability of the results when some kind of affinity between parts is a pri-
ori stated or desired. The groups of parts are the result of a sequential binary partition
of the whole compositional vector. This process of partition may be difficult to describe
for high-dimensional problems. The CoDa-dendrogram visualises this sequential binary
partition as a binary clustering of parts, leading to a more intuitive representation. Two-
sample CoDa-dendrograms can be used for a preliminary comparison of sample balance
means and variances. For mean comparisons between two samples, it can identify which
balances have significant different means and which may be irrelevant. Representation of
more than two samples is possible using different colours, but box-plots are only visual-
ized in the two sample case.
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