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Abstract: In independent subspace analysis (ISA) one assumes that the com-
ponents of the observed random vector are linear combinations of the compo-
nents of a latent random vector with independent subvectors. The problem is
then to find an estimate of a transformation matrix to recover the independent
subvectors. Regular independent component analysis (ICA) is a special case.
In this paper we show how three scatter matrices with the so called block
independence property can be used in independent subspace analysis. The
procedure is illustrated with a small example.
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1 Introduction
In recent years independent component analysis (ICA) has become a popular technique
to analyze multivariate data. The independent component model simply assumes that
the components of a p-variate observed random vector x are linear combinations of the
components of an unobserved random vector s such that the p components of s are inde-
pendent. We can then write

x = As ,

where A is a full-rank p × p mixing matrix. The main goal in ICA is to find an estimate
for any unmixing matrix W such that z = Wx has independent components. If W is an
unmixing matrix and W∗ is obtained from W by permuting its rows and/or multiplying
its rows by nonzero constants, then naturally also W∗ is an unmixing matrix. These
are the only indeterminacies if s has at most one Gaussian component. There are many
algorithms such as FOBI, fastICA, and JADE to solve the problem. For an overview see
Hyvärinen, Karhunen, and Oja (2001). Quite recently, an approach based on the use of
two scatter matrices with the independence property was proposed, see Oja, Sirkiä, and
Eriksson (2006); Nordhausen, Oja, and Ollila (2008); Ollila, Oja, and Koivunen (2008).

In practical applications of ICA the independent components often have a real physi-
cal interpretation, and ICA has therefore been used as a tool for dimension reduction. The
assumption that all components have to be independent has often been criticized, how-
ever, and several alternative model assumptions have been suggested. One can assume,
for example, that the p-vector s consists of k subvectors s1, . . . , sk which are independent.
The model is then called the multivariate independent component model or independent
subspace model. In independent subspace analysis (ISA) one then tries to find an un-
mixing matrix to separate the independent subvectors. In this paper we show how three
scatter matrices with block independence property can be used to solve the ISA problem.

The paper is organized as follows. In Section 2 we recall the concept of a scatter
matrix and its main properties. We show how two scatter matrices with the independence



94 Austrian Journal of Statistics, Vol. 40 (2011), No. 1 & 2, 93–101

property can be used to solve the IC problem. Then in Section 3 we will introduce the
independent subspace (IS) model as given in Theis (2007). Three scatter matrices with
the block independence property are then used to solve the IS problem. The theory is
illustrated with an example in Section 4.

Throughout the paper we use the following notation: A p × p-matrix U is an or-
thogonal matrix (U′U = UU′ = Ip), J is a sign-change matrix (a diagonal matrix with
diagonal elements ±1), D is a rescaling matrix (a diagonal matrix with positive diago-
nal elements), and P is a permutation matrix (obtained from Ip by permuting its rows or
columns).

2 Two Scatter Matrices and ICA
Let x be a p-variate random vector with cumulative distribution function Fx. A p × p-
matrix valued functional S(F ) is a scatter matrix or scatter matrix functional if it is
symmetric, positive definite, and affine equivariant in the sense that

S(FAx+b) = AS(Fx)A
′

for all full-rank p × p matrices A and for all p-vectors b. The regular covariance matrix
cov(F ) is naturally a scatter matrix, and there are many general families of scatter ma-
trix functionals (M-functionals, S-functionals, an so on) proposed in the literature. If x
has an elliptically symmetric distribution then all scatter matrices are proportional to the
covariance matrix.

Scatter matrix functional S(F ) has the independence property if S(Fx) is a diagonal
matrix for all x having independent components. The covariance matrix cov(F ) serves
as the first example with this property. Another example is the scatter matrix based on
fourth moments, namely,

cov4(Fx) =
1

p+ 2
E
(
(x− E(x))′cov−1(x)(x− E(x))(x− E(x))(x− E(x))′

)
.

General families of scatter matrices such as M-functionals and S-functionals are designed
for elliptical distributions. Scatter matrices then typically do not have the independence
property. For any scatter matrix S(F ), one can, however, find a symmetrized version with
the independence property by defining

Ssym(Fx) = S(Fx1−x2) ,

where x1 and x2 are two independent copies of x.
Let S1 and S2 be two scatter matrix functionals having the independence property.

Then we can write the independent component model as

x = Ωz ,

where z is now standardized so that

S1(Fz) = Ip and S2(Fz) = Λ .
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If the diagonal elements of Λ are strictly ordered, λ1 > · · · > λp > 0, then the mixing
matrix Ω and unmixing matrix Γ = Ω−1 are uniquely defined up to sign changes of the
columns and rows, respectively. If S1 = S1(Fx) and S2 = S2(Fx) are given then the ICA
solution Γ (and Λ) solves

ΓS1Γ
′ = Ip and ΓS2Γ

′ = Λ .

Note that Γ and Λ give the eigenvectors and eigenvalues of S−1
1 S2. Of course, any matrix

Γ∗ = DJPΓ

is then also an unmixing matrix (and an ICA solution), that is, Γ∗x has independent
components as well.

We end this section with some supplementary notes on the above unmixing matrix
functional Γ = Γ(F ). The transformation z = Γ(Fx)x is invariant (up to sign changes)
in the sense that

Γ(FAx)(Ax) = JΓ(Fx)x

for some sign-change matrix J. The sign-change matrix can be fixed by requiring, for
example, that the mean is greater than the median for each component of JΓ(Fx)x. (For
invariant coordinate selection based on two shape matrices in the general case, see also
Tyler, Critchley, Dümbgen, and Oja (2009).) Then a whole family of scatter matrices with
the independence property is given by

Sg(x) = E((x− E(x))g(z)′)[E(diag(zg(z)′))]−2E(g(z)(x− E(x))′) ,

where g(x) = (g1(x1), . . . , gp(xp))
′ is a p-variate score function and z = Γ(Fx)(x −

E(x)). In the IC model, Sg(Fx) = S1(Fx).

3 Three Scatter Matrices and ISA
The independence subspace model is obtained if the standardized vector z has indepen-
dent subvectors. Write then zi for the independent pi-subvectors, i = 1, . . . , k, and
z = (z′1, . . . , z

′
k)

′ . Write also p = p1 + · · · + pk. We also require that the subvectors
zi are irreducible, which means that they cannot be further transformed and decomposed
to independent subvectors. For independent subspace analysis we need the new concept
of the block independence property. A scatter matrix S(F ) has the block independence
property if, for all z = (z′1, . . . , z

′
k)

′ as described above, S(Fz) is block diagonal with
block sizes p1, . . . , pk. All the scatter matrices with the independence property discussed
in Section 2 have also the block independence property. (We do not know, however,
whether the independence property implies the block independence property.)

Let S1, S2, and S3 be three scatter matrix functionals having the block independence
property. If z = (z′1, . . . , z

′
k)

′ has independent subvectors then

Si(Fz) = diag(Si1(Fz), . . . ,Sik(Fz)) , i = 1, 2, 3

are all block diagonal. We can now write the independent subspace (IS) model as

x = Ωz ,
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where now z is standardized so that

S1(Fz) = Ip and S2(Fz) = Λ ,

and
S3(Fz) = diag(S31(Fz), . . . ,S3k(Fz))

is block diagonal with block sizes p1, . . . , pk. For uniqueness, Λ = diag(Λ1, . . . ,Λk) is
supposed to be a diagonal matrix such that all the diagonal elements are distinct and that
the diagonal elements in Λi satisfy λi1 > · · · > λipi > 0, i = 1, . . . , k, and λi1 > · · · >
λk1.

If S1 = S1(Fx) and S2 = S2(Fx) are given then one again first finds a ICA solution
Γ (and Λ) by solving

ΓS1Γ
′ = Ip and ΓS2Γ

′ = Λ .

Then a permutation matrix P is found such that S3(FPΓx) is block diagonal. Our solution
of the IS problem is then the unmixing matrix W = PΓ.

Assume that W = (W′
1, . . . ,W

′
k)

′ is any solution in the IS problem, that is, Wix are
independent pi-subvectors, i = 1, . . . , k. If Ai is a full-rank pi × pi-matrix, i = 1, . . . , k,
then naturally also

W∗ = ((A1W1)
′, . . . , (AkWk)

′)′

is an IS solution. Also W = (W′
α1
, . . . ,W′

αk
)′ is a solution for any permutation (α1, . . . ,

αk) of (1, . . . , k). These are the only indeterminacies in this model when at most one
component is Gaussian. See Theis (2004, 2007) and Gutch and Theis (2007, 2010).

4 Example
In our example a random vector s consists of three subvectors s1, s2, and s3, with dimen-
sions 1, 2, and 2. The univariate component s1 has an exponential distribution, and the
densities of bivariate subvectors s2 and s3 have the shapes of Greek letters µ and Λ. A
sample of size 1000 was drawn from these three independent sources, see Figure 1 for the
observed distributions of s1, s2, and s3.

The sources (vector s = (s1, s
′
2, s

′
3)

′) were mixed by a 5× 5 mixing matrix Ω where,
for this example, the elements of Ω were independently sampled from a uniform distri-
bution on [0, 1]. (In fact, due to the invariance of our method the estimated independent
subvectors do not depend on the choice of the mixing matrix Ω.) The mixed data is pre-
sented in Figure 2 and shows no clear structure. Similarly the principal components as
shown in Figure 3 do not reveal the structure we are looking for.

For our independent subspace analysis we compared two choices of S1 and S2. First,
we used the FOBI functional based on the choices S1 = cov and S2 = cov4. Second,
we used Dümbgen’s shape matrix (S1) and the symmetrized Huber matrix (S2). For
descriptions and details on these robust choices of scatter matrices, see Nordhausen et al.
(2008). For scatterplots of the data after these two ICA transformations, see Figure 4 and
Figure 5.

Figure 4 shows that FOBI did not yield good estimates of the subspaces. However, the
second and fourth variables seem to provide a (bad) estimate for the Λ subspace, and the
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exponential source

0 1 2 3 4 5 6 7

0
50

15
0

25
0

35
0

300 500 700

30
0

40
0

50
0

60
0

70
0

µ

200 400 600

20
0

30
0

40
0

50
0

60
0

70
0

Λ

Figure 1: The observed distributions of the three sources (s1, s2, and s3).
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Figure 2: Scatterplot of the sources mixed using a random matrix.
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Figure 3: Scatterplot of the principal components based on the mixed data.
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Figure 4: Scatterplot of the data after the ICA transformation based on FOBI (regular
covariance matrix and matrix of fourth moments).
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Figure 5: Scatterplot after the ICA transformation based on Dümbgen’s shape matrix and
symmetrized Huber matrix.

third and fifth variables the µ subspace. The use of Dümbgen’s shape matrix and the sym-
metrized Huber matrix seemed to work much better here: The first and fifth transformed
variables approximately correspond to the Λ subspace, the second and third variables the
µ subspace, and the fourth variable the “exponential” subspace. The subspaces should
then be found and confirmed by a third scatter matrix. We try two different scatter matri-
ces from the family {Sg} discussed in Section 2. Scatter matrix Sr uses gj(zij) which is
the rank of zij among z1j, . . . , znj . Scatter matrix Sq3 uses the asymmetric function

gj(zij) = I(zij ≥ q3j)− I(zij < q3j) ,

where q3j is the third quartile of z1j, . . . , znj .
The correlation matrices based on Sr and Sq3 for the components found by FOBI are
1.00 −0.05 −0.01 0.01 −0.01

−0.05 1.00 0.16 0.08 −0.07
−0.01 0.16 1.00 0.01 0.00
0.01 0.08 0.01 1.00 0.02

−0.01 −0.07 0.00 0.02 1.00

 and


1.00 0.05 −0.01 −0.02 0.01
0.05 1.00 −0.09 -0.27 0.12

−0.01 −0.09 1.00 −0.01 -0.20
−0.02 -0.27 −0.01 1.00 −0.08
0.01 0.12 -0.20 −0.08 1.00

 .

Recall that the FOBI transformation is not that good. If we use Sr as a third scatter matrix,
we do not find the block structure. Surprisingly, Sq3 as a third scatter matrix seems to find
the structure; the highest correlations show the blocks weakly suggested by Figure 4.
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Consider next the components resulting from the transformation based on Dümbgen’s
shape matrix and symmetrized Huber matrix. See Figure 5. The two correlation matrices
are now

1.00 0.00 −0.02 0.01 0.08
0.00 1.00 -0.13 −0.01 0.00

−0.02 -0.13 1.00 −0.00 0.03
0.01 −0.01 −0.00 1.00 0.01
0.08 0.00 0.03 0.01 1.00

 and


1.00 0.05 −0.10 0.01 -0.41
0.05 1.00 -0.24 −0.02 0.02

−0.10 -0.24 1.00 0.04 −0.00
0.01 −0.02 0.04 1.00 0.01

-0.41 0.02 −0.00 0.01 1.00

 .

Both scatter matrices find the block structure, and one obtains again really high block
correlations with Sq3 . In this example and with these scatter matrices it is not difficult
to choose a permutation matrix to obtain the final result. Our preliminary results suggest
that one should be careful in selecting the scatter matrices. The two scatter matrices for
the ICA step should not be too similar. The matrix Sq3 with asymmetrical g-function
seemed to be a good choice for the third scatter matrix. We believe that there is no
global best triple of scatter matrices but that the best combination depends on the actual
underlying distributions. Hence in a real data situation we would advise to try several
different combinations.

5 Summary

In this paper we show how three scatter matrices with the independence block property
can be used to perform ISA. Our independent subspace model assumptions are a bit more
restrictive than Theis’s definition (Theis, 2007) as he does not assume that the diagonal
values of Λ are distinct. In the literature, it is often assumed that p1 = · · · = pk = K. This
is known as K-ISA, see for example Cardoso (1998); Szabo and Lörincz (2001); Poczos
and Lörincz (2005); Theis (2007). The example showed that our approach requires still
further investigation. The choice of scatter functionals had a strong impact on the results.
It seems that the scatter functionals should measure different types of dependencies, not
only linear. Furthermore the procedure should automatically decide what are the number
and dimensions of the subvectors, and then permute the components accordingly. Our
future work is to compare our approach to the other recently introduced methods such
as SJADE (Theis, 2007), fastISA (Hyvärinen and Köster, 2006) and other approaches
(Szabo and Lörincz, 2001; Poczos and Lörincz, 2005).
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