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Abstract: Underreporting in register systems can be analyzed using a bino-
mial approach, where both the size and the probability parameter have to be
estimated. Parameter estimation fails when overdispersion is present. Ex-
tensions of the binomial model are derived by randomizing the parameters,
i.e. considering mixed models. Among these models are the beta-binomial,
which results from allowing for a random reporting probability; the negative-
binomial, that is the marginal when the size parameter is randomized; and the
beta-Poisson model, where both binomial parameters are considered random.
Likelihood based estimation is developed and inference issues are discussed.
Finally the method is applied to data from the Austrian crime register.
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1 Introduction
Underreporting is a problem in data collection that occurs, when the counting of some
event is for some reason incomplete. Any reporting or counting system is prone to such
errors in recording. The reasons may be quite different in the various fields of application
like public health, criminology, actuarial science or production. In public health we have
reporting systems for infectious diseases like HIV or chronic diseases like diabetes, and
recording failures may occur as result of diagnostic errors or patients avoiding diagnosis.
Crimes associated with shame are likely not to be reported to the police, just as theft of
low value goods. The same holds for traffic accidents with minor damage. Insurances
are faced with an unknown number of total claims as some claims are made with a delay,
that may be as long as five years. An example from industrial production is the number
of products that are broken within a certain period, typically the warranty period. To
know this number is important for quality management. Only the number of returned
products is known, but the total number includes also those goods that are not returned
by customers. In all cases reporting systems give lower counts than the actual number of
events. Therefore, underreporting is a widespread phenomenon and the estimation of the
total number of cases is of particular interest.

As a consequence of underreporting µ, the mean of the observed counts is smaller than
the true mean λ. Using a binomial model the mean of the observed counts is µ = λπ,
with both π, the reporting probability and λ, the total number of cases to be estimated.

Neubauer and Friedl (2006) addressed this problem by simultaneous estimation of
both binomial parameters. They showed that a binomial and a beta-binomial regression
model are suited for a wide range of applications. However, both models fail, if the sample
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variance of the observed counts is considerably larger than the sample mean. With the
Poisson model this phenomenon is known as overdispersion.

Neubauer and Djuraš (2008, 2009) proposed models that allow for more overdisper-
sion than the beta-binomial does. One is a generalized Poisson regression model, and the
second is a beta-Poisson regression model.

In the following sections we give an overview of models for underreporting, intro-
duce a regression technique for these models, discuss estimation and inference and finally
present results from application to real data.

2 Models Based on a Bernoulli Sampling Scheme

Let yt, t = 1, . . . , T , be a sample of counts of some register system reported over time.
We start by assuming that for each time t there is the same unknown number λ of events
that actually happened. The Bernoulli sampling model makes the assumption that for
each event a random mechanism decides whether it is reported or not, i.e. there is some
probability π for reporting an event. Hence we have random Bernoulli variables

Ri =

{
1 if the event is reported
0 otherwise i = 1, . . . , λ

such that

Yt =
λ∑

i=1

Ri ∼ binomial(λ, π)

and E(Yt) = µ = λπ is the mean model and the mean-variance relation is characterized
by var(Yt) = µ(1− π) = µϕ, 0 ≤ ϕ ≤ 1.

A more realistic model at hand results, if E(Yt) = µt = λtπ is allowed with λt(β) =
exp(x′

tβ) and π(α) = exp(α)/[1 + exp(α)], α ∈ R. Here xt is a d-vector of known
regressors and β denotes the corresponding vector of unknown parameters. The likelihood
contribution of the t-th observation is now

L(α, β|yt, xt) =

(
λt(β)

yt

)
π(α)yt(1− π(α))λt(β)−yt . (1)

For real data var(Yt) ≤ µt is often too restrictive and hence mixed models are considered
as alternatives to the binomial model. Allowing for larger variability becomes possible
by treating parameters as random variables. The counts now have a conditional binomial
distribution.

2.1 Randomization of Parameter π

For Yt|P ∼ binomial(λ, p) and P ∼ beta(γ, δ) we obtain the beta-binomial as marginal
distribution of Yt, with var(Yt) = µ(1 − π)(λ + γ + δ)/(1 + γ + δ) = µϕ, ϕ > 0. We
use the reparametrization θ = γ + δ and π = γ/θ and in the regression model we have
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λt(β) = exp(x′
tβ) and π(α) = exp(α)/[1 + exp(α)], as before. The profile likelihood

contribution of the t-th observation is now

L(α, β|yt, xt, θ) =

(
λt(β)

yt

)
B(yt + π(α)θ, λt(β)− yt + (1− π(α))θ)

B(π(α)θ, (1− π(α))θ)
, (2)

where B(·) is the beta function and γ(α) = π(α)θ and δ(α) = (1−π(α))θ. The estimation
algorithm cycles between ML estimation of α and β given θ, and the method of moments
estimation of θ given α and β.

2.2 Randomization of Parameter λ

Assuming Yt|L ∼ binomial(l, π) and L ∼ Poisson(λ) we obtain marginally that Yt ∼
Poisson(λπ) with var(Yt) = µ, i.e. ϕ = 1. For this model the decomposition of the mean
is in general not identified. Winkelmann (2000) considers a special regression model
where λt(β) = exp(x′

tβ), πt(α) = exp(z′tα)/[1+exp(z′tα)] and xt and zt are disjoint sets
of regressors. This so-called Pogit model is identified and the mean decomposition gives
the desired results.

Allowing for randomness in λ we state a conditional Poisson model as Lt|K ∼
Poisson(kλt). Using K ∼ Gamma(ω, ω) in addition, we obtain a negative-binomial
marginal distribution for Yt with parameters ω, the expected number of unreported cases,
and π, the reporting probability. The mean-variance relation is now var(Yt) = µ+µ2/ω =
µϕ, 1 ≤ ϕ. Now we use the regression model ωt(β) = exp(x′

tβ) and π(α) = exp(α)/[1+
exp(α)], and the likelihood contribution is

L(α, β|yt, xt) =

(
ωt(β) + yt − 1

yt

)
π(α)yt(1− π(α))ωt(β) . (3)

Several distributions have the Poisson as special case, and one of them is the gen-
eralized Poisson (gP) distribution (Consul, 1989), denoted as Y ∼ gP(θ, τ). Neubauer,
Djuraš, and Friedl (2009) showed in simulations that for a wide range of parameters the
gP is equivalent to the binomial and to the negative-binomial distribution. The param-
eter τ tunes the type of distribution. For τ = 0 we get the Poisson distribution with
mean θ, for 0 < τ ≤ 1 we have a equivalent negative-binomial and for τ < 0 a equiv-
alent (positive) binomial distribution. In the following we suggest an interpretation of
the gP parameters that allows to use the gP distribution for the estimation of underre-
porting. The first two moments of the gP distribution are given as E(Y ) = θ(1 − τ)−1

and var(Y ) = θ(1 − τ)−3. For the positive and negative-binomial distribution we have
E(Y ) = λπ and var(Y ) = λπ(1− π) or var(Y ) = λπ(1− π)−1. Equating the respective
moments of the distributions and solving for λ and π we obtain π = 1 − (1 − τ)2s and
λ = θπ−1(1− π)−s/2, where s = sign(τ).

For regression we use θt(β) = exp(x′
tβ) and τ(α) = 1 − exp(−α) to ensure µt =

θt(1− τ)−1 > 0 and the likelihood contribution is given as

L(α, β|yt, xt) =
θt(β)[θt(β) + yτ(α)]y−1 exp[−(θt(β) + yτ(α))]

y!
. (4)
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The parameter α is a real number that indicates Poisson overdispersion for 0 < α and
Poisson underdispersion α < 0. Testing α = 0 is therefore a possibility to identify near
Poisson data, or in other words to test for Poisson over- or underdispersion.

2.3 Randomization of Both Binomial Parameters
Another possibility of randomizing the Poisson model is Yt|P ∼ Poisson(λP ) and P ∼
beta(γ, δ) which gives the marginal beta-Poisson distribution, that we write as Yt ∼
beta-Poisson(λ, γ, δ). For this model we have E(Yt) = µ = λπ, var(Yt) = µϕ with
π = γ/(γ + δ) and 1 ≤ ϕ = 1 + λ(1− π)/(1 + γ + δ). The beta-Poisson distribution is
also known as “Type H1” distribution, and is usually treated in the context of contagious
distributions (Johnson, Kemp, and Kotz, 2005).

As for the beta-binomial model we use the reparametrization θ = γ + δ and π = γ/θ,
and in the regression model we have λt(β) = exp(x′

tβ) and π(α) = exp(α)/[1+exp(α)],
as before. The likelihood contribution of the t-th observation is now

L(α, β|yt, xt, θ) =
λt(β)

yt

yt!

B(yt + π(α)θ, (1− π(α))θ)

B(π(α)θ, (1− π(α))θ)
1F1[yt + π(α)θ; yt + θ;−λt(β)] ,

(5)
where 1F1[·] denotes the confluent hypergeometric function.

3 Estimation and Inference
For all models maximum likelihood (ML) is used for estimating the parameters α and β in
the mean µt = λt(β)π(α). For the beta-Poisson model ML is applied to an approximated
likelihood in which 1F1 is replaced by a Laplace approximation based on its integral rep-
resentation. The roots of the score equations ∂ℓ/∂α = 0 and ∂ℓ/∂β = 0 are found by the
Newton-Raphson algorithm, where ℓ = log

∏
t L(ΩM |yt, xt) denotes the log-likelihood,

and ΩM is the parameter vector of some model M. For the beta-mixture models the esti-
mation algorithm cycles between ML estimation of α and β given θ, and the method of
moments estimation of θ given α and β.

It is known that asymptotic normality of the ML estimates holds for members of the
one-parameter linear exponential family. Even our simple binomial model is not a mem-
ber of this family. Hence it is theoretically unclear if the desirable property of normality
for parameter estimates holds for our models. From different simulation studies we have
empirical evidence that the parameter estimates α̂ and β̂ are approximately normally dis-
tributed, if the reporting probability is not too small. This is a reasonable finding, as one
of the regularity conditions for asymptotic normality of ML estimates is the identifiability
of the parameters. For π → 0 we approach the Poisson limit in all models and for the
Poisson model the decomposition µ = λπ is not identified. Hence we assume asymptotic
normality for the parameter estimates and obtain pointwise confidence intervals for the
derived quantities λ̂t and π̂ by the Delta Method.

For variable selection within one model the usual criteria like the t-statistic are avail-
able and of course the likelihood ratio test (LRT) principle can be used to discriminate
between nested models, i.e. for models of the same distribution.
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To support the decision between our models the usual likelihood approaches are not
applicable and therefore non-nested testing techniques must be applied. The classical Cox
test for non-nested models addresses no more than two alternatives. A simple strategy
for more than two model alternatives is given by Allcroft and Glasbey (2003). It is a
simulation-based approach and its main advantage lies in the fact that it does not need the
estimated parameters from the simulated data. Hence, this inferential procedure is very
fast and also easy to implement. To compare a set of models M = (Mk), k = 1, . . . , K,
the procedure consists of the following steps:

1. For observed data y = (yt), t = 1, . . . , T , estimate parameters under all models by
optimizing a goodness-of-fit criterion. Denote the estimates by θ̂k and the observed
values of the criterion as c = (ck(y)).

2. Simulate a number of data from each estimated model, denoted by y(s)(θ̂k), s =
1, . . . , S, (e.g. S = 100) and obtain all criteria values for each data set; thus we
have S matrices C(s) of dimension K ×K.

3. Obtain C̄, the mean of the S matrices, and compare c to the k-th column c̄k by
assuming multivariate normality for the mean column. A measure for the difference
between the observed and simulation based vector of criteria is the Mahalanobis
distance Dk = (c− c̄k)

′V −1
k (c− c̄k), where Vk is the sample variance matrix of the

criteria. If the k-th model is correct then Dk ∼ χ2
K .

An even simpler but only heuristic strategy to choose between non-nested models is to use
the Bayesian Information Criterion (BIC), as for instance Burnham and Anderson (1998)
recommend.

4 Application to Austrian Crime Data
The real data examples are taken from the Austrian online crime register SIMO. For each
of 132 regions in Austria we have weekly counts of different crime categories since 2004.
The models introduced above were applied to data of larger regions and crime categories
bicycle theft and shop lifting.

The regression element used to model the mean consists of three components: Tt a
smooth trend function, St a seasonality function and Ct a component for calender effects.
Hence λt or ωt is modelled as exp(β0 + Tt + St + Ct). Tables 1 and 2 give the values of
the log-likelihood, the Pearson statistic, the BIC, the Mahalanobis distance D, its p-value
and the estimate π̂. The estimation algorithm does not converge for the binomial model
and thus no results are available. All other models converge and show estimates for ϕ that
are larger than 1. Therefore, the binomial model is not adequate for the data.

Considering the BIC for the bicycle theft data as criterion for model selection, we find
the gP distribution — or equivalently the negative-binomial distribution — appropriate
for the data, and here the reporting probability is estimated as π̂ = 0.62. This is supported
by the non-nested test, where only for the negative-binomial model the test statistic D
is not significant. Figure 1 shows the bicycle theft data and the estimation results from
the negative-binomial model, the estimated mean and the estimated total number with
its confidence intervals. The shape of the functions is dominated by the seasonality term,
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which shows an increase of bicycle thefts during the warmer period of the year. The abrupt
changes in the level of the functions are due to calender effects expressed as dummy
variables. One of them covers the summer holiday period and the other is an additional
effect for the winter season.

Table 1: Results from the Bicycle Theft Data
Distribution logL Pearson BIC D p(D) π̂

Negative-binomial −728.91 206.49 1521.63 1.92 0.59 0.61
Generalized Poisson −728.57 204.79 1520.97 — — 0.62
Beta-binomial −732.87 204.79 1529.57 9.59 0.02 0.32
Beta-Poisson −735.39 197.97 1534.60 9.85 0.02 0.63
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Figure 1: Results from the negative-binomial model: Bicycle theft data (points), estimated
mean (solid), estimated total number of thefts with confidence interval (dashed).

Using the BIC for model selection with the shop lifting data we choose the negative-
binomial model with an estimated reporting probability of π̂ = 0.63. Considering the
test statistic D we find all models equally appropriate for the data. This is quite disap-
pointing, as we do not know which of the estimated reporting probabilities to consider as
appropriate for the data situation. In Figure 2 the estimates λ̂t are plotted for all models
as functions over the data. The functions are here also dominated by a seasonality term,
with an increase during the colder period of the year.

Table 2: Results from the Shop Lifting Data
Distribution logL Pearson BIC D p(D) π̂

Negative-binomial −802.31 202.70 1657.79 2.04 0.56 0.63
Generalized Poisson −802.44 202.57 1658.06 — — 0.64
Beta-binomial −803.19 194.13 1659.56 4.71 0.19 0.42
Beta-Poisson −807.19 193.02 1667.57 6.54 0.09 0.74
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Figure 2: Shop lifting data: Estimated mean (solid) and estimated total number of crimes
from the negative-binomial (dotted), the beta-binomial (dashed) and the beta-Poisson
model (dash-dotted).

5 Conclusion
Reporting systems often produce counts of some event. These counts are incomplete if the
system is deficient for some reason. The most prominent example are crime data, where
underreporting is prevailing for various crime categories. We propose a method based on
a Bernoulli sampling scheme that brings the binomial distribution as most simple model
for the estimation of underreporting. Several generalizations are proposed that allow the
estimation of the binomial parameters, when data show large overdispersion. The esti-
mation relies on maximum likelihood and hence the usual inferential tools like LRT or
BIC are available. The proposed method and estimation technique shows good perfor-
mance in a simulation studies when var(Y ) = µϕ and ϕ ̸= 1, and it is also reasonable
to assume asymptotic normality of parameter estimates. Finally the method is applied to
two examples of Austrian crime data, bicycle theft and shop lifting. For the bicycle data
a generalized Poisson model is found to fit the data. For the shop lifting data the results
are not conclusive. Therefore we use an inferential procedure to decide between models
for underreporting. Usual likelihood approaches are not applicable and therefore a testing
technique to distinguish between non-nested models is applied.
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