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Abstract: By means of exact computation of Pearson statistics distributions
we illustrate some differences between their tails and tails of corresponding
chi-square distributions.
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1 Introduction
Let ν1, . . . , νN be frequencies of all N outcomes of a multinomial scheme in a sample of
size T . A usual goodness-of-fit test for the hypothesis that probabilities of outcomes are
equal to p1, . . . , pN is based on the Pearson statistics

X2
N,T =

N∑
j=1

(νj − Tpj)
2

Tpj
.

It is well-known that if this hypothesis is valid then the distribution of X2
N,T converges to

the chi-square distribution with N − 1 degrees of freedom as T → ∞.
But in practice the values of T are bounded, and so the question on the accuracy

of such approximation (especially for tails) arises naturally. Results of investigation of
this problem for equiprobable multinomial schemes with N ∈ [2, 160] outcomes and
sample sizes T ∈ [10, 80] was reported in Good, Gover, and Mitchell (1970), Holzman
and Good (1986). Experimental results on the accuracy of approximation of Pearson
statistics distribution function by chi-square distribution function in a central zone were
presented in Filina and Zubkov (2008).

Here we investigate the differences between Pr{X2
N,T ≤ x} and the distribution func-

tion FN−1(x) of chi-square distribution with N−1 degrees of freedom for large x. Results
of our computations show that for finite sample sizes the tails of Pearson statistics distri-
bution may be significantly heavier than the chi-square tails.
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Figure 1: Equiprobable cases
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Figure 2: Equiprobable cases
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Figure 3: Equiprobable and non-equiprobable cases: N = 10:
a) p = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1),
b) p = (0.13, 0.13, 0.13, 0.13, 0.13, 0.07, 0.07, 0.07, 0.07, 0.07).
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Figure 4: Non-equiprobable cases, N = 10:
c) p = (0.15, 0.15, 0.15, 0.15, 0.15, 0.05, 0.05, 0.05, 0.05, 0.05),
d) p = (0.17, 0.17, 0.17, 0.17, 0.17, 0.03, 0.03, 0.03, 0.03, 0.03).
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2 Numerical Results
Typical results of our computations are shown in Figures 1 to 4. The horizontal axes in
these graphs are used for the values of the sample size T (in a logarithmic scale), the
vertical axes for the values of the distribution functions. Three graphs in each column
correspond to the values of x such that FN−1(x) equals to 0.95, 0.99, and 0.999 (these
numbers are marked by dotted lines). The values of N are shown under the graphs in
Figures 1 and 2 (for equiprobable outcomes) and in the legends to Figures 3 and 4 (for
non-equiprobable outcomes).

The points on all figures have coordinates (T,Pr{X2
N,T ≤ x}), so the distance be-

tween the point and the dotted line equals to the error of approximation of exact value
Pr{X2

N,T ≤ x} by its asymptotic value FN−1(x). The point is under the dotted line,
iff the tail Pr{X2

N,T > x} of the Pearson statistics distribution is heavier than the tail
1− FN−1(x) of the chi-square distribution. In all examples the values of X2

N,T are ratio-
nal, so there are no atoms at 0.95, 0.99, and 0.999 quantiles of FN−1(x).

Figures 1 to 4 illustrate the following phenomena:
• For fixed x the absolute values of difference ∆N,T (x) = Pr{X2

N,T ≤ x}−FN−1(x)
decrease to 0 as T → ∞ approximately as C(x)T−1.

• The Relative error of approximation |∆N,T (x)/(1−FN−1(x))| increases as FN−1(x)
grows from 0.95 to 0.999 (and further, at least up to 0.9999999; the computation
errors are smaller than 10−8). If the outcomes are equiprobable than the bound
of this relative error approximately depends on T/N ; the relative error becomes
greater as the differences between the probabilities of the outcomes grow.

The width of the strip containing points in our graphs has the same order as the proba-
bilities of the atoms of the X2

N,T distribution near the corresponding value of x. So, these
widths are maximal for equiprobable outcomes and are decreasing when probabilities of
outcomes become more different.

“Parabolic structures” in Figures 1 and 2 possibly are the results of the interplay of two
processes. In case of equiprobable outcomes Pr{X2

N,T ≤ x} is the sum of probabilities
of the form Pr{(ν1 = n1, . . . , νN = nN} over the integer points (n1, . . . , nN) lying in the
intersection of the hyperplane n1+· · ·+nN = T and the ball n2

1+· · ·+n2
N ≤ (x+T )T/N .

With the increasing of T the probabilities of points and number of integer points in the
intersection are changing in a regular interrelated ways.

2.1 Methods
In calculations of the exact distributions of X2

N,T we use algorithms described in Zubkov
(1996, 2002), Filina and Zubkov (2008). These algorithms use the representation of poly-
nomial distribution Poly(T ; p1, . . . , pN) as a distribution of some time-inhomogeneous
Markov chain after N steps. The state space of this chain depends on T and on the prob-
abilities p1, . . . , pN . For equiprobable cases such chains have minimal state space O(T )
and complexity of algorithms are minimal also (of order O(NT 2)).

To compute the values of Pr{X2
N,T ≤ x} for non-equiprobable cases shown in Figures

3 and 4 we use an additional idea. It will be described in a simplified form to avoid too
cumbersome formulas.
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Let νn,j(t) be the frequency of j-th outcome in a sample of size t from the equiproba-
ble polynomial scheme with n outcomes and

fn,t(k) = Pr{ν2
n,1(t) + · · ·+ ν2

n,n(t) = k}, Fn,t(k) = Pr{ν2
n,1(t) + · · ·+ ν2

n,n(t) ≤ k} .

Then considering {νn,j(k)}nj=1 and {νN−n,j(T − k)}N−n
j=1 as independent sets of frequen-

cies (also in the case n = N − n, k = T − k) and supposing that p = (p1, . . . , pN) =
(q1, . . . , q1, q2, . . . , q2) such that nq1 + (N − n)q2 = 1 we have

Pr{X2
N,T ≤ x} = Pr

{
N∑
i=1

(νi−Tpi)
2

Tpi
≤ x

}
= Pr

{
N∑
i=1

ν2i
Tpi

≤ x+ T

}
(1)

=
T∑

m=0

Pr

{
n∑

i=1

νi = m

}
Pr

{
1

Tq1

n∑
i=1

ν2
n,i(m) + 1

Tq2

N−n∑
j=1

ν2
N−n,j(T −m) ≤ x+ T

}

=
T∑

m=0

Cm
T (nq1)

m((N − n)q2)
T−m

∑
k≥0

fn,m(k)FN−n,T−m

(
Tq2

(
x+ T − k

Tq1

))
.

So to compute Pr{X2
N,T ≤ x} for all T ≤ Tmax and any q1, q2 it is sufficient to

compute tables of values of fn,m(k) for all m ≤ Tmax, k ≤ Tq1(x+T ) and of FN−n,m(k)
for all m ≤ Tmax, k ≤ Tq2(x+ T ) and then use the formula (1).

An analogous approach may be used:

• for cases when the number of different values of pi is somewhat larger than 2,

• for cases of arbitrary distributions when N is not very large (because the number
Ck

k+n−1 of all possible values of {νn,j(k)}nj=1 is not very large for small values of n
and k).

2.2 Concluding Remarks
1. To choose the right critical level for tests based on the Pearson statistics and limited

sample size a detailed analysis of the exact distribution of this statistics is desirable.

2. It will be interesting to find theoretical justifications of the phenomena discovered.
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