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Abstract: Given training sample, the problem of classifying a scalar Gaus-
sian random field observation into one of two populations specified by dif-
ferent parametric mean models and common parametric covariance function
is considered. Such problems are usually called as supervised classification
or contextual classification problems. This paper concerns with classification
procedures associated with Bayes Discriminant Function (BDF) under deter-
ministic spatial sampling design. In the case of parametric uncertainty, the
ML estimators of unknown parameters are plugged in the BDF. The actual
risk and the approximation of the expected risk (AER) associated with afore-
mentioned plug-in BDF are derived. This is the extension of the previous one
to the case of complete parametric uncertainty, i.e., when all mean functions
and covariance function parameters are unknown. Stationary geometrically
anisotropic Gaussian random field with exponential covariance function sam-
pled on regular 2-dimensional lattice is used for illustrative examples.
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1 Introduction
It is well known that in case of completely specified populations and known loss function,
an optimal classification rule in the sense of minimum risk is based on BDF (Anderson,
2003). In practice, however, the complete statistical description of populations is usually
not possible. Training sample is used for obtaining the estimators of statistical parameters
which are then usually plugged in BDF. Actual risk and expected risk (ER) are considered
as performance measures for plug-in version of BDF (PBDF). However, the expressions
for the ER are very cumbersome even for the simplest forms of PBDF. This makes it
difficult to build some qualitative conclusions. Therefore, asymptotic approximations of
the expected error rate are especially important.

Many authors have investigated the performance of the PBDF when parameters are es-
timated from training samples consisting of dependent observations (see e.g. Lawoko and
McLachlan, 1985). The influence of dependence in data (stationary time series, Markov
dependence, autoregressive dependence) on the performance of the PBDF is also consid-
ered by Kharin (1996).

Switzer (1980) was the first to treat classification of spatial data. Plug-in approach to
discrimination for feature observations having elliptically contoured distributions is im-
plemented in Batsidis and Zografos (2006). Saltyte and Ducinskas (2002) derived the
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asymptotic approximation of the expected error rate when classifying the observation of a
scalar Gaussian random field into one of two classes with different regression mean mod-
els and common variance. This result was generalized to multivariate spatial-temporal
regression model in Saltyte-Benth and Ducinskas (2005). However, in all publication
listed above, the observations to be classified are assumed independent from training sam-
ples. This is unrealistic assumption particularly when the locations of observations to be
classified are close to ones of training sample.

The first extensions of above approximation to the case when spatial correlations be-
tween Gaussian observations to be classified and observations in training sample are not
assumed equal zero is done in Ducinskas (2009). Here only the trend parameters and
scale parameter of covariance function is assumed unknown. The extension of the latter
approximation to the case of complete parametric uncertainty (all means and covariance
function parameters are unknown) is implemented in the present paper. We focus on the
maximum likelihood (ML) estimators, since the inverse of the information matrix associ-
ated with likelihood function of training sample well approximates the covariance matrix
of these estimators. The asymptotic properties of ML estimators showed by Mardia and
Marshall (1984) under increasing domain asymptotic framework and subject to some reg-
ularity conditions are essentially exploited. The asymptotic results sometimes yield use-
ful approximations to finite-sample properties. The simulated annealing algorithm can be
used in searching the optimal spatial sampling design.

By using the proposed AER, the performance of the PBDF is numerically analyzed
in the case of stationary Gaussian random field on 2-dimentional regular lattice with ex-
ponential covariance function. The dependence of the values of obtained AER on the
statistical parameters such as the range parameter, the anisotropy ratio and Mahalanobis
distance, is investigated.

By applying the proposed criterion, the numerical comparison of two training labels
configurations (TLC) is carried. That gives us the strong arguments for suggestion to
include derived formulas of error rates in the geospatial data mining (Shekhar, Schrater,
Vatsavai, Wu, and Chawla, 2002). The proposed DF could also be considered as the ex-
tension of widely used Bayesian methods to the restoration of image corrupted by spatial
Gaussian noise (Cressie, 1993, Ch. 7.4).

2 Main Concepts and Definitions
The main objective of this paper is to classify the observations of Gaussian random field
(GRF)

{Z(s) : s ∈ D ⊂ Rp} .

The model of observation Z(s) in population Ωj is

Z(s) = x′(s)βj + ε(s) , (1)

where x(s) is a q×1 vector of non random regressors and βj is a q×1 vector of parameters,
j = 1, 2. The error term is generated by a zero mean stationary GRF {ε(s) : s ∈ D} with
covariance function defined by model for all s, u ∈ D

cov{ε(s), ε(u)} = C(s− u; θ) , (2)
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where θ ∈ Θ is a p× 1 parameter vector, Θ being an open subset of Rk.
In the case when covariance function parameters are known, model (1), (2) is called

an universal kriging model (Cressie, 1993, Ch. 3).
For a given training sample, consider the problem of classification of the Z0 = Z(s0)

into one of two populations when

x′(s0)β1 ̸= x′(s0)β2 , s0 ∈ D . (3)

Denote by Sn = {si ∈ D; i = 1, . . . , n} the set of locations where training sample T ′ =
(Z(s1), . . . , Z(sn)) is taken, and call it the set of training locations (STL). It specifies
the spatial sampling design or spatial framework for training sample (see Shekhar et al.,
2002.

We shall assume the deterministic spatial sampling design and all analyses are carried
out conditional on Sn.

Assume that each training sample realization T = t and Sn are arranged in the fol-
lowing way. The first n1 components are observations of Z(s) from Ω1 and remaining
n2 = n − n1 components are the observations of Z(s) from Ω2. So Sn is partitioned
into union of two disjoint subsets, i.e. Sn = S(1) ∪ S(2), where S(j) is the subset of Sn

that contains nj locations of feature observations from Ωj , j = 1, 2. So each partition
ξ(Sn) = {S(1), S(2)} with marked labels determines TLC.

For TLC ξ(Sn), define the variable d = |D(1) − D(2)|, where D(j) is the sum of
distances between the location s0 and locations in S(j), j = 1, 2.

The n× 2q design matrix of training sample T denoted by X is specified by

X = X1 ⊕X2 ,

where the symbol ⊕ denotes the direct sum of matrices and Xj is the nj × q matrix of
regressors for observations from Ωj , j = 1, 2.

As it follows, we assume that STL Sn and TLC ξ are fixed. This is the case, when
spatial classified training data are collected at fixed locations (stations).

So the model of training sample is

T = Xβ + E ,

where β = (β′
1, β

′
2)

′ is a 2q × 1 vector of regression parameters and E is the n× 1 vector
of random errors that has multivariate Gaussian distribution Nn(0,Σ(θ)).

Denote by c0(θ) the covariance between Z0 and T . Let t denote the realization of T .
For notational convenience, the argument θ in all its functions is now dropped.

Since Z0 follows model specified in (1), the conditional distribution of Z0 given T = t,
Ωj is Gaussian with mean

µ0
lt = E(Z0|T = t; Ωj) = x′

0βj + α′
0(t−Xβ) , j = 1, 2 (4)

and variance
σ2
0(θ) = var(Z0|T = t; Ωj) = C(0)− c′0Σ

−1c0 , (5)

where
x′
0 = x′(s0) , α′

0 = c′0Σ
−1 .
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Under the assumption of complete parametric certainty of populations and for known fi-
nite nonnegative losses {L(i, j), i, j = 1, 2}, the BDF minimizing the risk of classification
is formed by log ratio of conditional likelihoods.

Then BDF is specified by McLachlan (2004)

Wt(Z0,Ψ) =

(
Z0 −

1

2
(µ0

1t + µ0
2t)

)(
µ0
1t − µ0

2t

)
/σ2

0 + γ , (6)

where γ = log(π∗
1/π

∗
2) and Ψ = (β′, θ′)′.

Here π∗
j = πj(L(j, 3 − j) − L(j, j)), j = 1, 2, where π1, π2 (π1 + π2 = 1) are prior

probabilities of the populations Ω1 and Ω2, respectively.
Note that in (6) the prior probabilities π1, π2 can be sometimes replaced by estimates

π̂j = nj/n, j = 1, 2.
So BDF allocates the observation in the following way: Classify observation Z0 given

T = t to population Ω1 if Wt(Z0,Ψ) ≥ 0 and to population Ω2, otherwise.
Definition 1. The risk for the BDF Wt(Z0,Ψ) is defined as

P (Ψ) =
2∑

i=1

2∑
j=1

πiL(i, j)Pij ,

where, for i, j = 1, 2,
Pij = Pit((−1)jWt(Z0,Ψ) < 0) .

Here, for i = 1, 2, the probability measure Pit is based on the conditional distribution of
Z0 given T = t, Ωi specified in (4), (5). As it follows, the risk P (Ψ) will be called Bayes
risk.

Note that under the condition (3), the squared Mahalanobis distance between marginal
distributions of Z0 and the squared Mahalanobis distance between conditional distribu-
tions of Z0 given T = t are specified by ∆2 = (µ0

1−µ0
2)

2/C(0) and ∆2
0 = (µ0

1t−µ0
2t)

2/σ2
0 ,

respectively.
From (4), (5) it is easy to derive that

∆2
0 = ∆2C(0)/σ2

0 .

Thus, ∆0 does not depend on realizations of T .
In population Ωj , the conditional distribution of Wt(Z0,Ψ) given T = t is normal

with mean
Ej(Wt(Z0,Ψ)) = (−1)j+1∆2

0/2 + γ

and variance
varj(Wt(Z0,Ψ)) = ∆2

0 , j = 1, 2 .

By using the properties of normal distribution we obtain

P (Ψ) =
2∑

j=1

(
π∗
jΦ

(
−∆0/2 + (−1)jγ/∆0 + πjL(j, j)

))
, (7)

where Φ(·) is the standard normal distribution function.
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In practical applications not all statistical parameters of the populations are known.
Then the estimators of the unknown parameters can be found from a training sample.
When the estimators of the unknown parameters are plugged into the BDF, we obtain the
plug-in BDF (PBDF). In this paper we assume that the true values of the parameters β
and θ are unknown (complete parametric uncertainty).

Let β̂, θ̂ be the estimators of the corresponding parameters from the training sample T
and let β̃, θ̃ be the realizations of these estimators based on T = t. Those realizations are
usually called the estimates of the parameters.

We shall write hat above functions of parameter θ, if it is replaced by the estimator θ̂
and shall write tilde above functions of parameter θ, if it is replaced by the estimate θ̃.

Then by using (4), (5) we get the estimate of the conditional mean

µ̃0
jt = x′

0β̃j + α̃′
0(t−Xβ) , j = 1, 2

and the estimate of conditional variance

σ̃2
0(θ) = C̃(0)− c̃′0Σ

−1c̃0 .

Put Ψ̃ = (β̃′, θ̃′)′. Then replacing the parameters by their estimates in (6) we form the
PBDF as

Wt(Z0, Ψ̃) =
(
Z0 − α̃′

0(t−Xβ̃)− 1
2
x′
0Hβ̃

)(
x′
0Gβ̃

)/
σ̃2
0 + γ , (8)

with H = (Iq, Iq) and G = (Iq,−Iq), where Iq denotes the identity matrix of order q.
Definition 2. The actual risk for BPDF Wt(Z0, Ψ̃) is defined as

P (Ψ̃) =
2∑

i=1

2∑
j=1

πiL(i, j)P̃ij , (9)

where for i, j = 1, 2,
P̃ij = Pit

(
(−1)jWt(Z0, Ψ̃) < 0

)
. (10)

Lemma 1. The actual risk specified in (9), (10) for Wt(Z0, Ψ̃) in (8) is

P (Ψ̃) =
2∑

j=1

(
π∗
jΦ(Q̃j) + πjL(j, j)

)
, (11)

and
Q̃j = (−1)j

(
(aj − b̃)sgn(x′

0Gβ̃)/σ0 + σ̃2
0γ/(σ0|x′

0Gβ̃|)
)
, (12)

where for j = 1, 2

aj = x′
0βj + α′

0(t−Xβ) , b̃ = α̃′
0(t−Xβ̃ + x′

0Hβ̃/2) . (13)

Proof. In population Ωj , the conditional distribution of Wt(Z0, Ψ̃) given T = t is normal
with mean

Ej(Wt(Z0, Ψ̃)) = (aj − b̃)x′
0Gβ̃/σ̃2

0 + γ
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and variance
varj(Wt(Z0, Ψ̃)) = (x′

0Gβ̃)2σ2
0/σ̃

4
0 , j = 1, 2 .

Then by using the properties of normal distribution and definition 2 we complete the proof
of lemma 1.
Definition 3. The expectation of the actual risk with respect to the distribution of T is
called the expected risk (ER) and is designated as ET (P (Ψ̂)).

More comprehensive information about the actual and expected risks for the classifi-
cation into an arbitrary number of populations you can find in Ducinskas (1997).

The ER is useful in providing a guide to the performance of the plug-in classification
rule before it is actually formed from the training sample. The ER is the performance mea-
sure to the PBDF similar as the mean squared prediction error (MSPE) is the performance
measure to the plug-in kriging predictor (see Diggle, Ribeiro, and Christensen, 2002. The
approximations of MSPE for plug-in kriging were suggested in several previous papers
(Zimmerman and Cressie, 1992; Abt, 1999). These approximations are used for spatial
sampling design criterion for prediction (see Zimmerman, 2006; Zhu and Stein, 2006).
These facts strengthen the motivation for the deriving of the AER associated with PBDF.

3 Asymptotic Expansion of the Expected Risk
We will use the maximum likelihood estimators (MLEs) of the parameters based on the
training sample. The asymptotic properties of the MLEs established by Mardia and Mar-
shall (1984) under increasing domain asymptotic framework and subject to some regu-
larity conditions are essentially exploited. Hence, the MLE Ψ̂ is weakly consistent and
asymptotically Gaussian, i.e.

Ψ̂ ∼ AN(Ψ, J−1) . (14)

Here the expected information matrix is given by

J = Jβ ⊕ Jθ , (15)

where
Jβ = X ′Σ−1X (16)

and the (i, j)th element of Jθ is

tr(Σ−1ΣiΣ
−1Σj)/2 (17)

Henceforth, denote by MM conditions the regularity conditions of Theorem 1 from Mardia
and Marshall (1984).

Using properties of the multivariate Gaussian distribution it is easy to prove that

β̂ ∼ AN2q(β, J
−1
β ) , (18)

and
θ̂ ∼ ANk(θ, J

−1
θ ) . (19)
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Let P (k)
β , P (k)

θ , k = 1, 2 denote the kth order derivatives of P (Ψ̂) with respect to β̂ and
θ̂ evaluated at point β̂ = β, θ̂ = θ and let P 2

βθ denote the matrix of second derivatives of
P (Ψ̂) with respect to β̂ and θ̂ evaluated at β̂ = β, θ̂ = θ.

Make the following assumption: (A1) The training sample T and the estimator θ̂ are
statistically independent.

The restrictive assumption (A1) is exploited intensively by many authors (see Zimmerman,
2006; Zhu and Zhang, 2006), since Abt (1999) showed that finer approximations of MSPE
considering the correlation between T and θ̂ do not give better results.

Let A = ∂α̂0/∂θ̂
′ be the n× k matrix of partial derivatives evaluated at θ̂ = θ and let

φ(·) be the standard normal density function.
Theorem 1. Suppose that observation Z0 is classified by BPDF and let conditions (MM)
and assumption (A1) hold. Then the approximation of ER is

AER = P (Ψ) + π∗
1φ(−∆0/2− γ/∆0)∆0(Kβ +Kθ)/(2σ

2
0) , (20)

where

Kβ = Λ′J−1
β Λ (21)

Kθ = tr(ΣAJ−1
θ A′) + γ2((σ̂2

0)
(1)
θ )′J−1

θ (σ̂2
0)

(1)
θ /(∆2

0σ
2
0) (22)

Λ′ = α′
0X − x′

0(H/2 + γG/∆2
0) . (23)

Proof. Expanding P (Ψ̂) in a Taylor series around β̂ = β and θ̂ = θ, we have

P (Ψ̂) = P (Ψ) + (P
(1)
β )′∆β̂ + P

(1)
θ ∆θ̂

+1
2

(
(∆β̂)′P

(2)
β ∆β̂ + 2(∆β̂)′P

(2)
βθ ∆θ̂ + (∆θ̂)′P

(2)
θ (∆θ)

)
+R3 , (24)

where ∆β̂ = β̂ − β, ∆θ̂ = θ̂ − θ and R3 is the remainder term.
By using (11), the partial derivatives of P (Ψ̂) evaluated at β̂ = β and θ̂ = θ are

P
(1)
β = π1φ(Q1)

2∑
j=1

Q
(1)
jβ , P

(1)
θ = π1φ(Q1)

2∑
l=j

Q
(1)
jθ , (25)

P
(2)
β = π1φ(Q1)

2∑
j=1

(
Q

(2)
jβ −QlQ

(1)
jβ Q

(1)
jβ

′)
(26)

P
(2)
θ = π1φ(Q1)

2∑
j=1

(
Q

(2)
jθ −QjQ

(1)
jθ Q

(1)
jθ

′)
. (27)

After doing some algebra in (12), (13), we have

Q
(1)
jβ = (−1)jΛ/σ0 ,

Q
(1)
jθ = (−1)j(−A′(T −Xβ) + γ(σ2

0)
(1)
θ /(∆0σ0))/σ0

and
2∑

j=1

Q
(2)
jβ = 0 ,

2∑
j=1

Q
(2)
jθ = 0 .
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Application of the above formulae to (25)-(27) yields

P
(1)
β = P

(1)
θ = 0 , P

(2)
β = π1∆0φ(−∆0/2− γ/∆0)ΛΛ

′/σ2
0 (28)

and

P
(2)
θ = π1∆0φ(Q1)

(
−A′(T −Xβ) + γ(σ2

0)
(1)
θ /(∆0σ0)

)
(
−A′(T −Xβ) + γ(σ2

0)
(1)
θ /(∆0σ0)

)′
/σ2

0 . (29)

It is easy to show that all elements of the matrix P
(2)
βθ are finite.

Then by using assumption (A1) and replacing ET (∆θ̂∆θ̂′) by its asymptotic approxi-
mation J−1

θ , we get the following approximation

E
(
(∆θ̂)′P

(2)
θ (∆θ̂)

)
∼=

π∗
1∆0φ(−∆0/2− γ∆0)

(
tr(ΣAJ−1

θ A′) + γ2
(
(σ̂2

0)
(1)
θ

)′
J−1
θ (σ̂2

0)
(1)
θ /(∆2

0σ
2
0)

)
/σ2

0 .(30)

Then taking the expectation term by term on the righthand side of (24), using (7), (28) –
(30) and replacing the moments of the estimators by the corresponding moments of the
asymptotic distributions specified in (14) – (19), we complete the proof of Theorem 1.

Remark. If we consider a nuggetless covariance model and θ = σ2, then the approxima-
tion specified in (20) – (23) coincides with one derived in Ducinskas (2009).

This remark is proved by using A = 0 and σ2
0 ∝ σ2 in (22).

4 Example and Discussion
A numerical example is considered to investigate the influence of the statistical parameters
in the populations on the proposed AER in the finite (even small) training sample case.
With an insignificant loss of generality the cases with n1 = n2, π1 = π2 = 1/2 and
L(i, j) = 1− δij , i, j = 1, 2, are considered.

In this example, the observations are assumed to stem from a stationary Gaussian
random field with constant mean and nuggetless covariance function given by C(h) =
σ2r(h), where σ2 is the unknown variance (sill) and r(h) is the spatial correlation func-
tion.

The exponential geometric anisotropic correlation function r(h) with unknown anisotropy
ratio λ and anisotropy angle φ = π/2 (see Diggle et al., 2002) specified by

r(h) = exp
{
−
√
h2
x + λ2h2

y

/
α
}

is considered. Here α denotes the unknown range parameter. Hence, we have the case
with θ = (σ2, λ, α)′.

Assume that ∆g is a regular two-dimensional lattice with unit spacing. Consider the
case s0 = (1, 1) and fixed STL S8 contains 8 second-order neighbors of s0.
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Consider two TLC ξ1, ξ2 for the training sample specified by

ξ1 =
{
S(1) = {(1, 2), (2, 2), (2, 1), (2, 0)} , S(2) = {(1, 0), (0, 0), (0, 1), (0, 2)}

}
,

ξ2 =
{
S(1) = {(1, 2), (2, 1), (0, 1), (1, 0)} , S(2) = {(0, 0), (0, 2), (2, 0), (2, 2)}

}
.

They are presented in Figure 1.

Figure 1: Two different TLC with S(1) and S(2) points and *, signed as respectively.

For both TLC the values of AER specified in (20) – (23) are calculated for various
parameter values λ, α. The results of the calculations with ∆ = 1 for ξ1 are presented in
Table 1 and for ξ2 in Table 2.

Table 1: Values of AER for TLC ξ1 with ∆ = 1 and various α and λ.
α

λ 0.6 0.8 1.2 1.6 2.0 2.4 2.8 3.2
1 0.328438 0.307256 0.270947 0.240968 0.215754 0.194206 0.175548 0.159223
2 0.334138 0.313996 0.281444 0.255017 0.232404 0.212669 0.195248 0.179737
3 0.334396 0.313624 0.280805 0.254897 0.232919 0.213723 0.196722 0.181530
4 0.333937 0.313140 0.280474 0.254719 0.232910 0.213868 0.196990 0.181895
5 0.333237 0.312551 0.280198 0.254600 0.232881 0.213904 0.197076 0.182018
6 0.332543 0.312004 0.279944 0.254496 0.232850 0.213913 0.197112 0.182072
7 0.331927 0.311540 0.279721 0.254400 0.232816 0.213911 0.197128 0.182101
8 0.331398 0.311157 0.279533 0.254314 0.232781 0.213903 0.197135 0.182116
9 0.330946 0.310840 0.279378 0.254238 0.232747 0.213892 0.197136 0.182124

10 0.330559 0.310576 0.279249 0.254173 0.232716 0.213879 0.197134 0.182128

Analyzing the contents of Tables 1 and 2 we can conclude that for both TLC ξ1 and ξ2
the AER increases with increasing anisotropy ratio λ and decreases with the decreasing
range parameter α.

Now we numerically illustrate the comparison of two TLC, based on the minimum of
AER criterion.

By the definition variable d represents the asymmetry population labels distribution in
training sample. It is obvious that d = 0 for ξ1, and d = 4(

√
2 − 1) for ξ2. So we call ξ1

and ξ2 symmetric TLC and asymmetric TLC, respectively.
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Table 2: Values of AER for TLC ξ2 with ∆ = 1 and various α and λ.
α

λ 0.6 0.8 1.2 1.6 2.0 2.4 2.8 3.2
1 0.330108 0.310382 0.276753 0.248792 0.224998 0.204422 0.186405 0.170478
2 0.335293 0.316316 0.286035 0.261460 0.240264 0.221588 0.204943 0.189991
3 0.335625 0.316118 0.285660 0.261593 0.241000 0.222838 0.206599 0.191959
4 0.335198 0.315747 0.285613 0.261787 0.241399 0.223403 0.207291 0.192748
5 0.334506 0.315202 0.285500 0.261927 0.241684 0.223781 0.207734 0.193236
6 0.333814 0.314669 0.285326 0.261978 0.241861 0.224032 0.208032 0.193564
7 0.333199 0.314210 0.285141 0.261971 0.241960 0.224194 0.208232 0.193789
8 0.332669 0.313828 0.284971 0.261935 0.242008 0.224295 0.208368 0.193946
9 0.332217 0.313511 0.284823 0.261886 0.242026 0.224357 0.208458 0.194056

10 0.331831 0.313247 0.284698 0.261836 0.242026 0.224393 0.208519 0.194134

Table 3: Values of index η for various λ, α and ∆.
η = AER1/AER2

α = 0.6 α = 1.0 α = 3.0

λ ∆ = 0.5 ∆ = 1 ∆ = 2 ∆ = 0.5 ∆ = 1 ∆ = 2 ∆ = 0.5 ∆ = 1 ∆ = 2

1 1.00217 1.00508 1.01322 1.00653 1.01576 1.04288 1.02511 1.06631 1.20093
2 1.00148 1.00346 1.00885 1.00492 1.01178 1.03171 1.02049 1.05339 1.16060
3 1.00158 1.00367 1.00937 1.00527 1.01262 1.03384 1.02068 1.05387 1.16256
4 1.00162 1.00378 1.00963 1.00558 1.01334 1.03571 1.02150 1.05602 1.16919
5 1.00164 1.00381 1.00971 1.00573 1.01370 1.03666 1.02223 1.05790 1.17486
6 1.00164 1.00382 1.00975 1.00580 1.01386 1.03710 1.02277 1.05930 1.17904
7 1.00165 1.00383 1.00978 1.00583 1.01393 1.03730 1.02315 1.06030 1.18201
8 1.00165 1.00384 1.00980 1.00584 1.01397 1.03741 1.02343 1.06101 1.18412
9 1.00165 1.00384 1.00982 1.00585 1.01399 1.03747 1.02362 1.06152 1.18561

10 1.00165 1.00385 1.00983 1.00585 1.01400 1.03751 1.02376 1.06188 1.18667

The comparison of two TLC is done by the values of index η = AER2/AER1, where
AERl is the approximation of ERR for ξl, l = 1, 2. The values of this index are given in
Table 3.

Analyzing Table 3 we see that for all parametric structures η ≥ 1. So we can conclude
that the symmetric TLC ξ1 is more optimal than the asymmetric TLC ξ2 by the AER
minimum criterion.

Hence the results of numerical analysis give us strong arguments to expect that the
proposed approximation of the expected error rate could be effectively used for perfor-
mance evaluation of the classification procedures and for the optimal designing of spatial
training samples.
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