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Abstract: The problem of stochastic signal filtration under nonparametric
uncertainties is considered. A probabilistic description of the signal process
is assumed to be completely unknown. The Bayes estimator can not be con-
structed in this case. However if the conditional density of the observation
process given signal process belongs to conditionally exponential family, the
optimal Bayes estimator is a solution to some non-recurrent equation which
is explicitly independent upon the signal process distribution. In this case,
the Bayes estimator is expressed in terms of conditional distribution of the
observation process, which can be approximated by using of the stable non-
parametric procedures, adapted to dependent samples. These stable approx-
imations provide the mean square convergence to Bayes estimator. In the
stable kernel nonparametric procedures, a crucial step is to select a proper
smoothing parameter (bandwidth) and a regularized parameter, which have a
considerable influence on the quality of signal filtration. The optimal proce-
dures for selecting of these parameters are proposed. These procedures allow
to construct the automatic (data-based) signal filtration algorithm.

Keywords: Signal Filtration, Nonparametric Uncertainty, Kernel Estimates,
Bandwidth Selection, Regularization.

1 Introduction and Problem Setting
In the sixties and seventies of the last century much efforts have been made to develop the
supervised and nonsupervised methods of machine learning, based on the strict methods
of mathematical statistics. One of these efforts, directed to the solution of the prob-
lems of nonsupervised stochastic signal processing with unknown probabilistic character-
istics, led to the theory of nonparametric signal estimation, introduced first in Dobrovidov
(1983). In this theory stochastic state models of the useful signals are assumed to be com-
pletely unknown but the observation models and distribution of noise in measurement
devices assumed to be known. Such situation is typical for applications, e.g., in astron-
omy or hydroacoustics, when mathematical models of telescope or hydroacoustic radar
and their characteristics are well-known, but useful signals are generated by the unknown
sources. If useful signals are not observable, then it is impossible to restore theirs distri-
butions. Consequently, one can’t construct the optimal Bayes estimator of unobservable
random signal by using the realization of observed process. The solution of the signal
filtration in this case was proposed in Dobrovidov and Koshkin (1997) and Vasiliev, Do-
brovidov, and Koshkin (2004). The principal result of this approach is the obtaining of the
optimal filtration equation in the form explicitly independent of unknown distribution of
useful stochastic signal. Such form is possible when the conditional observation density
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under fixed useful signal belongs to a conditionally-exponential family Dobrovidov and
Koshkin (1997). This family, particularly, contains Gaussian density

f(xn|sn) =
1√
2πσ

exp

{
−(xn − sn)

2

2σ2

}
, xn ∈ R , sn ∈ R , (1)

which will be considered in this paper as an example. It follows from expression (1) that
the observation equation has the form

Xn = Sn + σηn , (2)

where σ is a known constant,Xn is an observation, Sn is an unobservable signal, and ηn is
an independent noise at the instant n. This example clearly demonstrates an opportunity
of proposed approach.

The problem is to obtain an optimal in mean square sense estimator Ŝn of an useful
signal Sn at the moment n from given observations Xn

1 = (X1, . . . , Xn). As it is well-
known, the optimal estimator of Sn is a conditional mean Ŝn = E[Sn|Xn

1 = xn1 ]. This
conditional mean can be calculated by the method of transformation for posterior prob-
abilities, if the state equation in Sn is specified. In the case of linear state equation, for
instance,

Sn+1 = aSn + bξn , (3)

where ξn is an independent Gaussian noise, Kalman filter is optimal, and for its construc-
tion it is necessary to know (3) exactly. Very often such information is not available for
users. Are there any ways to circumvent the necessity to know signal state equation?
One of these ways is the empirical Bayes approach, by following which one can obtain
an equation for conditional mean Ŝn without information about the state equation (3). In
this case it is necessary only to have the information about the observation equation of
the type (1). Then it follows from Dobrovidov and Koshkin (1997) that the equation for
optimal estimator Ŝn takes on a form

Ŝn = σ2 ∂

∂xn
log f(xn|xn−1

1 ) + xn , (4)

where f(xn|xn−1
1 ) is a conditional density of the observation xn at given previous obser-

vations xn−1
1 . Unlike Kalman filter, equation (4) for Ŝn is not recurrent. The conditional

density f(xn|xn−1
1 ) can not be exactly calculated if the equation (3) is unknown. However

it can be restored from observations xn1 with the prescribed precision, using the nonpara-
metric kernel method of estimation from dependent data (Vasiliev et al., 2004). According
to this method we must replace the unknown density f(xn|xn−1

1 ) by the truncated density
f̄(xn|xn−1

n−τ ), where τ is degree of dependence of observable process (Xn). Here τ repre-
sents an order of connectivity of Markov process approximating the non-Markov process
(Xn). By definition f̄(xn|xn−1

n−τ ) = f(xnn−τ )/f(x
n−1
n−τ ). Then

∂

∂xn
log f̄(xn|xn−1

n−τ ) =
∂/∂xnf(x

n
n−τ )

f(xnn−τ )
:= ψ(xnn−τ ) . (5)
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The denominator in the last formula represents a (τ + 1)-dimensional marginal density.
The nonparametric kernel estimate for this density can be written as

f̂(xnn−τ ) = n−1h−(τ+1)
n

n−τ−1∑
i=1

τ+1∏
j=1

K

(
xn−j+1 − xn−j−i+1

hn

)
. (6)

The nonparametric estimate for the numerator of (5) has the form

f̂ ′(xnn−τ ) = n−1h
−(τ+2)
1n

n−τ−1∑
i=1

K ′
(
xn−j−i+1 − xn−j+1

h1n

) τ∏
j=1

K

(
xn−j+1 − xn−j−i+1

h1n

)
,

(7)
where f ′, K ′ denote the partial derivatives with respect to xn.

Using (6), (7) we obtain the nonparametric estimate for the logarithmic density deriva-
tive ψ(xnn−τ ):

ψ̂n(x
n
n−τ ) =

f̂ ′(xnn−τ )

f̂(xnn−τ )
. (8)

Such estimate is referred as the plug-in estimate. To calculate (8) it remains only to select
bandwidths hn for the density in (6) and h1n for the derivative in (7).

2 Bandwidth Selection for Densities and their Derivatives
Several data-based selection methods of the kernel function bandwidth are well-known.
The methods of cross-validation CV (Bowman, 1984; Rudemo, 1982), smoothed cross-
validation SCV (Hall, Marron, and Park, 1992), and plug-in (Park and Marron, 1990)
seem to be the basic ones as the most clear and rapidly converging procedures. In
Dobrovidov and Rudko (2010) the method SCV developed in Duong and Hazelton (2005)
for density estimation was extended to the kernel estimates of the density derivatives.
Both of these methods generate data-based bandwidth estimates with a higher rate of
convergence and substantially smaller scatter than in CV methods.

Here a measure distance between the object f (r)(·) and its estimator f (r)
n (·) is selected

as a mean integrated square error (MISE )

MISE r(h) = E
∫ (

f̂
(r)
h (x)− f (r)(x)

)2

dx , r = 0, 1, f (0)(x) = f(x) . (9)

This criterion depends on the bandwidth h, and it is natural to select such h, that mini-
mizes MISE r(h). Unfortunately it cannot be done directly because the object f (r)(·) is
unknown. Therefore we will try to construct an estimate of MISE r(h), which will be
minimized over h. This will be done by using the above-mentioned SCV method for
criterion MISE (h). Applying the Gaussian kernels K(·) in (6) gives the expression (Hall
et al., 1992)

SCV (h)=
1

2
√
πnh

+
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

{
φ√

2h2+2g2
−2φ√

h2+2g2
+φ√

2g

}
(xi−xj), (10)
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where a new constant g is responsible for data presmoothing. Selection of g in turn is
performed by minimization of mean square error of bandwidth estimate ĥn(g), which
minimizes (10). It leads to the following expression:

ĝ =

(
15

16
√
πν6

)1/7

n−1/7 , (11)

where
νk =

∫
f (k)(x)f(x)dx , k = 0, 8. (12)

An estimate for the derivative MISE 1 has the form (Dobrovidov and Rudko, 2010)

SCV1(h1) =
1

4
√
πnh31

+
1

n

(
1

4
√
πg3

− 2√
2π(h21 + 2g2)3/2

+
(n− 1)/n√

2π(2h21 + 2g2)3/2

)
+

1

n2

n∑
i=1

n∑
j ̸=i

2g2 − (xi − xj)
2

(2g2)2
φ√

2g(xi − xj) (13)

−2
1

n2

n∑
i=1

n∑
j ̸=i

h21 + 2g2 − (xi − xj)
2

(h21 + 2g2)2
φ(h2

1+2g2)1/2(xi − xj)

+
n− 1

n

1

n2

n∑
i=1

n∑
j ̸=i

2h21 + 2g2 − (xi − xj)
2

(2h21 + 2g2)2
φ(2h2

1+2g2)1/2(xi − xj) ,

where g, minimizing the mean square error of ĥ1(g), is as follows

ĝ1 =

(
105

32
√
πν8

)1/9

n−1/9 . (14)

As it is shown in Dobrovidov and Rudko (2010), the expression (14) allows to calculate
the mean square rate of convergence of ĥSCV1 to hAMISE1 , which is equal to n−32/63 =
n−0.507. The value

hAMISE1 = C0n
−1/7 , C0 =

(
3R(K ′)

µ2
2(K)R(f ′′′)

)1/7

(15)

is the explicit expression for the bandwidth, that minimizes the asymptotic MISE 1 for the
derivative.

Both formulae (11) and (14) contain parameters ν6 and ν8, which depend upon the
unknown density f(x) and its derivatives. They also can be estimated using the cross-
validation method for the density and the rule of thumb (see below) for higher derivative.

According to the law of large numbers, the integral (12) is approximated by the sum

1

n

n∑
i=1

f
(k)
h,i (Xi) ,

where the function f (k)
h,i )(Xi) can be estimated by the cross-validation method:

f̂
(k)
h,i (Xi) =

1

n− 1

∑
j ̸=i

K
(k)
h (Xi −Xj) . (16)



A.V. Dobrovidov, G.M. Koshkin 19

Such estimates unlike to (14) are referred to as the estimates of the second level, where
less precision is admissible. For Gaussian kernels K(u) = φ1(x), where φ1(x) is the
standard normal density, calculation of derivatives in (16) is accomplished by using the
well-known formula

φ
(k)
1 (x) = (−1)kHk(x)φ1(x) , (17)

where Hk(x) is the Hermitian polynomial

Hk+1(x) = xHk(x)− nHk−1(x) , H0(x) = 1 , k = 1, 2, . . . .

At last, the kernel bandwidth h of the second level is estimated roughly from observations
by using the rule of thumb (Duong and Hazelton, 2005):

h̃ = 1.06σ̂n−1/5 .

The quantity h̃ gives the optimal value of kernel bandwidth under the assumption that
unknown density is Gaussian, where σ̂ is the sample standard deviation, calculated from
xn1 .

As a result we obtain the following data-based expressions:

ν6 =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

1

h̃6

(
b6ij

h̃6
− 15

b4ij

h̃4
+ 45

b2ij

h̃2
− 15

)
φh̃(bij) ,

ν8 =
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

1

h̃8

(
b8ij

h̃8
− 28

b6ij

h̃6
+ 210

b4ij

h̃4
− 420

b2ij

h̃2
+ 105

)
φh̃(bij) ,

where bij = (Xi −Xj).

3 Mean Square Convergence and Stability

Logarithmic density derivative estimate ψ̂n(x
n
n−τ ), described by (8), is a special case of

general plug-in estimating composite function G(tn(x)), where x ∈ Rτ+1, tn : Rτ+1 →
Rm, G : Rm → R. In the case under consideration m = 2, tn = (t1n, t2n), t1n(x) =
fn(x), t2n = f ′

n(x), and G(tn) = t2n/t1n. If the statistics tn converges to a function t as
n → ∞, than under some regularity conditions G(tn) → G(t). The main part of these
regularity conditions is

1. the existence and boundedness of several derivatives of G(t);

2. sequence {|G(tn)|} is dominated by the number sequence (C0d
γ
n), where C0 is a

constant, dn → ∞ as n→ ∞ and 0 6 γ <∞.

Roughly speaking, the function G(tn) must grow slower, than power function of n.
These conditions provide a mean square convergence of G(tn) → G(t) (see Theorem
1.8.1 in Vasiliev et al., 2004).

If the mean Euclidean distance E∥tn− t∥ satisfies the inequality E∥tn− t∥ < ε, ε > 0,
then for a small ε the equality

G(tn)−G(t) = ∇G(ϑn)(tn − t)T , ϑn ∈ (t, tn) ,
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is valid, where ∇ is the gradient. This yields a following result (see Theorem 1.9.1 in
Vasiliev et al., 2004):∣∣∣E[G(tn)−G(t)]2 − E

[
∇G(t)(tn − t)T

]2∣∣∣ = O(d−3/2
n ) , (18)

i.e., the mean square closeness of the composite functions G(tn) and G(t) is replaced by
the mean square closeness of more simple statistics’ tn and t.

There are a number of cases, when conditions 1. and 2. do not hold. For example,
function G = 1/t does not satisfy both conditions and its estimator G(tn) becomes un-
stable, because it may be unbounded. In our case, G = t2/t1, where t1 = f(x) and
t2 = f ′(x) and for the Gaussian density f(x) we have G = −x. This function is un-
bounded on R. Because of the proposition (18) is valid only for bounded functions G, it
is proposed here some regularized procedure, called a piecewise smooth approximation
(Vasiliev et al., 2004). In the special case this procedure coincides with the Tychonoff
regularization method. Using this procedure we may obtain a stable approximation of G
in the form

Φ(G(t), δn) = Φ̃(t, δn) =
G(t)

(1 + δn|G(t)|4)
, (19)

where δn > 0 is a regularization parameter. As it is proved in Vasiliev et al. (2004),
Φ̃(tn, δn) satisfies both above mentioned conditions and therefore is dominated by the
power function of n. Moreover Φ̃(tn, δn) converges to G(t) in the mean square sense, i.e.,
as E∥tn − t∥ → 0 and δn → 0, then

lim
n→∞

E(Φ̃(tn, δn)−G(t))2 = 0 . (20)

The statistic ψ̂n(x
n
n−τ ) in the expression (8) is unstable as well when the denominator

of (8) is close to zero. Therefore it is reasonable to apply to it the procedure of regular-
ization

ψ̆(xnn−τ ) =
ψ̂n(x

n
n−τ )

1 + δ|ψ̂n(xnn−τ )|4
, (21)

where the regularization parameter δ has to be find. In Vasiliev et al. (2004) it was
found an optimal value of this parameter, which minimizes the mean square deviation of
Φ̃(tn, δn) fromG(t) at each point x. This performance is not so good for practice, because
a minimization procedure has to be repeated in each signal processing. It is proposed here
to make an optimization procedure only once before signal processing, using the criterion
of mean integrated square error (MISE ) for estimating the logarithmic density derivative
with the weight density f 2(·)

MISE (δ) =

∫
u2

(
ψ̆n(x

n
n−τ )

)
f 2(xnn−τ )dx

n
n−τ

:=

∫
E
(
ψ̆n(x

n
n−τ )− ψ(xnn−τ )

)2

f 2(xnn−τ )dx
n
n−τ . (22)

The weight function is selected in such a form in order the criterion would exist.
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Calculating of the expectation of ratio in (22) is laborious. According to (20) for the
mean square convergence of the regularized estimate ψ̆n(·) to logarithmic density deriva-
tive ψ(·) it is necessary that δ = δn → 0 as n → ∞. Therefore under the assumption of
small δ we expand (21) over parameter δ and approximately obtain

ψ̆(xnn−τ ) ≈ ψ̂n(x
n
n−τ )− δψ̂5

n(x
n
n−τ ) . (23)

Putting (23) into the mean integrated square error (22) yields∫
E
(
ψ̂n(x

n
n−τ )− δψ̂5

n(x
n
n−τ )− ψ(xnn−τ )

)2

f 2(xnn−τ )dx
n
n−τ . (24)

The equality (18), valid for plug-in estimates, helps to calculate this expression, if we
slightly touch up the criterion, replacing ψ(xnn−τ ) by ψ(xnn−τ ) − δψ5(xnn−τ ), i.e., G =
ψ − δψ5. Then∫

u2
(
ψ̂n(x

n
n−τ )− δψ̂5

n(x
n
n−τ )

)
f 2(xnn−τ )dx

n
n−τ

:=

∫
E
[(
ψ̂n(x

n
n−τ )− δψ̂5

n(x
n
n−τ

)
−

(
ψ(xnn−τ )− δψ5(xnn−τ )

)]2
f 2(xnn−τ )dx

n
n−τ

≈
∫
G2

1u
2(f̂ ′(xnn−τ ))f

2(xnn−τ )dx
n
n−τ

+2

∫
G1G2cov(f̂ ′(xnn−τ ), f̂(x

n
n−τ ))f

2(xnn−τ )dx
n
n−τ (25)

+

∫
G2

2u
2(f̂(xnn−τ ))f

2(xnn−τ )dx
n
n−τ ,

where G1 = (1− 5δψ4)/f and G2 = (−ψ + 5δψ5)/f .
By minimizing (25) with respect to δ we find the optimal value of δ:

δopt =

∫
ψ4u2(f̂ ′)− 2

∫
ψ5cov(f̂ ′, f̂) +

∫
ψ6u2(f̂)

5
∫
ψ8u2(f̂ ′)− 10

∫
ψ9cov(f̂ ′, f̂) + 5

∫
ψ10u2(f̂)

. (26)

Integrals in numerator and denominator of δopt depend on unknown densities and can not
be calculated directly. So they must be replaced by estimates.

The main parts of expansions of u2(·) and cov(·, ·) as n→ ∞ are

u2(f̂ ′) ≈ f

nh3n

∫
(K(1)(u))2du+

h4n
4
(f (3))2

(∫
u2K(u)du

)2

,

cov(f̂ ′, f̂) ≈ f

nh2n

∫
K(1)(u)K(u)du+

h4n
4
f (3)f (2)

(∫
u2K(u)du

)2

,

u2(f̂) ≈ f

nhn

∫
K2(u))du+

h4n
4
(f (2))2

(∫
u2K(u)du

)2

.

Substituting these formulae into (26) we find the intermediate expression for δopt, in
which it is necessary to estimate slightly more complicated integrals than (12):

Jk =

∫
(f (k)(u))qf(u)du , ν = 0, . . . , 4 , q = 1, 2, . . . .

It can be done by cross-validation method, described above in Section 3.
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4 Comparison with Kalman Filter
Computer modeling is started by generation a sequence of dependent observations, using
the state equation (3) for Sn and observation equation (2) for Xn. The exact information
about both mentioned equations gives us the opportunity to design Kalman filter with
respect to optimal estimate Ŝn. The Kalman filter equation is well known and isn’t repre-
sented here.

When the state equation is unknown, we make use of a nonparametric counterpart of
the optimal equation (4), which, taking into account expressions (6), (7), can be repre-
sented as

S̃n = σ2ψ̂n(x
n
n−τ ) + xn , (27)

where

ψ̂n(x
n
n−τ ) =

h
−(τ+3)
1n

n−τ−1∑
i=1

(xn−j−i+1 − xn−j+1)
τ∏

j=1

exp

(
−(xn−j+1 − xn−j−i+1)

2

2h21n

)
h
−(τ+1)
n

n−τ−1∑
i=1

τ+1∏
j=1

exp

(
−(xn−j+1 − xn−j−i+1)

2

2h2n

)
(28)

is a plug-in nonparametric estimate (PE) of ψ(xnn−τ ).
Unfortunately PE is unstable when the denominator of (28) vanishes. In this case the

estimate may have spikes, which can be seen in Figure 1 (left). This spikes are sharply
impaired the performance of PE (look at table). To eliminate the spikes we use the reg-
ularization method, introduced in (21). In our modeling example this method is reduced
to replacement the expression ψ̂n(x

n
n−τ ) in (27) by the approximation (21), where δ is

defined by expression (26). The direct calculation of (26) is impossible in view of lack
of knowledge about the true density and only the estimate is designed using the cross-
validation method. For the different samples, generated by the model (2), we receive the
following range of values [0.01− 0.05] for the regularized parameter δ. This fact implies
that the assumption about smallness of the parameter δ is confirmed.

The equation for regularized estimation takes the form

S̆n = σ2ψ̆n(x
n
n−τ ) + xn .

Comparison of nonparametric estimates S̃n and S̆n with optimal Kalman estimate Ŝn is
carried out by calculating the relative error ε in percentage

ε =
unon − ukal

ukal
100 , (29)

where unon=(ũnon or ŭnon), ũnon=(n−1
∑

k(Sk−S̃k)
2)1/2, ŭnon=(n−1

∑
k(Sk−S̆k)

2)1/2,

and ukal = (1/n
∑

k (Sk − Ŝk)
2)1/2. Nonparametric estimates S̃n, S̆n and optimal Kalman

estimate Ŝn are represented in Figure 1.
It is easy to note that the discrepancy ε between both estimates is very small when

the spikes are out. But when the spikes are present the advantage of the regularization
procedure becomes obvious.

The distances between nonparametric estimates S̃n and Sn and optimal Kalman esti-
mate Ŝn in ε-units are given in Table 1.
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Figure 1: Comparison of nonparametric and optimal Kalman filtration with spikes (left)
and without spikes (right).

Table 1: Measure of closeness of the estimates S̃n and S̆n to the Kalman estimate Ŝn.

Plug-in ε̂ Regularized ε̆ Spikes
83.13% 1.42% yes
1.13% 1.31% no

5 Conclusion
The nonparametric filtering algorithm of a random signal with unknown distribution is
presented. The stable counterpart of the filtering procedure is proposed. It is proved
that the nonparametric stable estimate converges in the mean square sense to the optimal
Bayes estimate, constructed by using full information about stochastic models under con-
sideration. Applying the smoothed cross-validation method to the bandwidth and to the
regularization parameter selection we have found the optimal estimates of these param-
eters for fixed sample size, making the algorithm to be automatic. For linear stochastic
models, for which Kalman filter exists, it is shown by computer modeling that the stable
nonparametric filtration approximates the optimal filter with sufficiently high precision.
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