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Abstract: Some adaptive test procedures are developed for the generalized
Behrens-Fisher problem. The one having a deterministic approach is based on
calculating a measure of symmetry from each sample and using them as a ba-
sis for choosing between the modified Wilcoxon-Mann-Whitney test (Fligner
and Policello, 1981) and the modified Mood’s median test (Fligner and Rust,
1982). The other one is a probabilistic approach which also uses a combina-
tion of the modified Wilcoxon-Mann-Whitney test and the modified Mood’s
median test according to an evidence of asymmetry provided by the p-value
from the triples test for symmetry given in Randles, Fligner, Policello, and
Wolfe (1980). This probabilistic approach is further modified by using a suit-
able function of the p-value from the triples test. A simulation study reveals
that the modified procedure performs reasonably well in terms of power and
attainment of the nominal size.

Zusammenfassung: Adaptive Testprozeduren werden für das generalisierte
Behrens-Fisher Problem entwickelt. Eine mit einem deterministischen Ansatz
beruht auf der Berechnung von Symmetriemaßen jeder Stichprobe. Beruhend
auf diese Maße wählt man nun zwischen dem modifizierten Wilcoxon-Mann-
Whitney Test (Fligner and Policello, 1981) und dem modifizierten Mood’s
Median Test (Fligner and Rust, 1982). Die andere beruht auf einem proba-
bilistischen Ansatz der auch eine Kombination des modifizierten Wilcoxon-
Mann-Whitney Test und des modifizierten Mood’s Median Test verwendet, in
Beachtung von Hinweisen der Asymmetrie durch den p-Wert des Triples Test
für Symmetrie aus Randles et al. (1980). Dieser probabilistische Ansatz wird
weiter modifiziert, indem eine passende Funktion des p-Wertes des Triples
Test zum Einsatz kommt. Eine Simulationsstudie zeigt, dass die modifizierte
Prozedur ziemlich gut funktioniert bezüglich der Macht und dem Einhalten
des nominalen Niveaus.
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1 Introduction
Consider the problem of testing the null hypothesis that the medians of two populations
having continuous cumulative distribution functions (cdf’s) are equal against one- or two-
sided alternative. If it is assumed that the populations have the same shape with com-
mon scale, the usual nonparametric procedures, such as the Wilcoxon-Mann-Whitney
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test (Mann and Whitney, 1947; Wilcoxon, 1945) and the Mood’s median test (Mood,
1954), are exactly distribution-free under the null hypothesis of equal medians. The
distribution-free property allows the formulation of an exact size α test. But, in some
situations, the two populations may have different shapes even under the null hypothesis
of equal medians. In such a case, it is natural to treat the problem as a generalization of
the Behrens-Fisher problem. For the standard nonparametric tests the level will not be
preserved for small or large sample sizes when populations have different shapes or vari-
ances, and hence nonparametric estimation of the unknown parameters involved in the
null distribution of the test statistic is required to obtain a distribution-free test procedure.

The Wilcoxon-Mann-Whitney statistic, under the assumption of symmetry for the
underlying distributions, is modified by Potthoff (1963) and Zaremba (1962) to obtain
conservative tests, while asymptotically distribution-free tests are proposed by Zaremba
(1962) and Fligner and Policello (1981) for testing the equality of two medians with-
out making any assumptions on the shapes of the underlying populations. If both the
underlying distributions are not symmetric, the various modifications of the Wilcoxon-
Mann-Whitney test are no longer asymptotically distribution free and therefore may not
maintain the nominal size. However, with violation of symmetry, conservative proce-
dures are suggested by Hettmansperger (1973) and Hettmansperger and Malin (1975).
An asymptotically distribution-free test based on Mood’s median test is proposed by
Hettmansperger and Malin (1975) by first constructing a conservative version of Mood’s
test and then using an estimate of the null variance of the test statistic to raise the sig-
nificance level closer to the nominal level. A modification of the Kruskal-Wallis test
(Kruskal, 1952; Kruskal and Wallis, 1952) is proposed by Fligner and Rust (1984), which
is exactly distribution-free under the assumption of equally shaped populations and is
asymptotically distribution-free when the populations are assumed to be symmetric with
equal medians. Fligner and Rust (1982) put forward a modification of the Mood’s median
test which is exactly distribution-free when the populations have the same shape and is
asymptotically distribution-free when they do not.

A robust solution to the generalized Behrens-Fisher problem is proposed by Babu and
Padmanabhan (2002), which consists of bootstrapping an appropriately centered version
of the Mann-Whitney statistic. Brunner and Munzel (2000) proposed a rank test where the
asymptotic variance is estimated consistently by using the ranks of overall observations
as well as the ranks within each sample. It is not assumed that the underlying cdf’s are
continuous so that data with arbitrary ties can be handled. A permutation test based on
the studentized rank statistic of Brunner and Munzel (2000) is proposed by Neubert and
Brunner (2007). A likelihood ratio test for this problem is suggested by Troendle (2002),
where the number of parameters in the score equations is effectively reduced to one by
using a recursive formula for the remaining parameters. Bandyopadhyay and Das (2004,
2005), for 0-1 scores, proposed some partially sequential test procedures using placement
statistics based on a progressively censored scheme.

The purpose of the present paper is to provide adaptive test procedures for the gen-
eralized Behrens-Fisher problem and to compare them with the existing non-adaptive
competitors. The first adaptive procedure (AD1) has a deterministic approach based on
the idea of Hogg, Fisher, and Randles (1975). A simple measure of skewness is calculated
for each sample to assess whether both the distributions are symmetric. If both the un-
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derlying distributions are found to be symmetric the modified Wilcoxon-Mann-Whitney
test is used, otherwise the modified Mood’s median test is used. The second adaptive pro-
cedure (AD2) has a probabilistic approach, which uses the p-value from the triples test
for symmetry given in Randles et al. (1980). A modification of the proposed probabilistic
approach is also suggested using a suitable function of the p-value from the triples test.
This proposed modified probabilistic approach (AD3) has relatively high power for nearly
all cases, maintaining the level of significance reasonably well.

The content of the article is arranged in the following way. Section 2 introduces
our adaptive test procedures. Section 3 provides an example illustrating the proposed
procedures. In Section 4 some numerical computations are presented to get an idea about
the relative performance of the proposed test procedures over the various competitors.
Some relevant asymptotic properties are discussed in Section 5. Finally Section 6 gives a
brief concluding remark.

2 Statement of the Problem and the Proposed Adaptive
Tests

Let X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 be independent random samples corresponding
to the populations with continuous cdf’s F (x) and G(y), respectively. Let θX and θY
denote, respectively, the unique medians of the X and Y populations. The problem con-
sidered here is to test

H0 : θX = θY

against a suitable composite alternative. For simplicity, we consider the one-sided alter-
native

H1 : θX < θY .

Such a testing problem, violating the assumption on equality of shapes or scales for two
or more unknown continuous cdf’s, can be viewed as a generalization of the very famous
Behrens-Fisher problem. Note that the more restrictive assumption that G(y) = F ((y −
θY )/τ) has not been made. The assumption is unnecessary and would not simplify the
procedures.

Before introducing the proposed adaptive tests we present a brief description of the
modified Wilcoxon-Mann-Whitney statistic, suggested by Fligner and Policello (1981)
for the generalized Behrens-Fisher problem. The modified procedures are still exactly
distribution-free when the populations are identical and asymptotically distribution-free,
under some mild conditions, when the populations have equal medians but different
shapes. The modified Wilcoxon-Mann-Whitney statistic can be used to test the null hy-
pothesis H0 provided that the underlying populations are symmetric. Let X(1) ≤ X(2) ≤
· · · ≤ X(n1) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(n2) denote the ordered X and Y observations,
respectively. Here F and G are assumed to be symmetric. Let Qi denote the rank of
X(i) in the combined sample and define the placement of Xi in Yj’s as Pi = Qi − i, the
number of Y ’s less than X(i), i = 1, 2, . . . , n1. Pi is called the placement of X(i) among
Y1, Y2, . . . , Yn2 . If Fn1(x) and Gn2(y) are the empirical cdf’s of the X and Y samples,
respectively, we note that Pi = n2Gn2(X(i)). Similarly, we define the placement of Yj
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by Sj = n1Fn1(Y(j)) for j = 1, 2, . . . , n2. The Wilcoxon-Mann-Whitney statistic U is
defined as the number of pairs (Xi, Yj) with Xi < Yj , i = 1, 2, . . . , n1, j = 1, 2, . . . , n2.
A consistent estimate of var(U) can be obtained as

v̂ar(U) =

n2∑
j=1

(Sj − S̄)2 +

n1∑
i=1

(Pi − P̄ )2 + P̄ S̄ ,

where S̄ = 1
n2

n2∑
j=1

Sj and P̄ = 1
n1

n1∑
i=1

Pi. Note that, since the placements are functions of

the ranks, the standardized statistic

Û =
U − n1n2/2√

v̂ar(U)

is a rank statistic. Under H0, Û is asymptotically standard normal when n1, n2 → ∞ in
such a way that n1/N → λ, N = n1 + n2, 0 < λ < 1.

We next discuss in brief the modification of Mood’s median test for the generalized
Behrens-Fisher problem proposed by Fligner and Rust (1982). The modified Mood test is
asymptotically distribution-free over the broad null hypothesis H0 considered here with-
out surrendering any power to the original test under the usual nonparametric assumption.
Let Z(1), Z(2), . . . , Z(N) denote the combined sample order statistics. Then M , the com-
bined sample median, is defined to be Z((N+1)/2) for N odd and 1

2
[Z(N/2) + Z(N/2+1)] for

N even. Hence, writing

φ(a, b) =


1 if a > b,
1
2

if a = b,
0 if a < b,

we get Mood’s median test statistic as

T =
∑

φ(Yi,M)/n2 .

Under H0, assuming that F ′(x) = f(x) and G′(x) = g(x) exist,
√
n2(T − 1

2
) is

asymptotically normal with mean 0 and variance σ2 when n1, n2 → ∞, where

σ2 =
1

4

λ(1− λ+ λR2)

(1− λ+ λR)2
, R = f(θ)/g(θ)

with λ defined earlier and θ = θX = θY . Setting bN = [1
2
(N+1)+KN ], where [·] denotes

the greatest integer function, and the sequence {KN} such that KN = o(N1/2 logN) and
KN(N

1/4 logN)−1 → +∞ as N → ∞, let us consider

LN = Z(N−bN ) and UN = Z(bN ) .

The modified Mood’s median test, due to Fligner and Rust (1982), is then given by the
variable T̂ =

√
n2(T − 1

2
)/σ̂, where σ̂2 is a consistent estimate of σ2 and is obtained by

σ̂2 =


n1

4

(n2 + n1R̂
2)

(n2 + n1R̂)2
if Gn2(UN)−Gn2(LN) > 0,

1

4
if Gn2(UN)−Gn2(LN) = 0

with R̂ = {Fn1(UN)−Fn1(LN)}/{Gn2(UN)−Gn2(LN)}. We now proceed to introduce
the proposed adaptive test procedures. In this paper we consider KN = N1/2.
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2.1 The Deterministic Approach
Here we propose an asymptotically distribution-free adaptive two-sample test for the gen-
eralized Behrens-Fisher problem having a deterministic approach. Hogg et al. (1975)
developed their adaptive procedures only in the context of hypothesis testing in the usual
nonparametric two-sample and one-sample problems. But their nice properties also ex-
tend to more general situations. Hogg’s procedure, or some modification thereof, can be
effectively employed in our present situation as well. Here a fairly easy classification
scheme is used which merely attempts to assess whether both the underlying distributions
are symmetric. We use the data itself to make such classification, and on the basis of that
information select an appropriate test statistic for testing H0. For this purpose we use the
following measure of symmetry

Q(x) =
Ūγ(x)− M̄0.5(x)

M̄0.5(x)− L̄γ(x)
,

Q(y) =
Ūγ(y)− M̄0.5(y)

M̄0.5(y)− L̄γ(y)
,

where Ūγ(x), M̄γ(x), L̄γ(x) denote, respectively, the γn1 largest middle and smallest
combined order statistics corresponding to theX sample, and Ūγ(y), M̄γ(y), L̄γ(y) denote
that of the Y sample (Randles and Wolfe, 1979, p. 389).

This statistic not only has strong intuitive appeal as a measure of skewness, but there
is also a good theoretical reason for considering it. Since Q(x) and Q(y) are the ratio
of two linear functions of the order statistics, its convergence properties are better than
some of the other measures of symmetry. Under the null hypothesis, the order statistics
are the complete sufficient statistics for the common, but unknown cdf. Hence, by Basu’s
theorem on ancillary statistic, they are independent of every statistic which is distribution-
free. In the present situation, both T̂ and Û are asymptotically distribution-free and hence
not generally independent of the selector statistics. It can be shown, however, that the
difference between the nominal level α and the actual level α̂ converges to zero as the
sample size increases. Thus the adaptive procedure can be argued to be asymptotically
distribution-free. Moreover such measures are location-free.

The proposed deterministic approach (AD1) will accordingly use the following clas-
sification scheme. When the data indicate that both the populations are symmetric, i.e.
Q(x), Q(y) ∈ J , use the modified Wilcoxon-Mann-Whitney statistic Û , where J is an
interval suitably chosen so that the overall adaptive procedure achieves good power main-
taining the nominal level satisfactorily. When the data indicate that both the populations
are not symmetric, i.e. at least one of Q(x) and Q(y) does not belong to the interval J ,
use the modified Mood’s median test statistic T̂ . Hogg et al. (1975) considered the same
measure of skewness as the selector statistic for their adaptive procedure, along with a
measure of tailweight, by taking γ = 0.05. It should be noted that the value of the mea-
sure is 1 when the underlying distribution is symmetric. According to Hogg if the value
of this statistic is greater than 2 then the right tail of the distribution seems to be longer
than the left; i.e., there is an indication that the distribution is skewed to the right. If the
value is less than 0.5, the sample indicates that the distribution may be skewed to the left.

In our simulation study we have considered small and moderate sample sizes like
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n1 = n2 = 20 and n1 = 25, n2 = 15. For n2 = 15 if we take γ = 0.05 then γn2 = 0.75
and consequently Ū0.05 and L̄0.05 do not seem to be meaningful enough. So in our case
we take γ = 0.10. Different choices of the interval J = (c, d) are examined with c
and d around 0.5 and 2, respectively. The choice of the interval should be such that the
power of the proposed adaptive procedure is significantly close to that of the best test for
the distribution considered while maintaining the nominal significance level. From the
simulation studies J = (0.5, 2.3) is found to be the best choice in terms of the robustness
and the power of the adaptive procedure. We can say that the assumption of symmetry is
tenable if Q(x) and Q(y) lie between 0.5 and 2.3.

2.2 The Probabilistic Approach
In the present section we formulate an adaptive nonparametric procedure for the gener-
alized Behrens-Fisher problem having a probabilistic or stochastic approach. Instead of
prescribing a fixed level of significance we use p-value based randomized classification
rule for the selection of an appropriate test statistic. A disadvantage with the determinis-
tic adaptive procedure, based on Hogg’s principle, is the discontinuous nature of the test
selection method. The test selection is likely to be affected if the value of the selector
statistic is near the boundary between two partitioning sets. Here a small change in the
data may move the observed value of the selector statistic over the boundary. Moreover
the boundaries are defined empirically. Although their partitioning may give good results,
more objective and stochastic considerations may lead to a different, even better, adaptive
procedures. The proposed probabilistic procedure consists in calculating some classifi-
cation probabilities, based on the p-values of pretests, to decide on the appropriate test
for the generalized Behrens-Fisher problem. These so called probabilistic or stochastic
adaptive procedures are shown to be effective and yet computationally simple enough to
appeal to the practicing statistician.

The proposed probabilistic approach is also a combination of the modified Wilcoxon-
Mann-Whitney statistic and the modified Mood’s median test statistic according to the
evidence provided by the p-values of pretests for symmetry. For testing symmetry we
make use of the well-known triples test presented by Randles et al. (1980). Before intro-
ducing the proposed probabilistic approach we present a brief review of the triples test.
The null hypothesis for the triples test is that the underlying population is symmetric about
θ against the alternative that it is asymmetric. Let

h(x1, x2, x3) =
1

3
[sgn(x1 + x2 − 2x3) + sgn(x1 + x3 − 2x2) + sgn(x2 + x3 − 2x1)] ,

where sgn(x) = 1, 0,−1 as x >,=, < 0. The triples test is then based on the U-statistic

η̂ =
1(
n
3

) ∑
i<j<k

h(Xi, Xj, Xk) . (1)

Reject the null hypothesis of symmetry if |V | > τα/2, where τα/2 is the upper α/2 quantile
of the standard normal distribution,

V =

√
nη̂

v̂
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with v̂ being a consistent estimate of the variance of the U-statistic η̂.
We now introduce the proposed adaptive rule (AD2) having a probabilistic approach.

Let p1 and p2 denote, respectively, the p-values corresponding to observed η̂-values for
the X and Y samples, viz., η̂1 and η̂2. These two p-values can be regarded as the amount
of evidence against symmetry for each of the two underlying distributions. Thus we
may consider p = min(p1, p2) as the amount of evidence against symmetry for both the
underlying distributions. So whenever p1 and p2 are observed, perform a Bernoullian trial
with probability of success p = min(p1, p2). If success occurs, use the Û test; otherwise,
use the T̂ test. In other words our adaptive test rule is: RejectH0 with probability p if Û >
ûα,n1,n2 and with probability (1− p) if T̂ > t̂α,n1,n2 ; or equivalently we may say: Accept
H0 with probability p if Û ≤ ûα,n1,n2 and with probability (1− p) if T̂ ≤ t̂α,n1,n2 , where
ûα,n1,n2 and t̂α,n1,n2 are the upper α-critical values for the Û and the T̂ tests, respectively.

2.3 The Modified Probabilistic Approach

The adaptive procedure considered here is a modification of the probabilistic approach.
We know that p-value higher than 0.05 is considered to be statistically insignificant at
5% level of significance. Thus, for example, p = 0.10 will indicate that both p1 and
p2 are greater than or equal to 0.10, i.e., both the distributions may be considered to be
symmetric, and hence it is desirable to use the modified Wilcoxon-Mann-Whitney test
with a higher probability. However, the proposed probabilistic approach uses the Û test
with probability 0.10 and the T̂ test with probability 0.90. Here p = α = 0.05 can
be treated as complete dilemma. To overcome this drawback we consider a real-valued
function k(·) satisfying the following conditions: i) k is monotone, non-decreasing, ii)
k(0) = 0, iii) k(0.05) = 0.5 and iv) k(1) = 1. Then we propose our modified adaptive
rule (AD3) as follows. Perform the random experiment with probability of success p∗ =
min(p∗1, p

∗
2), where p∗1 = k(p1), p∗2 = k(p2). The test rule will remain same as in the

probabilistic approach with p replaced by p∗.
Various choices of k satisfying the above conditions may be obtained. For example,

one may consider the cdf of a beta distribution with median at α, the desired level of sig-
nificance. But we must be aware of the dangers associated with the use of such adaptive
procedures. Even though the final test is performed at the desired level of significance α,
in the overall testing procedure the actual level may be quite different from the nominal
level of significance. So the robustness of the adaptive procedures should be carefully
examined. For example, we may consider the triples test which is a highly recommended
test for testing whether a continuous univariate population is symmetric. We have used it
in the first stage of our probabilistic approach and the overall test have been found to be
robust enough. But, when we use the same statistic as the selector statistic in the deter-
ministic approach, the robustness property is not maintained. So the choice of the selector
statistic for such an adaptive procedure should be made with extra care. Here, all the pro-
posed adaptive procedures are only asymptotically distribution-free and so the actual level
of the adaptive procedures may be slightly higher than the nominal level. Thus, for the
modified probabilistic approach, one should be concerned with an appropriate choice of k
so that the adaptive procedure is robust and performs reasonably well in terms of power.
The use of beta distribution with indices (1, 13.513406) fits our present situation.
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3 An Example

As an example to illustrate the proposed methods we consider the data given in McNabb
(2004, p. 242). A political scientist was interested in knowing the percentage of voters
who supported a bill to limit increases in property taxes to no more than 5% per year.
Data were collected in 28 countries out of which 15 countries were considered to be
predominantly urban while 13 countries were predominantly rural. The null hypothesis
for this study was that rural voters are no more likely to support the tax-limit bill than the
urban voters whereas the alternative hypothesis was that rural voters are more likely to
support limits on property taxes than are urban voters. The results of the telephone survey
are given in Table 1.

Table 1: Percentage of voters supporting a tax-limit bill.

Urban countries 22.20, 19.90, 42.09, 26.12, 41.11, 46.44, 63.67, 44.12, 44.22, 44.23,
60.56, 33.12, 51.07, 43.07, 43.55

Rural countries 33.30, 29.89, 59.76, 35.22, 51.98, 54.66, 69.09, 45.24, 47.93, 53.22,
61.12, 42.90, 58.43

For testing H0 : θX = θY against the alternative H1 : θX < θY using the Û test, we
reject H0 in favor of H1 if and only if Û > ûα,n1,n2 or in other words the corresponding
p-value is less than the desired level of significance α. The p-value corresponding to Û
test is 0.0426 and therefore we reject the null hypothesisH0 with this data using the Û test
at 5% level of significance. Using the T̂ test with significance level α = 0.05 we reject
H0 in favor of H1 if and only if T̂ > t̂α,n1,n2 or equivalently the corresponding p-value is
less than 0.05. For this data the p-value corresponding to T̂ test comes out to be 0.0586.
So on the basis of the given data we accept H0 at 5% level of significance using the T̂
test.

Clearly there is difference in decision between the two tests. So we may now proceed
to illustrate the application of the proposed adaptive procedures. We first consider the
AD1 test. For this we calculate Q(x) = 0.9275325 and Q(y) = 0.8336492. Both the
observed Q(x) and Q(y) lie in the interval (0.5, 2.3). Thus based on this measure we may
assume that both the underlying distributions are symmetric. Thus we use the Û test and
hence we reject H0 at 5% level of significance.

To perform the AD2 test we need to compute the p-values of the triples test for each
of the two samples. The observed p1 and p2 values are 0.8030368 and 0.5041223 respec-
tively. We now perform a Bernoullian trial with probability of success p = min(p1, p2) =
0.5041223. If success occurs use the Û test, otherwise use the T̂ test.

It can be observed that both the p-values are much higher than 0.05 so we may consider
both the underlying distributions to be symmetric. Thus it is desirable to use the Û test
with a very high probability. However in the previous approach we used the Û test with
probability 0.5041223. To overcome this drawback we consider the AD3 test. It has
already been pointed out that the cdf of the beta distribution with indices (1, 13.513406)
is considered as the choice of the function k(·). So here p∗1 = 1, p∗2 = 0.9999235 and thus
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p∗ = min(p∗1, p
∗
2) = 0.9999235. We now perform a Bernoullian trial with probability of

success p∗. If success occurs use the Û test, otherwise use the T̂ test.

4 Relative Comparisons of the Competing Tests
In this section we present the results of a simulation study to assess the relative perfor-
mance of the proposed adaptive procedures with the existing non-adaptive competitors.
The distributions that are used to generate the data for this simulation study are members
of the generalized lambda family of distributions discussed in Ramberg and Schmeiser
(1974). This family provides a wide range of distributions that are easily generated since
they are defined in terms of the inverse of the cdf

F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2 , 0 < u < 1 ,

where λ1 and λ2 are the location and scale parameters, respectively. The parameters λ3
and λ4 determine the shape of the distribution. The generalized lambda distributions are
used because the skewness (α3 = E(X−µ)3/σ3) and kurtosis (α4 = E(X−µ)4/σ4) could
be specified. The distributions used in this study are so chosen so that their skewness and
kurtosis would cover a wide range of possibilities for the underlying distribution. The
parameters defining the 10 selected distributions along with the associated skewness and
kurtosis values are given in Table 2. The first 5 distributions considered are symmetric
while the remaining 5 distributions are skewed.

Table 2: Distributions used in the simulation study.

Distribution λ1 λ2 λ3 λ4 α3 α4

1 0 2 1 1 0 1.8
2 0 0.197454 0.134915 0.134915 0 3.0
3 0 −1 −0.08 −0.08 0 6.0
4 0 −1 −0.24 −0.24 0 126.0
5 0 −5.11256 −1 −1 does not exist does not exist
6 0 1 0.00007 0.1 1.5 5.8
7 0 −1 −0.0075 −0.03 1.5 7.5
8 0 −1 −0.1 −0.18 2.0 21.2
9 0 −1 −0.001 −0.13 3.2 23.8

10 0 −1 −0.001 −0.17 3.9 40.7

We consider the three proposed adaptive procedures AD1, AD2 and AD3, and the
other tests included in the study are the two component tests of the adaptive rule, i.e., the
T̂ test and the Û test. The whole computation is carried out taking the nominal level of
significance to be α = 0.05. The entries given in Tables 3-6 are generated via computer
simulations with 5,000 replications for each configuration. The empirical size and the
power of the tests are computed as the relative frequency with which a particular test
rejects the null hypothesis H0. We investigate the powers at θY = ξ0.5, ξ0.6, ξ0.7, where
ξq is the qth quantile of the distribution of Y . The results presented in Tables 3 and 5 are
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computed assuming equal scale for both the underlying distributions, i.e., the simulations
are carried out using two generalized lambda distributions having equal scale and shape
parameters. Whereas those in Tables 4 and 6 are computed without the assumption of
equality of the scale parameters of the two underlying distributions. Here the simulations
are performed using two generalized lambda distributions keeping λ3, λ4 fixed but varying
λ2. In fact in our study the scale parameter of the second population is taken to be twice
that of the first population.

Table 3: Empirical size and power of the tests for n1 = n2 = 20 (equal scale).

Distribution q T̂ Û AD1 AD2 AD3
1 0.5 0.052 0.053 0.050 0.056 0.056

0.6 0.171 0.275 0.264 0.181 0.258
0.7 0.377 0.647 0.633 0.424 0.591

2 0.5 0.054 0.049 0.051 0.056 0.050
0.6 0.165 0.191 0.189 0.167 0.184
0.7 0.385 0.467 0.461 0.407 0.446

3 0.5 0.051 0.049 0.053 0.053 0.050
0.6 0.161 0.177 0.169 0.164 0.174
0.7 0.387 0.425 0.421 0.395 0.410

4 0.5 0.052 0.051 0.049 0.054 0.047
0.6 0.163 0.170 0.164 0.170 0.166
0.7 0.384 0.410 0.387 0.385 0.407

5 0.5 0.053 0.054 0.051 0.049 0.049
0.6 0.165 0.131 0.148 0.148 0.133
0.7 0.398 0.298 0.363 0.388 0.319

6 0.5 0.051 0.047 0.049 0.055 0.057
0.6 0.181 0.283 0.206 0.185 0.205
0.7 0.455 0.709 0.516 0.461 0.519

7 0.5 0.053 0.049 0.054 0.054 0.055
0.6 0.172 0.209 0.206 0.174 0.195
0.7 0.443 0.575 0.542 0.462 0.513

8 0.5 0.051 0.052 0.050 0.054 0.046
0.6 0.163 0.187 0.187 0.165 0.180
0.7 0.426 0.485 0.478 0.427 0.467

9 0.5 0.050 0.053 0.052 0.053 0.054
0.6 0.177 0.284 0.195 0.181 0.201
0.7 0.464 0.722 0.497 0.467 0.509

10 0.5 0.052 0.053 0.054 0.058 0.054
0.6 0.178 0.298 0.196 0.185 0.205
0.7 0.454 0.728 0.494 0.472 0.503

From the results of the simulation study, we may conclude that all the three proposed
adaptive test procedures AD1, AD2 and AD3 are robust for nearly all cases. The proposed
modified probabilistic approach AD3 although tends to be slightly anti-conservative in a
few situations but it is reasonably better than the other two proposed adaptive procedures
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in terms of the total error. On the other hand, the Û test does not hold its nominal level very
well when both the underlying distributions are not symmetric. Thus it is not justifiable
to include it in any power comparisons as the high powers might easily be attributed to
the inflated levels. However, all the proposed adaptive procedures perform better than
the T̂ test in all the situations except for the distribution 5 (the lambda approximation to
the Cauchy distribution), where the T̂ test is the best test. The proposed deterministic
approach AD1 and the modified probabilistic approach AD3 have the nearest power to
the Û test which is the best test when both the underlying distributions are symmetric
except for the situation already mentioned. The proposed probabilistic approach AD2
achieves the desired level of significance more closely than the modified approach but as
expected the modified AD3 test is much more powerful than the AD2 test. In a number of
situations the proposed AD3 test is even more powerful than the AD1 test. Thus, overall
we may say that there is not much difference between the AD1 test and the AD3 test in
terms of power, and hence these two tests seems to be more preferable compared to the
other existing competitors for the generalized Behrens-Fisher problem.

5 Some Asymptotics
We now consider some asymptotic properties of the proposed adaptive test statistics. As
the asymptotics for all the three proposed procedures are same, we consider here the test
based on AD2 only. We know that the modified Mood’s median test statistic

T̂ =

√
N(T − 1/2)

σ̂

is asymptotically standard normal. Again if the underlying distribution is symmetric then
we know that the null distribution of the modified Wilcoxon-Mann-Whitney statistic

Û =
U − n1n2/2√

v̂ar(U)

is asymptotically standard normal. Also note that the magnitude of the p-values of the
triples tests involved in the proposed test is an indicator of the amount of asymmetry
for each of the underlying distribution present in the two samples. In order to study
the asymptotic properties of the proposed adaptive procedures we need to look into the
asymptotic behavior of the p-values of the preliminary tests. The p-value for the triples
test is defined as PH0(|V | > v), where v is the observed value of V . Since the triples
test statistic V is asymptotically standard normal, we can approximate the p-value by
2(1− Φ(v)), where Φ(v) is the standardized normal cdf

The p-value is itself a random variable whose distribution, for the null hypothesis, is
asymptotically uniform over (0, 1). Moreover, for the alternative hypothesis, the p-value
goes to zero with probability one as the sample size becomes large. We know that, in
general, convergence in distribution does not imply convergence of the corresponding ex-
pected value. However, for every uniformly bounded continuous function g, convergence
in distribution of the sequence of random variables {Wn} to the random variable W does
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Figure 1: Normal QQ plots for distribution 3 (left) and distribution 8 (right) for n1 =
n2 = 20 (first row), n1 = n2 = 30 (second row), n1 = 25, n2 = 15 (third row) and
n1 = 35, n2 = 25 (fourth row).
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Table 4: Empirical size and power of the tests for n1 = n2 = 20 (unequal scale).

Distribution q T̂ Û AD1 AD2 AD3
1 0.5 0.053 0.052 0.048 0.047 0.054

0.6 0.186 0.273 0.259 0.204 0.254
0.7 0.465 0.697 0.686 0.508 0.649

2 0.5 0.051 0.048 0.047 0.055 0.054
0.6 0.202 0.246 0.238 0.208 0.229
0.7 0.482 0.612 0.606 0.516 0.580

3 0.5 0.049 0.054 0.050 0.050 0.055
0.6 0.204 0.231 0.220 0.205 0.206
0.7 0.489 0.570 0.565 0.501 0.557

4 0.5 0.052 0.048 0.048 0.052 0.047
0.6 0.195 0.223 0.208 0.197 0.212
0.7 0.503 0.560 0.535 0.508 0.545

5 0.5 0.052 0.052 0.053 0.049 0.048
0.6 0.203 0.168 0.191 0.185 0.173
0.7 0.525 0.435 0.485 0.507 0.447

6 0.5 0.052 0.084 0.055 0.050 0.056
0.6 0.179 0.350 0.210 0.183 0.209
0.7 0.464 0.734 0.534 0.486 0.536

7 0.5 0.052 0.062 0.052 0.051 0.060
0.6 0.195 0.286 0.249 0.199 0.238
0.7 0.494 0.689 0.601 0.506 0.570

8 0.5 0.051 0.062 0.053 0.053 0.056
0.6 0.201 0.253 0.248 0.204 0.235
0.7 0.502 0.637 0.604 0.493 0.575

9 0.5 0.050 0.093 0.050 0.050 0.055
0.6 0.180 0.362 0.196 0.185 0.209
0.7 0.474 0.737 0.500 0.479 0.523

10 0.5 0.048 0.105 0.050 0.046 0.058
0.6 0.183 0.368 0.194 0.186 0.200
0.7 0.477 0.745 0.491 0.485 0.521

imply convergence of E[g(Wn)] to E[g(W )]. Thus, as the sample size increases, the ex-
pected p-value here approaches 1 and 0 under the null and the alternative hypotheses,
respectively. Hereinafter, whenever we discuss about the limiting p-values we indeed re-
fer to the limit of the expected p-values. If the data do not provide sufficient evidence of
asymmetry for at least one of the samples, then p = min(p1, p2) approaches 1, otherwise
it tends to 0.

Keeping the above results in mind we now study the asymptotic behavior of

AD2 = ÛI(U∗ ≤ p) + T̂ I(U∗ > p) ,

where I(x) is an indicator function assuming the values 1 or 0 according as x is true or
false and U∗ is uniformly distributed over (0, 1) and is independent of {X1, X2, . . . , Xn1 ,
Y1, Y2, . . . , Yn2}.
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Table 5: Empirical size and power of the tests for n1 = 25, n2 = 15 (equal scale).

Distribution q T̂ Û AD1 AD2 AD3
1 0.5 0.037 0.053 0.046 0.046 0.043

0.6 0.115 0.259 0.219 0.159 0.246
0.7 0.273 0.617 0.556 0.403 0.591

2 0.5 0.038 0.052 0.048 0.044 0.045
0.6 0.111 0.185 0.172 0.171 0.184
0.7 0.284 0.455 0.425 0.332 0.428

3 0.5 0.038 0.046 0.043 0.038 0.051
0.6 0.111 0.169 0.154 0.133 0.161
0.7 0.279 0.413 0.383 0.324 0.397

4 0.5 0.036 0.050 0.044 0.043 0.054
0.6 0.109 0.152 0.136 0.128 0.143
0.7 0.280 0.385 0.346 0.303 0.367

5 0.5 0.037 0.054 0.042 0.035 0.044
0.6 0.102 0.127 0.108 0.105 0.107
0.7 0.284 0.295 0.292 0.284 0.287

6 0.5 0.036 0.050 0.038 0.035 0.041
0.6 0.143 0.282 0.157 0.145 0.172
0.7 0.451 0.727 0.473 0.455 0.511

7 0.5 0.037 0.049 0.047 0.038 0.046
0.6 0.135 0.207 0.167 0.135 0.175
0.7 0.382 0.571 0.457 0.397 0.476

8 0.5 0.035 0.050 0.045 0.041 0.046
0.6 0.120 0.176 0.154 0.142 0.164
0.7 0.337 0.465 0.410 0.372 0.438

9 0.5 0.041 0.050 0.041 0.035 0.038
0.6 0.150 0.294 0.160 0.150 0.161
0.7 0.487 0.749 0.497 0.490 0.508

10 0.5 0.037 0.051 0.044 0.038 0.042
0.6 0.153 0.295 0.163 0.156 0.160
0.7 0.491 0.759 0.505 0.499 0.506

At the first stage a normal QQ (Quantile-Quantile) plot is used to check the asymp-
totic normality of AD2 under H0. The normal QQ plot is a very useful visual tool for
assessing whether the distribution of a given variable follows a normal distribution. The
QQ plot plots the empirical quantiles against the theoretical quantiles for normal distribu-
tion. When the distribution of the variable under examination has the same shape as the
reference distribution, the normal distribution in this case, the QQ plot is linear. We have
generated QQ plots using some of the 10 selected members of the generalized lambda
family and present here the normal QQ plots for the distribution 3, which is symmetric
and has a moderate tailweight, along with the distribution 8, which is positively skewed
with heavier tailweight. All the normal QQ plots presented here are generated using two
distributions with unequal scale parameters. The normal QQ plots seems to be fairly
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Table 6: Empirical size and power of the tests for n1 = 25, n2 = 15 (unequal scale).

Distribution q T̂ Û AD1 AD2 AD3
1 0.5 0.050 0.048 0.047 0.051 0.047

0.6 0.215 0.295 0.266 0.244 0.290
0.7 0.510 0.735 0.696 0.607 0.726

2 0.5 0.050 0.052 0.052 0.055 0.050
0.6 0.210 0.249 0.246 0.226 0.243
0.7 0.525 0.644 0.629 0.568 0.626

3 0.5 0.051 0.048 0.055 0.053 0.049
0.6 0.212 0.233 0.227 0.214 0.225
0.7 0.523 0.606 0.581 0.548 0.585

4 0.5 0.049 0.048 0.047 0.048 0.048
0.6 0.202 0.227 0.218 0.202 0.226
0.7 0.522 0.568 0.549 0.540 0.562

5 0.5 0.048 0.046 0.053 0.047 0.045
0.6 0.195 0.171 0.189 0.179 0.162
0.7 0.511 0.439 0.497 0.491 0.452

6 0.5 0.052 0.080 0.050 0.054 0.058
0.6 0.231 0.380 0.239 0.247 0.253
0.7 0.618 0.780 0.637 0.629 0.663

7 0.5 0.053 0.069 0.054 0.050 0.055
0.6 0.228 0.310 0.262 0.244 0.262
0.7 0.598 0.727 0.638 0.617 0.664

8 0.5 0.051 0.055 0.051 0.054 0.060
0.6 0.229 0.266 0.238 0.234 0.253
0.7 0.579 0.664 0.617 0.598 0.645

9 0.5 0.052 0.091 0.057 0.053 0.053
0.6 0.244 0.390 0.248 0.254 0.257
0.7 0.649 0.803 0.654 0.650 0.659

10 0.5 0.054 0.099 0.054 0.056 0.058
0.6 0.238 0.395 0.257 0.239 0.245
0.7 0.648 0.797 0.668 0.650 0.659

linear even for the combined sample size N = 40 with n1 = n2 = 20 and n1 = 25,
n2 = 15. It is also observed that as we increase the combined sample size to N = 60
with n1 = n2 = 30 and n1 = 35, n2 = 25 the normal QQ plots tends to be much more
linear. Thus the normal QQ plots provide us with a fair indication about the asymptotic
normality of AD2 under H0. We now proceed to verify the asymptotic normality of AD2
under H0 theoretically in the following result:

Result 1. For min(n1, n2) → ∞, the statistic AD2 has asymptotically standard normal
distribution under H0.

Proof. Let ψN(τ) denote the cdf corresponding to AD2 under H0. Further we denote the
events [Û ≤ τ ], [T̂ ≤ τ ] and [U∗ ≤ p] by AN , BN and EN , respectively. Then we can
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write
ψN(τ) = PH0(AD2 ≤ τ) = PH0(AN ∩ EN) + PH0(BN ∩ Ec

N) .

We know that,
lim

n1,n2→∞
PH0(EN) = 1 or 0 (2)

according as each of the two underlying populations are symmetric or otherwise. If both
the underlying distributions are symmetric then η1 = η2 = 0, where ηi = E(η̂i), i = 1, 2.
Also, note that

lim
n1,n2→∞

PH0(AN) = Φ(τ) , provided η1 = η2 = 0 (3)

and
lim

n1,n2→∞
PH0(BN) = Φ(τ) , whatever η1 and η2 may be. (4)

We now consider the following two cases:

Case 1. When η1 = η2 = 0

PH0(BN ∩ Ec
N) ≤ PH0(E

c
N) → 0 as min(n1, n2) → ∞

Thus
lim

n1,n2→∞
PH0(BN ∩ Ec

N) = 0 .

Moreover, combining (2), (3) and

PH0(AN) + PH0(EN)− 1 ≤ PH0(AN ∩ EN) ≤ min(PH0(AN), PH0(EN)) ,

we find that
lim

n1,n2→∞
PH0(AN ∩ EN) = Φ(τ) .

Hence
lim

n1,n2→∞
ψN(τ) = Φ(τ) . (5)

Case 2. When at least one ηi ̸= 0, i = 1, 2

PH0(AN ∩ EN) ≤ PH0(EN) → 0 as min(n1, n2) → ∞ ,

which gives
lim

n1,n2→∞
PH0(AN ∩ EN) = 0 .

Again, combining (2), (4) and

PH0(BN) + PH0(E
c
N)− 1 ≤ PH0(BN ∩ Ec

N) ≤ min(PH0(BN), PH0(E
c
N))

we obtain
lim

n1,n2→∞
PH0(BN ∩ Ec

N) = Φ(τ) .

Thus,
lim

n1,n2→∞
ψN(τ) = Φ(τ) . (6)
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Finally, combining (5) and (6) we get

lim
n1,n2→∞

ψN(τ) = Φ(τ) ,

without any assumption regarding the symmetry of the two underlying distributions.

The asymptotic power properties of the adaptive test procedures depend on the criteria
and the statistic used. We focus our attention on the case where F and G belong to the
same location and scale family. Let X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 be independent
random samples corresponding to the populations with continuous cdf’s F (x) = H(x −
θX) and G(y) = H{(y − θY )/τ} respectively, where H(·) is an arbitrary continuous cdf
with H(0) = 1/2. Suppose H(x) has the density h(x) at all real x. Then under the
sequence of Pitman local alternatives

θY = θX + b/
√
N (7)

and suitable regularity conditions, the asymptotic power of the modified Mood’s test is
given by Φ(e1b − τα) and that of the modified Wilcoxon-Mann-Whitney test is given by
Φ(e2b− τα), where

e1 = 2
{λ(1− λ)}1/2h(0)
(1− λ) + λτ 2

, e2 = {λ(1− λ)}1/2
∫
h(x/τ)h(x)dx

τ{λϕ+ (1− λ)γ}1/2
,

ϕ =

∫
F 2dG−

(∫
FdG

)2

, γ =

∫
G2dF −

(∫
GdF

)2

.

We see that power of the adaptive test converges to the power of the better component.
Thus under (7) the power of each of the proposed adaptive test procedures converges to
the power of the Û test when both the underlying distributions are symmetric, and to that
of the T̂ test otherwise. This is shown in the following result.

Result 2. The asymptotic power of the adaptive test AD2 under the sequence of local
alternatives (7) is

I(η21 + η22 = 0)Φ(e2b− τα) + {1− I(η21 + η22 = 0)}Φ(e1b− τα) .

Proof. Using the same technique as in Result 1, the asymptotic power of the upper α level
AD2 test under (7) can be obtained as

β(b) = lim
n1,n2→∞

P (AD2 > τα)

= I(η21 + η22 = 0)Φ(e2b− τα) + {1− I(η21 + η22 = 0)}Φ(e1b− τα) .
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6 Concluding Remarks

In the nonparametric two-sample location problem, the most common statistical problem
is the testing of the null hypothesis that the two populations have equal medians against
one-or two-sided alternatives. Here the only assumption is that the two populations are
continuous. In this paper we have developed some adaptive procedures for testing the
so called generalized Behrens-Fisher problem. The deterministic approach (AD1) pro-
posed in this paper is based on calculating a simple measure of symmetry for each sample
involving the terms Ūγ(x), M̄γ(x), L̄γ(x) and Ūγ(y), M̄γ(y), L̄γ(y) which denote the av-
erages of the γn1 and γn2 largest, middle and smallest combined order statistics for the
X and Y samples, respectively. If each of these measures falls in a specific interval then
both the underlying distributions are considered to be symmetric. A disadvantage with
this deterministic approach is that both the choice of γ and that of the interval are made
subjectively.

In the proposed probabilistic approach we make use of the triples test which is asymp-
totically distribution-free for testing whether the distribution is symmetric about some
unknown location parameter. We want to compare between our proposed p-value based
randomized classification rule and the deterministic rule based on the concept of Hogg.
So in the proposed deterministic approach we use the same selector statistic as in Hogg et
al. (1975) to assess the skewness of the underlying distribution.

The simulation study demonstrates that the proposed probabilistic approach AD2 is
robust for nearly all the situations but the proposed deterministic approach AD1 and
the modified probabilistic approach AD3, being reasonably robust, have relatively much
higher powers. We have already pointed out the subjectivity in the proposed AD1 test
and we recommend to use the AD3 test for the two-sample generalized Behrens-Fisher
problem. The result seems to be important for statistical applications, because a practic-
ing statistician has usually little or no information about the underlying distribution of the
data. Adaptive tests are not designed to be optimal for any particular distribution but this
study convinces us that they are certainly worth considering in practical problems. Note
that, although to perform the simulation study and obtain the expression for the asymp-
totic power of the proposed adaptive test it is assumed that F and G belong to the same
location and scale family they are also valid when F and G do not belong to the same
location and scale family. It should also be noted that we can construct adaptive tests for
the multisample generalized Behrens-Fisher problem.

In the modified probabilistic approach AD3 it is argued that the random experiment
should be done with probability p∗ = min(p∗1, p

∗
2), where p∗1 = k(p1), p∗2 = k(p2) and

k(·) is such that i) k is monotone, non-decreasing, ii) k(0) = 0, iii) k(0.05) = 0.5 and
iv) k(1) = 1. For example we can take k(·) as the cdf of a suitable beta distribution
with median at α. The median of beta(β1, β2) is taken as α. We fix β1, and find β2. For
different choices of β1 there will be different β2 for the fixed α. Thus we obtain different
possible choices of p∗ for different choices of β1. Here we have used one such choice of
β1 and β2. However it may be possible to find an optimal β1 using some criterion. We
defer this to future research.
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