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Abstract: The shape of a probability distribution is often summarized by the
distribution’s skewness and kurtosis. Starting from a symmetric “parent” den-
sity f on the real line, we can modify its shape (i.e. introduce skewness and
in-/decrease kurtosis) if f is appropriately weighted. In particular, every den-
sity w on the interval (0, 1) is a specific weighting function. Within this work,
we follow up a proposal of Jones (2004) and choose the Beta distribution as
underlying weighting function w. “Parent” distributions like the Student-
t, the logistic and the normal distribution have already been investigated in
the literature. Based on the assumption that f is the density of a hyperbolic
secant distribution, we introduce the Beta-hyperbolic secant (BHS) distribu-
tion. In contrast to the Beta-normal distribution and to the Beta-Student-t
distribution, BHS densities are always unimodal and all moments exist. In
contrast to the Beta-logistic distribution, the BHS distribution is more flexi-
ble regarding the range of skewness and leptokurtosis combinations. More-
over, we propose a generalization which nests both the Beta-logistic and the
BHS distribution. Finally, the goodness-of-fit between all above-mentioned
distributions is compared for glass fibre data and aluminium returns.

Zusammenfassung: Die Gestalt einer Verteilung wird häufig zusammenge-
fasst durch Schiefe und Kurtosis beschrieben. Wir starten mit einer sym-
metrischen “Eltern” Dichte f auf der reellen Achse und modifizieren ihre
Gestalt (d.h. wir führen Schiefe ein und vergrößern/verkleinern die Kurtosis)
indem f passend gewichtet wird. Insbesondere ist jede Dichte w auf dem
reellen Intervall (0, 1) eine bestimmte Gewichtsfunktion. In dieser Arbeit
folgen wir einem Vorschlag von Jones (2004) und wählen die Betaverteilung
als zugrunde liegende Gewichtsfunktion w. “Eltern” Verteilungen wie die
Student-t, die logistische und die Normalverteilung sind bereits in der Lit-
eratur untersucht worden. Wir nehmen an, dass f die Dichte einer Hy-
perbolische Schrankenverteilung ist, und führen so die Beta-Hyperbolische
Schranken (BHS) Verteilung ein. Im Gegensatz zur Betanormal Verteilung
und zur Beta-Student-t Verteilung sind BHS Dichten immer unimodal und
alle Momente existieren. Im Gegensatz zur Beta-logistischen Verteilung ist
die BHS Verteilung flexibler betreffs dem Bereich von Schiefe und Leptokur-
tosis Kombinationen. Zudem schlagen wir eine Verallgemeinerung vor, die
sowohl die Beta-logistische als auch die BHS Verteilung enthält. Schließlich
wird die Anpassungsgüte aller erwähnten Verteilungen für Glasfaser-Daten
und Aluminiumpreise verglichen.

Keywords: Skewness, Kurtosis, Beta-logistic Distribution, Beta distribution,
Weighting Function, Glass Fibre Data, Aluminium Returns.
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1 Introduction
Several techniques can be applied to symmetric distributions in order to generate asym-
metric ones with possibly lighter or heavier tails. In terms of density functions—provided
their existence—most of these methods can be represented by

g(x; θ) = f(x)w(F (x); θ) , (1)

where g denotes the transformed density, f and F the (symmetric) pdf and cdf, respec-
tively, of the original (“parent”) distribution and w is an appropriate weighting function
on the interval (0, 1) with parameter vector θ (see, for instance, Ferreira and Steel, 2004).
Choosing w(u; λ) = 2F (λF−1(u)), the skewing mechanism of Azzalini (1985, 1986) is
recovered. Similarly, using

w(u; λ) =
2

λ + 1
λ

f(λsign(0.5−u)F−1(u))

f(F−1(u))
(2)

corresponds to applying different parameters of scale to the positive and the negative part
of a symmetric density (see, for example, Fernández, Osiewalski, and Steel, 1995, and
Theodossiou, 1998).

In particular, every probability density on (0, 1) which is not uniform can be used
either to introduce skewness and/or to modify the kurtosis of the parent distribution. A
very attractive choice (due to its flexibility) is the density of a Beta distribution, i.e.

w(x; β1, β2) =
1

B(β1, β2)
xβ1−1(1− x)β2−1 , β1, β2 > 0 , (3)

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt denotes the Beta function (cf. Jones, 2004). Exam-

ples where (3) has been used in the literature are the following:

• Aroian (1941), Prentice (1975): Beta-logistic distribution (which is also termed
as exponential generalized beta of the second kind or EGB2 distribution, or log F
distribution),

• Eugene, Lee, and Famoye (2002): Beta-normal (BN) distribution,

• Jones and Faddy (2004): Beta-Student-t distribution.

Within this work we introduce the BHS (Beta-hyperbolic secant) distribution as a weighted
hyperbolic secant distribution with weights from (3). The hyperbolic secant distribution
itself dates back to Perks (1932). It is symmetric, more leptokurtic than the normal, even
more than the logistic distribution but still with existing moments. Both the cumulative
distribution function and the inverse cumulative distribution function are given in closed
form. Despite its interesting properties, the hyperbolic secant distribution has not received
sufficient attention in the literature so far.

Whereas both Beta-normal and Beta-Student-t distribution do not guarantee unimoda-
lity—except for a special parameterization given in Ferreira and Steel (2004)—the BHS
distribution does. In contrast to the Beta-Student-t distribution, all moments of the BHS
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distribution exist. Although the Beta-logistic and the BHS distribution are very similar,
the BHS distribution will be seen to be more flexible regarding skew and leptokurtic
data. In order to discriminate between both distribution models, a generalized Beta-GSH
model—based on Vaughan’s (2002) generalized secant hyperbolic (GSH) distribution—is
proposed that includes both candidate distributions as special case.

The paper is structured as follows: The BHS distribution and some fundamental prop-
erties are introduced in Section 2. Section 3 is devoted to the parameter estimation of
the BHS distribution. A generalization of both the Beta-logistic distribution and the BHS
distribution is proposed in Section 4. In Section 5, the BHS distribution is compared with
its competitors derived from alternative parent distributions.

2 Definition and Properties

2.1 Definition of the Beta-Hyperbolic Secant Distribution
The probability density function of a standardized (i.e. zero mean and unit variance) hy-
perbolic secant distribution is given by

f(x) =
1

π cosh(x)
=

2

π(exp(x) + exp(−x))
, x ∈ R . (4)

It is symmetric and the corresponding cumulative distribution function is

F (x) =
2

π
arctan(exp(x)) . (5)

The inverse cumulative distribution function is F−1(u) = log(tan(πu
2

)). Combining (1),
(3), (4) and (5), the density of the Beta-hyperbolic secant (BHS) distribution is defined by

g(x; β1, β2) =
B(β1, β2)

−1

π cosh(x)

[
2
π

arctan(exp(x))
]β1−1

[
1− 2

π
arctan(exp(x))

]1−β2
, (6)

where β1 > 0 and β2 > 0 determine the shape of the density. The corresponding cumula-
tive distribution function is

G(x; β1, β2) =
BF−1(x)(β1, β2)

B(β1, β2)
with Bu(p, q) =

∫ u

0

tp−1(1− t)q−1dt .

Introducing a location parameter µ ∈ R and a scale parameter σ > 0, the BHS density
from (6) generalizes to

g(x) =
B(β1, β2)

−1

σπ cosh

(
x− µ

σ

)
[

2

π
arctan

(
exp

(
x− µ

σ

))]β1−1

[
1− 2

π
arctan

(
exp

(
x− µ

σ

))]β2−1

.
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(a) Density (b) Log-density

Figure 1: Density and log-density for β1 = 1

Different densities and their corresponding log-densities with µ = 0, σ = 1, β1 = 1 and
varying β2 are plotted in Figure 1.

Define θ ≡ β1−β2

2
and β ≡ β1+β2

2
> 0. Then β + θ = β1 and β− θ = β2, and equation

(3) can be rewritten as

w(x; β, θ) =
1

B(β + θ, β − θ)
xβ+θ−1(1− x)β−θ−1

= C(β, θ) · xβ−1(1− x)β−1

B(β, β)
· sin(πθ)xθ(1− x)−θ

πθ
, (7)

where C(β, θ) = 1 only if β = 1. Thus, the weighting density can be partitioned into
two parts, where the first part essentially governs the amount of kurtosis and the sec-
ond part the amount of skewness (see Figure 2, where both parts are plotted separately).
Consequently, a second parameterization of BHS density is given by

g(x; θ, β) =

1
π cosh(x)

B(β + θ, β − θ)

[
2

π
arctan(exp(x))

]β+θ−1 [
1− 2

π
arctan(exp(x))

]β−θ−1

,

where symmetry corresponds to θ = 0.
In order to ensure the existence of the Beta function in the last equation, both β + θ

and β − θ have to be positive. Hence, it is required that |θ| < β, i.e. highly leptokurtic
data (that means small β) induce higher restrictions on θ. It also becomes obvious from
the above parameterization that β1 and β2 commonly determine skewness and kurtosis
(measured by the third and fourth standardized moment within this work).

2.2 Properties of the BHS Distribution
Lemma 1 (Asymmetry and kurtosis). The BHS distribution with parameters µ, σ, β1, β2

is symmetric about µ for β ≡ β1 = β2. Moreover, it is skewed to the right for β1 > β2

and skewed to the left for β1 < β2. Assume that β1 = β2 ≡ β. Then, kurtosis increases if
β decreases and vice versa.
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(a) Kurtosis part (b) Skewness part

Figure 2: Decomposition of the weighting density

Lemma 2 (Tail behavior). The BHS distribution has exponentially decaying tails. In
particular, the log-density is asymptotically linear with slope determined by β1 and β2,
respectively.

Proof. Assume µ = 0, σ = 1 and focus on the right tail of the BHS distribution. From

lim
x→∞

(
1

cosh(x)
− 2 exp(−x)

)
= 0 , lim

x→∞

[
2

π
arctan(exp(x))

]β1−1

= 1 ,

and [
1− 2

π
arctan(exp(x))

]β2−1

∼ C exp((1− β2)x)

we conclude that for large x

g(x; β1, β2) ∼ C exp(−x) exp((1− β2)x) = C exp(−β2x) , C =
(2/π)β2

B(β1, β2)
.

In particular, β2 < 1 corresponds to distributions with heavier than plain exponential tails,
β2 > 1 distributions with lighter than plain exponential tails. The same argument is true
for the left tail. 2

Additionally, the score function for the BHS distribution is derived which plays an
important role in the theory of rank tests (see, e.g. Kravchuk, 2005, for β1 = β2 = 1)

Lemma 3 (Score function). With ζ(x) ≡ arctan (exp(x)) the score function of a BHS
variable is given by

ψ(x; β1, β2) = −g′(x; β1, β2)

g(x; β1, β2)

=
tanh(x)ζ(x)(exp(2x) + 1)(2ζ(x)− π) + exp(x)β1(π − 2ζ(x))

(1 + exp(2x))ζ(x)(2ζ(x)− π)

−exp(x)π − 2exp(x)ζ(x)(2− β2)

(1 + exp(2x))ζ(x)(2ζ(x)− π)
.
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Setting β1 = β2 = 1, the last equation reduces to ψ(x; 1, 1) = tanh(x).

Finally, it can be shown (see Appendix A for a detailed proof) that BHS densities are
unimodal for all β1, β2 > 0. This is not valid for the Beta-normal and the Beta-Student-t
distribution, in general.

Lemma 4 (Unimodality). The BHS distribution is unimodal for β1, β2 > 0.

2.3 Special and Limiting Cases
First of all, for β1 = β2 = 1 the hyperbolic secant distribution is recovered. Setting
β2 = 1 or β1 = 1, skew hyperbolic secant distributions can be obtained. A generalized
symmetric family of hyperbolic secant distributions is achieved for β1 = β2 = β, where
β governs the amount of kurtosis. Like the Beta-logistic distribution and the Beta-normal
distribution, the BHS distribution converges to the normal distribution for β1, β2 →∞.

2.4 Moments of the BHS Distribution
Obviously, the exponential tail behaviour of the BHS distribution guarantees the existence
of all moments. In particular, the m-th non-central moment of a BHS density is given by

E(Xm) =
1

B(β1, β2)

∫ 1

0

logm
(
tan

(π

2
u
))

uβ1−1(1− u)β2−1du .

From Gradshteyn and Ryhzik (1994), formula 1.518.3 and 9.616 we can write

tan
(π

2
u
)

= log
(π

2
u
)

+
∞∑

k=1

(22k−1 − 1)ζ(2k)

k22k−1
u2k = log

(π

2
u
)

+ u2

∞∑

k=0

aku
2k

with the usual Riemann zeta function

ζ(2k) =
∞∑

l=1

1

l2k
and ak =

(22k+1 − 1)ζ(2k + 2)

(k + 1)22k+1
. (8)

Using the notation

∂v

∂pv
B(p, q) ≡ Bv,0(p, q) , B0,0(p, q) = B(p, q) ,

the following lemma can be derived.

Lemma 5 (Moments of the BHS distribution). Assume that m > 0.

E(Xm) =
1

B(β1, β2)

[
m∑

j=0

(
m

j

)
logm−j π

2
Bj,0(β1, β2)+

+
∞∑

k=0

m∑
j=1

(
m

j

)
a

(j)
k

m−j∑
i=0

(
m− j

i

)
logm−j−i π

2
Bi,0(2k + 2j + β1, β2)

]
,
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where

a
(j)
0 = aj

0 , a
(j)
k =

1

ka0

k∑
i=1

(ij − k + i)aia
(j)
k−i , k ≥ 1 .

In particular, the mean of the BHS distribution is given by

E(X) = log
(π

2

)
+ ψ(β1)− ψ(β1 + β2) +

∞∑

k=0

ak
B(2k + 2 + β1, β2)

B(β1, β2)
(9)

with ak from (8). Note that ψ denotes the digamma function in the last equation. In
contrast to (9), the corresponding formula for the Beta-logistic distribution is given by

E(X) = ψ(β1)− ψ(β2) .

From the first four moments we can deduce the skewness and kurtosis coefficients M3 and
M4 (i.e. the third and fourth standardized moments) for different parameter combinations
of the BHS distribution.

2.5 Moment Ratio Diagrams
Moment ratio diagrams have been introduced for Pearson-type distributions by Elderton
and Johnson (1969) in order to provide a useful visual assessment of skewness and kur-
tosis. The classical moment ratio plot consists of all possible pairs (M3,M4) that can be
obtained through different combinations of the shape parameters of the underlying distri-
butions. In general, the relation M2

3 < M4 − 1 for M4 > 0 holds, i.e. for a given level of
kurtosis only a finite range of skewness may be spanned.

Due to the bi-modality of the Beta-normal distribution and the non-existence of some
moments for the Beta-Student-t distribution we only compare the BHS distribution with
the Beta-logistic (EGB2) distribution in Figure 3, below.

(a) EGB2 distribution
(b) BHS distribution

Figure 3: Moment ratio diagrams
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The possible combinations of skewness and kurtosis (for a given distribution) are in-
dicated by the black area which was generated using a large number of random numbers
from the domain of the shape parameters (β1, β2). The dashed line (encompassing the
black area) corresponds to the boundary mentioned above. Note that we plotted the ex-
ponentiated kurtosis against the skewness in order to highlight the differences between
EGB2 distribution and BHS distribution. It then becomes visible that the achievable area
of the BHS distribution includes that of the EGB2 distribution.

3 Parameter Estimation Using Maximum Likelihood
Suppose that X1, . . . , Xn are an iid random sample from a BHS distribution. Introducing
a scale parameter σ > 0 and a location parameter µ ∈ R, the log-likelihood function is
given by

`(θ) = n log

(
(2/π)β1+β2−2

B(β1, β2)πσ

)
+

n∑
i=1

{
(β1 − 1) log(arctan(exp(x∗i )))

+(β2 − 1) log
(π

2
− arctan(exp(x∗i ))

)
− log(cosh(x∗i ))

}
,

where x∗i = (xi − µ)/σ and θ = (µ, σ, β1, β2). Taking the partial derivative of the log-
likelihood with respect to the parameters µ, σ, β1, β2 we obtain

0 =
∂`

∂µ
=

1

σ

n∑
i=1

(
tanh(x∗i ) +

(1− β1) exp(x∗i )
(1 + exp(2x∗i )) arctan(exp(x∗i ))

+
(β2 − 1) exp(x∗i )

(1 + exp(2x∗i ))(π/2− arctan(exp(x∗i )))

)
,

0 =
∂`

∂σ
= −

(
(2/π)b1+b2−2

B(β1, β2)πσ

)n
n

σ

+
1

σ2

n∑
i=1

(xi − µ)
(

tanh(x∗i ) +
(1− β1) exp(x∗i )

(1 + exp(2x∗i )) arctan(exp(x∗i ))

+
(β2 − 1) exp(x∗i )

(1 + exp(2x∗i ))(π/2− arctan(exp(x∗i )))

)
,

0 =
∂`

∂β1

=
n

4n

(
(2/π)β1+β2π

B(β1, β2)σ

)n (
log

2

π
− B(1,0)(β1, β2)

B(β1, β2)

)

+
n∑

i=1

log(arctan(exp(x∗i ))) ,

0 =
∂`

∂β2

=
n

4n

(
(2/π)β1+β2π

B(β1, β2)σ

)n (
log

2

π
− B(0,1)(β1, β2)

B(β1, β2)

)

+
n∑

i=1

log(π/2− arctan(exp(x∗i ))) .

We solve the equations above iteratively to obtain β̂1, β̂2, µ̂, σ̂.
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4 Generalizations: EGB2 versus BHS Distribution
In order to discriminate between Beta-logistic (EGB2) and BHS distribution we can plug a
parent distribution into (3) which includes both logistic distribution and hyperbolic secant
distribution. A promising choice is the GSH distribution of Vaughan (2002) with kurtosis
parameter t and density

fGSH(x; t) = c1(t) · exp(x)

exp(2x) + 2a(t) exp(x) + 1
, x ∈ R (10)

with





a(t) = cos(t) , c1(t) =
1

t
sin(t) for − π < t ≤ 0 ,

a(t) = cosh(t) , c1(t) =
1

t
sinh(t) for t > 0 .

The GSH distribution includes the logistic distribution (t = 0) and the hyperbolic secant
distribution (t = −π/2) as special cases and has cumulative distribution function given
by

FGSH(x; t) =





1 +
1

t
arccot

(
−exp(x) + cos(t)

sin(t)

)
for t ∈ (−π, 0) ,

exp(πx/
√

3)

1 + exp(πx/
√

3)
for t = 0 ,

1− 1

t
arccoth

(
exp(x) + cosh(t)

sinh(t)

)
for t > 0 .

Thus, we can apply a simple likelihood ratio test to the hypothesis

H0 : t = 0 (EGB2) against H1 : t = −π/2 (BHS) .

5 Applications

5.1 Strength of Glass Fibre
Our first example corresponds to that of Jones and Faddy (2004) who analyzed the strengths
of glass fibre. This data set is “sample 1” of Smith and Naylor (1987) and deals with the
breaking strength of n = 63 glass fibres of length 1.5 cm, originally obtained by workers
at the UK National Physical Laboratory. Due the apparent skewness in the data set (see
Figure 4(a) for a histogram of the data), Jones and Faddy (2004) fitted a Beta-Student-t
distribution—using a reparameterized version—to the data, estimating the unknown pa-
rameters by means of maximum likelihood.

Additionally, we fitted a Beta-normal, a Beta-logistic (EGB2), a Beta-hyperbolic se-
cant (BHS) and a Beta-GSH distribution to the data. The estimation results are summa-
rized in Table 1. Graphs of the fitted densities are provided by Figure 4(b).

Regarding the log-likelihood value L, the Beta-normal distribution seems to fit worse.
Both Beta-logistic and Beta-hyperbolic secant distribution outperform the Beta-Student-
t distribution, in particular, if we account for the number of parameters k and focus on
the criterion of Akaike, i.e. AIC = −2L + 2k. Moreover, the log-likelihood value of
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(a) Histogram (b) Fitted densities

Figure 4: Strength of glass fibre

the BHS distribution is higher than that of the EGB2 distribution. Finally, the Beta-
GSH distribution provides evidence in favor of the BHS distribution against the EGB2
distribution.

Table 1: Estimation results for the glass fibre data set (s.e. in brackets).
Distribution µ̂ σ̂ β̂1 β̂2 ν̂/t̂ L AIC
Normal 1.51

[0.0409]
0.322
[0.0287]

− − − −17.91 39.82

Beta-Normal 2.60
[0.2005]

0.475
[0.1558]

0.5946
[0.37]

23.66
[4.7340]

− −14.06 36.11

Beta-Logistic 1.67
[0.0460]

0.041
[0.0393]

0.1450
[0.14]

0.31
[0.3085]

− −10.49 28.99

BHS 1.65
[0.0400]

0.043
[0.0662]

0.1451
[0.23]

0.28
[0.4638]

− −10 .02 28 .03

Beta-Student-t 1.70
[0.0695]

0.621
[0.2099]

49.345
[43.4]

56.83
[46.484]

0.12
[0.0688]

−11.41 32.82

Beta-Student-t2 1.70
[0.0763]

0.226
[0.0958]

1.1073
[0.60]

2.08
[1.1947]

− −11.93 33.86

Beta-GSH 1.65
[0.0383]

0.071
[0.0861]

0.2270
[0.26]

0.43
[0.4761]

−2.00
[0.5939]

−9.90 29.80

Concerning the estimation results of the Student-t, the parameters β1, β2, ν seem to
be poorly identified. We therefore fix the number of degrees at 2 as in Jones and Faddy
(2004). Note that the sixth column of Table 1 contains the estimated shape parameter
beyond β̂1 and β̂2, i.e. the estimated degrees of freedom ν̂ for a Beta-Student-t distribution
and the estimated t of the Beta-GSH distribution, respectively. However, the estimators of
the BHS and the Beta logistic are rather unstable (compare the standard errors in brackets)
in contrast to the Beta-normal and the Beta-Student-t2.
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5.2 Returns Aluminium

Secondly, we focus on the series of the daily aluminium prices (in US-Dollar/Tonne) from
January 1999 to September 2002 (N = 1195 observations) which can be obtained from
the LME (London Metal Exchange).1 The series of prices and corresponding log-returns
(i.e. difference of consecutive log-prices) are displayed in Figure 5.

The (sample) mean of the log-returns is −0.0139 with a (sample) standard deviation
of 1.0560. Moreover, there seems to be a certain amount of skewness in the data set
(the skewness coefficient—measured by the third standardized moments—is given by by
0.2398), whereas the kurtosis coefficient—in terms of the fourth standardized moments—
is 4.4250, reflecting the leptokurtosis of the data. The results of a maximum likelihood
estimation are summarized in Table 2.

(a) Prices (b) Log-returns

Figure 5: Prices and log-returns of aluminium 05/01/98 to 30/09/02

Table 2: Unconditional fit to the aluminium returns
Distribution µ̂ σ̂ β̂1 β̂2 ν̂/t̂ L AIC
Normal −0.014

[0.031]
1.056
[0.022]

− − − −1758.8 3521.5

Beta-Normal −1.218
[0.697]

1.728
[0.586]

3.980
[3.058]

1.520
[0.792]

− −1753.0 3514.0

Beta-Logistic −0.248
[0.087]

0.497
[0.091]

0.932
[0.243]

0.719
[0.182]

− −1733.6 3475.2

BHS −0.282
[0.099]

0.921
[0.156]

1.738
[0.445]

1.355
[0.336]

− −1733.5 3474.9

Beta-Student-t −0.331
[0.167]

3.874
[3.310]

49.65
[128.1]

47.013
[126.384]

0.26
[0.473]

−1734.0 3478.0

Beta-Student-t2 −0.294
[0.285]

1.643
[0.563]

3.804
[3.013]

3.146
[2.171]

− −1734.3 3478.7

Beta-GHS −0.286
[0.089]

0.966
[0.895]

1.819
[1.517]

1.419
[1.285]

−1.63
[1.026]

−1733.5 3476.9

1Download under http://www.lme.co.uk.
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Though this data set is totally different to the glass fibre data, the results are nearly
identical (concerning the order of the log-likelihood values). Again, the Beta-GSH dis-
tribution favors the BHS distribution (which shows a stable fit now) against the Beta-
Logistic distribution with t̂ = −1.63, both of which outperform Beta-normal and Beta-
Student-t. Again, the shape parameters of the Beta-Student-t seem to be unidentified.

6 Summary
A new class of probability densities (the so-called BHS-distribution family) is introduced
which arises as special case from the general family explored by Jones (2004) if the hy-
perbolic secant distribution is chosen as “parent distribution”. It exhibits similar behavior
and properties like the log-F or EGB2 distribution. In particular, the range of possible
skewness and kurtosis combinations of the BHS distribution includes that of the EGB2
distribution. Moreover, a generalized distribution model is introduced which includes
both EGB2 and BHS distribution. Finally, the BHS distribution and its natural competi-
tors are applied to glass fibre data and aluminium returns.

Appendix: Proof of Uni-Modality
In the Jones and Faddy (2004) formulation, the density function for a family of skew
generalized secant hyperbolic distributions is given by

g(x) =
1

B(β1, β2)
f(x)[F (x)]a[1− F (x)]b ,

where f(x) = 1/(π cosh(x)) so that F (x) = 2/π arctan(exp(x)), and we assume a, b >
−1. We want to show this density is unimodal for all choices of a and b. Since the
functions are all continuous and continuously differentiable, the only critical points for
the function g satisfy g′(x) = 0. Thus we want to prove that this has exactly one root,
and that this yields a relative maximum. Since limx→±∞ g(x) = 0, then if there is one
critical point, it must yield the absolute maximum, so we need to prove there is exactly
one root to the derivative equation. After simplification, this can be seen to be equivalent
to proving

− sin h(x) +
a

2 arctan(exp(x))
− b

π(1− 2
π

arctan(exp(x))
= 0

has exactly one root. Note that if we set u = arctan(exp(x)), the last statement is equiv-
alent to showing

−(tan(u)− cot(u))u(π/2− u) = −πa

2
+ (a + b)u

has exactly one root in (0, π/2). Define

h(u) = −(tan(u)− cot(u))u(π/2− u)
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on (0, π/2). Note that h(u + π/4) is odd on (−π/4, π/4). Also, h(π/4) = 0 and we set
h(0) = limu→0+ h(u) = π/2, and h(π/2) = limu→(π/2)− h(u) = −π/2. Note that

h′(u) = − u(π/2− u)

sin2(u) cos2(u)
− (tan(u)− cot(u))(π/2− 2u)

and

h′′(u) =
4

sin3(2u)
[4 cos(2u)u(π/2− u)− 2 sin(2u)(π/2− 2u)− cos(2u) sin2(2u)] .

We want to prove that h is concave down on (0, π/4) and concave up on (π/4, π/2).
The second fact will follow from the first, and the symmetry property of h noted earlier.
Thus, we want to prove that h′′(u) < 0 on (0, π/4). By using trigonometric identities,
we can show this is equivalent to proving the function k(v) = v(π − v) cos v − 2(π/2−
v) sin v − cos v sin2 v < 0 on (0, π/2). Now k(0) = 0, k(π/2) = 0. Note that k′(v) =
sin v[v2 − πv + 3 sin2(v)].

Set z(v) = 3 sin2 v + v2 − πv, and note that z(0) = 0 and z(π/2) = 3 − π2/4 > 0.
We have z′(v) = 3 sin(2v) + 2v − π and z′′(v) = 6 cos(2v) + 2. Clearly, z′′ > 0 if
cos(2v) > −1/3 and z′′ < 0 if cos(2v) < −1/3. In the interval (0, π/2) there is a unique
value, say α0 so that cos(2α0) = −1/3 and hence on (0, α0), z′′(v) > 0 and on (α0, π/2),
z′′(v) < 0. Because z′(0) = −π and z′(π/2) = 0, there is a unique value α1 ∈ (0, α0)
for which z′(α1) = 0. We then have z′(v) < 0 on (0, α1) and z′(v) > 0 on (α1, π/2).
From the values z(0) = 0 and z(π/2) > 0, and the properties of z′, there is a unique value
α2 ∈ (0, π/2) for which z(α2) = 0.

The above shows that k′ has exactly one root in (0, π/2), call it β0. It is clear that
k′(v) < 0 on (0, β0), and k′(v) > 0 on (β0, π/2). This in turn implies k(v) < 0 on
(0, π/2), since k(0) = 0 = k(π/2).

The above argument establishes that h′′(u) < 0 on (0, π/4), and therefore h is con-
cave down on (0, π/4) and concave up on (π/4, π/2). Set w(u) = −(πa)/2 + (a + b)u
on (0, π/2). Since w(0) = −(πa)/2 < h(0) = π/2 and w(π/2) = (πb)/2 > h(π/2) =
−π/2, then w and h intersect. If these curves intersect on (0, π/4), they cannot intersect
a second time on (0, π/4) (otherwise, since h is concave down, the line through the in-
tersection points cannot intersect h a third time on this interval. This means the vertical
axis intercept for the line is > π/2, and this is not possible, given the line must intersect
the vertical axis at (0,−(πa)/2)). Further, the line w cannot intersect h on (π/4, π/2) in
this case, since w’s slope is greater than −2, and −2 is the slope of the line y = π/2− 2u
joining the points (0, π/2), (π/4, 0) and (π/2,−π/2) on h. Hence w and y have a unique
intersection point, so that if w intersects h on (π/4, π/2), this will force w and y to in-
tersect again, a contradiction. A similar analysis shows that if w and h do intersect on
(π/4, π/2), they do so uniquely, and do not intersect on (0, π/4).

Altogether, this means that g′ has exactly one root in (−∞,∞). It then also follows
this yields a relative maximum (and hence absolute maximum) since g′ is positive to the
left of the root, and negative to the right. 2
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