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Abstract: Long-term series of monthly average temperatures taken at 28
sites in Valle del Cauca, Colombia, are studied. Mixed models are applied to
cater for the within- and between-site variation. Outliers are inevitable in such
studies, due to faulty equipment, slip-ups in the recording process, or unusual
weather patterns. We apply a simulation-based approach to the assessment of
the outlier status of suspected observations. It is a method based on graphical
comparisons of user-defined features, related to large residuals, in the real and
simulated data sets. Robustness in the identification of the outliers is achieved
by applying the procedure with several alternative models. The impact of the
identified outliers is assessed. Two meteorological stations, Zaragoza and
Monteloro, are identified as having many outliers, so that all the data from
them should be discarded.

Zusammenfassung: Ausreißer in Wetterdaten sind keine Seltenheit, und die
häufigsten Ursachen für deren Auftreten sind fehlerhafte Geräte, die fehler-
hafte Erfassung der Daten durch das Personal, oder echte, aber ungewöhnliche,
Wetterlagen. Wir schlagen die Verwendung von Mixed Models vor, um die
Variabilität der Daten zwischen und innerhalb von Wetterstationen zu unter-
suchen. Die Unterscheidung zwischen realen Extremwerten und fehlerhaft
erhobenen Werten erfolgt durch eine simulationsbasierte Methode. Diese
Methode basiert auf graphischen Vergleichen von Eigenschaften der Residuen,
nachdem die Daten mit mehreren Modellen analysiert wurden wodurch unser
Ansatz auch einen gewissen Grad an Robustheit erhält. Die Analyse des
Datensatzes Monatliche Durchschnittstemperaturen, die langzeitlich an 28
Stationen im Valle del Cauca (Kolumbien) erhoben wurden brachte zum Vor-
schein, dass die Daten zweier Wetterstationen (Zaragoza und Monteloro)
viele als Ausreißer zu klassifizierende Werte enthalten. Aufgrund dessen
empfehlen wir den Ausschluss dieser Stationen von jedweder Analyse.

Keywords: Influence; Long-term time series; Meteorological station; Outlier
detection; Residual; Residual variance.

1 Introduction
One of the goals of the Colombian Institute for the Agricultural and Farming Research
(CORPOICA) is the comprehensive estimation of climatic and soil variables through-
out the country, even at locations where they are not measured directly. Climatic and
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soil factors influence the growth of crops and determine the distribution of species (both
wildlife and related to agricultural activity) and their adaptation to the changing con-
ditions. (Atherton and Rudich, 1986; Jones, 2000; Villareal, 1980). Our research is
connected with this general agenda, together with studying the long-term changes of the
climate. Inferences about such changes are difficult to make because of the natural (inex-
plicable) variability of the weather, not only in the short term (days and weeks), but also
across seasons and from year to year. Imperfect measurement and recording are another
cause of complications. This article is concerned with a preparatory stage for an analysis
of long-term weather patterns, in which we study outliers.

We analyse the monthly average temperatures recorded at a network of meteorological
stations (henceforth sites) at Valle del Cauca, Colombia (see Figure 1), in the period
1971 – 2002. The 28 sites in the study zone are identified by their names and locations.
Their altitudes are also given. The sites are located at latitudes from 3◦19’N to 4◦44’N,
longitudes from 75◦49’W to 76◦45’W and altitudes of 920 to 1950 meters above sea level
(m). Fifteen sites are located in the valley, at altitudes up to 1100 m, and thirteen in the
mountains, at altitudes above 1233 m.

"

"

"

"

"

"
""

"

"

"

"

"
"

"

!

!

!

!!

!
!

!

!

!

!

!

!

4000

100

17
50

12
50

500

25
00

750

2000 20
0

375010
00

2250

35
00

15
00

2750

32
50

30
00

12
50

1000

100

2000

2750

100 40
00 1000

20
00

100

3500

750

100

100

3000

17
50

500

2500

40
00

1750

100

1000

2500

25
00

1250

100

12
50

10
00

100

1500

10
00

1750

2500

22
50

3750

1500

3750

10
0

22
50

75
0

1750

75
0

2750

3250

2250

1500

10
00

15
00

1750

15
00

3750

2000

2000

15
00

20
00

40
00

100

100

3500

2750

100

2250

100

100

100

100

100

750

Figure 1: Location of meteorological stations (sites) in Valle del Cauca, Colombia; • —
sites located in the mountains; filled box ¤ — sites located in the valley

In the data, two sources of variation can be identified, one related to the temporal
aspects of the records, and one to the spatial aspects (locations of the sites). In the former
with distinguish three aspects:

1. the time series for some sites show a trend of increasing average temperatures, see
Figure 2;

2. seasonal variation in monthly average temperatures, with two dry periods (Jan-
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uary – February and July – August) and two wet periods (April – May and October –
November) (Figure 3); and

3. temporal phenomena, the “El Niño” and “La Niña”. The “El Niño” is associated
with elevated monthly average temperatures, and the “La Niña” with reduced aver-
ages, (Andrade, 2009).

In the spatial variation, two aspects can be identified:

1. the weather patterns in the valley and in the mountains, or with the altitude, differ;
the monthly average temperatures tend to be lower at higher altitude (Figure 4); and

2. the sites at close proximity to one another are more likely to have similar values
(and patterns of values) than sites further apart.
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Figure 2: Time series plots of average monthly temperatures (◦ C) for site Ingenio Central
Castilla, located in the valley at the altitude of 1040 m, for January and February (left),
and for October and November (right)
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Figure 3: Box plots of monthly average temperatures (◦ C) for sites in the valley (left) and
in the mountains (right)
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Figure 4: Monthly average temperature (◦ C) and altitude (m), by month, for sites located
in the valley (left) and in the mountains(right)

These sources of variability motivate our choice of mixed models (Henderson, 1982),
in which the years and sites are associated with random effects and altitude and indicators
of the “El Niño” and “La Niña” phenomena with fixed effects.

The linear mixed model (Laird and Ware, 1982) has the form

yi = Xiβ + Ziγi + εi , (1)

where yi is the ni × 1 response vector for subject (individual or cluster) i; Xi is an ni × p
matrix of the explanatory variables, (covariates); β is the corresponding p × 1 vector
of regression parameters; Zi is an ni × q matrix associated with random effects; γi is a
q× 1 vector of cluster-level random effects; and εi is an ni× 1 vector of elementary-level
random errors. The matrices Xi and Zi are observed completely, and at the outset we
assume that so are the vectors yi. The total number of observations is N = n1 + · · ·+nm,
where m is the number of clusters (sites). The N×p regression design matrix X is formed
by vertical stacking of the matrices Xi, i = 1, . . . , m. The variation design matrix Z is
composed of the diagonal blocks Zi, i = 1, . . . , m.

After fitting some of the models we find large residuals, which can reasonably be
regarded as outliers, although we prefer to deal with the issue of assigning the outlier
status more formally, both to deal with cases that are not obvious, and to avoid being too
liberal or too conservative with the assignment of the status. We apply a simulation-based
analysis of outliers; for a similar application, see Longford (2001), and for a brief sketch,
Longford (1998). The theoretical basis of the method is developed by Rubin (1984).

Hadi and Simonoff (1993) define an outlier as an observed unit which, if excluded
from the data set, would yield a much better fit of the adopted model. Hawkins (1980)
points out that an intuitive definition of an outlier would be “an observation which deviates
so much from other observations as to arouse suspicion that it may have been generated by
a different mechanism”. Longford (2001) indicates that in ordinary regression Y = Xβ+
ε, the quality of the fit is closely linked to the absolute sizes of the residuals ε̂ = Y −Xβ̂,
so outliers are identified among the largest absolute residuals |ε̂|. He interprets an outlier
as an observation that “spoils” the model assumptions; if this observation were removed
from the data set, the estimated residual variance of the ordinary regression model, v̂ar(ε),
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would be reduced much more than if an observation that is in accord with the model were
deleted.

An observation may be an outlier for the model without a variable included in X , but
not be an outlier when the variable is included.

Many diagnostic procedures have been developed for linear regression models, for
example (Verbeke and Molenberghs, 2000) and (Atkinson, 1985).

However, the key definitions, of the residual (Cook and Weisberg, 1982), leverage
(Belsley, Kuh, and Welsch, 1980; Demidenko, 2004; Schanberger, 2004), and Cook dis-
tance (Cook and Weisberg, 1982), do not have any obvious generalisations to linear mixed
models. Tan (Personal communication, 19 March, 2007), Verbeke (Personal communica-
tion, 19 March, 2007) and Haslett, (Personal communication, 19 March, 2007) indicate
that there are no valid tests for outliers and influential observations (Belsley et al., 1980)
at present. One reason that hinders this generalisation is that there is no unique definition
of residuals for the clusters in linear mixed models given by (1).

Some of the alternative definitions are formulated by Haslett and Haslett (2007) and
Verbeke and Molenberghs (2000):

1. the marginal residual, that is, the difference between the (observed) data and the
estimated (marginal) mean,

rmi = yi −Xiβ̂ ; (2)

2. the conditional residual, defined as the difference between the (observed) data and
the predicted value of the observation,

rci = yi −Xiβ̂ − Ziγ̂i , (3)

where Xiβ̂ + Ziγ̂i is the conditional mean of yi;
3. the estimated random effect γi can also be regarded as a residual since it reflects the

deviation of the specific profiles from the population average profile.

The leverage, which in ordinary regression depends solely on the regression design
matrix X , does not have a straightforward extension to linear mixed models in which
there are two matrices relevant to the concept of leverage: X and the variation design
matrix Z. The diagnostic analysis for a linear mixed model cannot be based on the same
diagnostic procedures as ordinary least squares regression (Verbeke and Molenberghs,
2000).

Brown and Prescott (1999) use normal plots of residuals and plots of residuals against
predicted values to check for outliers. They compare treatment differences and variance
and correlation matrices with and without outliers. Verbeke and Molenberghs (2000)
use histograms and scatter plots of the empirical Bayes estimates of γi for diagnostic
purposes. Langford and Lewis (1998) analyse a range of practical procedures for dealing
with outliers in multilevel data in the context of educational research. These techniques
include the use of deviance reduction, leverage values, hierarchical cluster analysis and
the measure called DFITS, defined as

DFITSmi = Dmi = |p∗mi|
√

h∗mi

1− h∗mi

,
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where h∗mi = hmi/
∑

k hmik is the standardized leverage value,

p∗mi = p′mi

1√
nm−1−p′mi

2

nm−2

is the studentized residual, and nm is the number of units in the random part of the model
at the level m.

Langford and Lewis (1998) regard as outlying all units for which the absolute studen-
tised residual |rs| is greater than or equal to 2.0. They exclude the unit under examination
from contributing to the random part of the model and introduce separate fixed-effects pa-
rameters for the particular unit in the model. At each step, the parameters in the expanded
model have to be reestimated (using an iterative procedure), making the data modelling
complex and time consuming. Longford (1998) points out that the more procedures are
applied, the more outliers are found (including some false negatives).

When observations are clustered, not only elements, but also entire clusters may be
outliers. Longford (2001) studies outlying clusters in a two-level random coefficient
model. He applies a simulation-based method for outliers, similar to the parametric boot-
strap. The method is related to the general proposal of Rubin (1984), which can be para-
phrased as follows: “If a particular model fits well, then the realized data set does not
stand out among data sets simulated from the fitted model.” A linear mixed model given
by (1) is considered, assuming that it fits for all clusters except one (h), for which

yh = Xhδh + εh , (4)

where δh is a vector of regression parameters unrelated to β or γh in (1) and εh is a random
sample from N (0, σ2

1). The mixed model is first fitted to y−h, that is, the data set with the
cluster h excluded. Let the resulting parameter estimates be θ̂[−h]. The deviance evaluated
for the entire data set y at θ̂[−h] is compared with the deviances evaluated for the data sets
with simulated replacements for cluster h. Although this procedure is computationally
intensive, it requires little programming effort, because the same model fitting algorithm
is used throughout.

The data set we analyze comprises a matrix with 28 sites as its rows and the 384
months in the period 1971 – 2002 as its columns. Further, the altitude of each site is
given, the presence of the “El Niño” and “La Niña” in each month are indicated and the
value of the Southern Oscillation Index (SOI) is given.

2 Modelling the Monthly Average Temperatures
We fit six linear mixed models, M = 1, . . . , 6, to the temperature data. To eliminate the
seasonal effects, separate analyses are conducted for each month j = 1, . . . , 12 of the
year. Therefore, we study 6 × 12 = 72 model fits. Each model is fitted to 28 × 32 =
896 observations (sites by years), except for a few missing values and, when applicable,
excluded outliers.

As an alternative, a single model could be fitted, with the months represented by a
categorical variable. The drawback of this approach is that several interactions of this
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variable with others would have to be introduced, to take account of the different patterns
of the temperatures with regard to the other covariates. Such a proliferation of parameters
would hinder the interpretation of the results.

In each model, the altitude of the site is a continuous covariate and the “El Niño”
and “La Niña” phenomena are introduced through SOI for the current month as indicator
(dummy) variables. These are prima facie important predictors. To capture the effect of
the “El Niño” and “La Niña” more completely, we also include SOI with lag one (SL1)
and lag two (SL2) from the two previous months. Madl (2000) and others identify an
influence of the months previous to the “El Niño” phenomenon on the weather. He states
that in the months preceding an “El Niño” event, the normal weather pattern breaks down.
For some reasons, not yet well understood, the westward atmospheric pressure gradient
decreases.

This motivates a sequence of models with increasingly detailed modelling of the “El
Niño” and “La Niña” phenomena. The models contain the following covariates:

• x1 — altitude of the site, in meters;
• x2 — the Southern Oscillation Index (SOI) for month j and year k;
• x3 — the year, centred around 2002 (YR – 2002);
• x4 — the Southern Oscillation Index for the previous month (j − 1) of the same

year (SL1);
• x5 — the Southern Oscillation Index for two months earlier (j−2) in the same year

(SL2);
• x6, . . . , x11 — the variables that indicate the following:

• “El Niño”: x6k = 1, x7k = 0;
• “La Niña”: x6k = 0, x7k = 0;
• Normal: x6k = 0, x7k = 1;
• “El Niño” in the previous month: x8k = 1, x9k = 0;
• “La Niña” in the previous month: x8k = 0, x9k = 0;
• Normal conditions in the previous month: x8k = 0, x9k = 1;
• “El Niño” two months ago: x10k = 1, x11k = 0;
• “La Niña” two months ago: x10k = 0, x11k = 0;
• Normal conditions two months ago: x10k = 0, x11k = 1.

The six models, all of the form (1), include the following covariates:
Model 1: x1 – x3

Model 2: x1 – x4

Model 3: x1 – x5

Model 4: x1 – x7

Model 5: x1 – x9

Model 6: x1 – x11

We regard the variables x1 – x3 as essential for any credible model; with x4 and x5, we
add more information about “El Niño” and “La Niña”, respectively, regarding the former
as more important, and the following variables can be regarded as interactions, so they
have lower priority for inclusion in the model.

A random effect for the year is included; the random part of the model, Z in (1),
comprises the intercept and year (x3). The two components of γi are correlated.
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The six models are fitted first under the assumption of independent errors. Since some
observations with large residuals are identified, we assess whether these observations are
outliers. The temporal and spatial correlation of the errors are analysed and modelled by
a posterior analysis(Andrade, 2009).

3 Outliers
As was indicated earlier, if a particular model fits well, then the realised data set does not
stand out among data sets simulated from the fitted model. For a given data set, a small
number of features associated with the outlier status or any form of model violation is
specified. A statistic (such as the largest residual) and a plot (normal plot of the residuals
at a given level), or even a combination of plot and statistic, can be defined as features.
Such a feature is then evaluated on the analysed data and compared with its versions with
data simulated from the fitted model. The steps of the procedure are listed below, with the
settings for our analysis given.

1. Features associated with the outlier status are defined. We study the following
features:

(a) the largest (absolute) residual;
(b) the two largest (absolute) residuals;
(c) the three largest (absolute) residuals.

2. The models 1 – 6 are fitted assuming no outliers (using all the observed data).

3. In the analysis with feature a, the observation with the largest (absolute) residual is
eliminated and the models are fitted again.

4. Two methods are used in the analysis with features b, and c.
(a) First, the observation with the largest (absolute) residual is removed, as in 3,

and then the model is fitted again. The observation with the largest (absolute)
residual in this fit is removed, and the models are fitted again. For feature c,
this step is repeated, to find the third observation to be removed.

(b) The observations with the two (or three) largest (absolute) residuals are elim-
inated simultaneously and the models fitted again without them.

5. 1000 data sets of the outcome variable of the fitted models are simulated, using
the original values of X and Z and estimated values of variance components and
regression parameters, obtained by fitting the models with the observed data in step
2.

All the random terms are assumed to be normally distributed.

The models are fitted to each simulated data set and the steps 3, and 4, applied to
the results.

6. The estimated residual variances (σ̂2
0) obtained in each simulation in 5. with the

complete simulated data set are plotted against their counterparts σ̂2
h, h = 1, 2, 3,

obtained with h observations with the largest (absolute) residuals removed, after
applying the appropriate variant of step 4.
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7. The estimated residual variances obtained with observed data and with h observa-
tions with the largest residuals removed are plotted in the same graphs as in step
6.

8. If the points that correspond to the real data (the observed feature) stand out among
the points that correspond to the simulations (the simulated features), the observed
data is discordant with the model.

The conditional residuals (3), are used throughout. We prefer to use these residu-
als because they are contaminated less by the random effects than the alternatives listed
earlier. All computing was carried out in SAS version 9.1.

The distances between the observed feature and the simulated features and plots of
the distance distribution are also obtained to assess how large are the differences in the
residual variances when the h = 1, 2 or 3 largest (absolute) residuals are eliminated, to
assess the influence that these residuals exercise on the fit, and to determine whether these
removed observations are outliers.

A similar analysis of the impact on the other parameter estimates when observations
with the largest residuals are eliminated is carried out.

Time series plots for the sites whose data are discordant with the model are also drawn
and compared with the corresponding time series plots for nearby sites, following the geo-
statistics principle that states that two outcomes at locations close to one another are more
likely to be similar than outcomes at locations that are further apart (Isaaks and Srivastava,
1989). This is a complement to the decision on the outlier status of the observed data.

4 Results
The sites and years and the corresponding values of each variable for every month are
listed in Table 1 for observations that have absolute residuals greater than 2.0. The altitude
(Alt.) is given in meters above sea level and the average monthly temperature (Temp.) in
◦ C. The same observations are identified as outliers for all the six models. The extreme
right-hand column (Res. range) gives the ranges of the largest absolute residuals for the
six models. The narrow ranges attest to the stability of the values of the largest residuals
across the models.

The estimated residual variances obtained by fitting the six models with the observed
data and with the observation with the largest (absolute) residual removed are very similar
for all the months; the one observation, however purposefully selected, has only minor
influence on the fit to the remaining 890 or so observations. After removing more than
one observation, the results obtained with the two elimination methods do not differ. In
the simulations, the two methods of elimination also give very similar results; see Figure
5 for the months of February and November. The simulation analysis identifies the same
observations as outliers for all six models; see Figure 6 for the month of November. As
discussed later, variables with lagged values, x4 – x11 , make a very modest contribution
to the model fit.

For the months from January to April, graphs do not provide any evidence that the
observations with the largest (absolute) residuals are outliers. For the other months, the
observations with the largest (absolute) residuals stand out among the simulated features,
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Table 1: The largest (absolute) residuals by month.

Month/Site Year Alt. Temp. SOI SL1 SL2 X6 X7 X8 X9 X10 X11 Res. range

January
172 El Topacio 1982 1676 21.3 1.3 0.5 0.1 0 0 0 1 0 1 2.76 – 2.78
187 Zaragoza 1983 925 28.3 –4.2 –2.8 –3.2 1 0 1 0 1 0 2.53 – 2.55
169 Acuetulua 1982 1014 21.2 1.3 0.5 0.1 0 0 0 1 0 1 2.49 – 2.51

29 La Teresita 1995 1950 19.6 –0.6 –1.6 –0.7 0 1 1 0 0 1 2.22 – 2.27
418 Zaragoza 1973 925 22.8 –0.5 –1.6 –0.5 0 1 1 0 0 1 2.25 – 2.31
323 Monteloro 1990 1861 20.9 –0.2 –0.7 –0.4 0 1 0 1 0 1 2.14 – 2.16

17 Zaragoza 1972 925 21.1 0.4 0.0 0.5 0 1 0 1 0 1 2.05 – 2.10

February
117 Zaragoza 1979 925 26.6 0.8 –0.7 –0.3 0 1 0 1 0 1 2.21 – 2.24
174 San Emigdio 1982 1272 22.9 –0.1 1.3 0.5 0 1 0 0 0 1 2.16 – 2.17

March
324 Monteloro 1990 1861 22.1 –1.2 –2.4 –0.2 0 1 1 0 0 1 2.84 – 2.87
119 Zaragoza 1979 925 26.5 –0.5 0.8 –0.7 0 1 0 1 0 1 2.37 – 2.40
342 Monteloro 1991 1861 21.5 –1.4 –0.1 0.6 1 0 0 1 0 1 2.33 – 2.36

April
112 Zaragoza 1979 925 27.3 –0.4 –0.5 0.8 0 1 0 1 0 1 3.24 – 3.25
318 Monteloro 1990 1861 22.1 0.0 –1.2 –2.4 0 1 0 1 1 0 3.05 – 3.08

30 Zaragoza 1973 925 21.1 –0.2 0.2 –2.0 0 1 0 1 1 0 2.49 – 2.54

May
101 Zaragoza 1978 925 28.9 1.3 –0.6 –0.8 0 0 0 1 0 1 4.49 – 4.55
324 Monteloro 1990 1861 23.1 1.1 0.0 –1.2 0 0 0 1 0 1 3.62 – 3.69
105 Monteloro 1978 1861 21.9 1.3 –0.6 –0.8 0 0 0 1 0 1 3.14 – 3.20
116 Zaragoza 1979 925 26.7 0.3 –0.4 –0.5 0 1 0 1 0 1 2.52 – 2.55

June
104 Zaragoza 1978 925 28.3 0.3 1.3 –0.6 0 1 0 0 0 1 4.21 – 4.30
331 Monteloro 1990 1861 23.6 0.0 1.1 0.0 0 1 0 0 0 1 3.81 – 3.86
349 Monteloro 1991 1861 22.7 –0.5 –1.5 –1.0 0 1 1 0 0 1 2.85 – 2.92
498 El Topacio 1999 1676 16.2 –0.1 0.1 1.4 0 1 0 1 0 0 2.58 – 2.61

July
327 Monteloro 1990 1861 23.1 0.5 0.0 1.1 0 1 0 1 0 0 3.70 – 3.74
238 I. Manuelita 1985 1020 19.3 –0.3 –0.9 0.2 0 1 0 1 0 1 3.61 – 3.63
103 Zaragoza 1978 925 27.1 0.4 0.3 1.3 0 1 0 1 0 0 3.35 – 3.40
345 Monteloro 1991 1861 22.7 –0.2 –0.5 –1.5 0 1 0 1 0 1 3.07 – 3.15
368 Queremal 1992 1496 15.7 –0.8 –1.2 0.0 0 1 0 1 1 0 3.10 – 3.13
175 Zaragoza 1982 925 21.4 –1.9 –1.6 –0.7 1 0 1 0 0 1 2.51 – 2.54

August
462 Queremal 1997 1496 14.2 –2.1 –1.0 –2.0 1 0 0 1 1 0 4.89 – 4.94
101 Zaragoza 1978 925 28.0 0.0 0.4 0.3 0 1 0 1 0 1 3.79 – 3.86
175 Zaragoza 1982 925 21.5 –2.5 –1.9 –1.6 1 0 1 0 1 0 3.18 – 3.24
346 Monteloro 1991 1861 22.8 –0.9 –0.2 –0.5 0 1 0 1 0 1 2.86 – 2.89

September
104 Zaragoza 1978 925 28.8 0.0 0.0 0.4 0 1 0 1 0 1 4.79 – 4.80
440 Acuetulua 1996 1014 28.1 0.6 0.4 0.6 0 1 0 1 0 1 2.77 – 2.80
178 Zaragoza 1982 925 21.8 –2.0 –2.5 –1.9 1 0 1 0 1 0 2.45 – 2.46
351 Miravalle 1991 1233 24.6 –1.8 –0.9 –0.2 1 0 0 1 0 1 2.30 – 2.31

32 Zaragoza 1973 925 20.4 1.4 1.1 0.5 0 0 0 0 0 1 2.28 – 2.30
157 5403502 1981 1600 22.3 0.4 0.4 0.8 0 1 0 1 0 1 2.19 – 2.21

October
288 La Buitrera 1987 1500 26.3 –0.7 –1.2 –1.5 0 1 0 1 1 0 5.55 – 5.57
105 Zaragoza 1978 925 27.8 –0.7 0.0 0.0 0 1 0 1 0 1 3.80 – 3.81

18 Zaragoza 1972 925 21.3 –1.2 –1.6 –1.0 0 1 1 0 0 1 2.29 – 2.32
352 Monteloro 1991 1861 21.1 –1.5 –1.8 –0.9 1 0 1 0 0 1 2.18 – 2.19

November
104 Zaragoza 1978 925 28.7 –0.1 –0.7 0.0 0 1 0 1 0 1 4.22 – 4.25

18 Zaragoza 1972 925 21.8 –0.5 –1.2 –1.6 0 1 0 1 1 0 2.14 – 2.17
120 Zaragoza 1979 925 26.4 –0.6 –0.4 0.1 0 1 0 1 0 1 2.09 – 2.11

December
105 Zaragoza 1978 925 28.5 –0.3 –0.1 –0.7 0 1 0 1 0 1 4.14 – 4.15
317 2608512 1990 954 21.5 –0.5 –0.7 0.1 0 1 0 1 0 1 3.08 – 3.10
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providing evidence that these observations are outliers. Subsequently, observations with
the two and three largest (absolute) residuals are analysed. Figure 7 shows the graph for
July; observation No. 327 is an obvious outlier.

4.1 Observed and Simulated Features
July stands out as the month with the largest distance of the simulated feature (σ̂2

h, h =
1, 2, 3) from the observed feature; see Figure 8. The diagram also shows the largest vari-
ability (standard deviation and interquartile range). The distances from the observed to
the simulated feature, when the two largest and the three largest (absolute) residuals are
removed from the analysis, are similar to the distance when only the largest (absolute)
residual is removed. This indicates that observation 327 is an outlier, but observations
with the second and the third largest (absolute) residuals, No.s 238 and 103 in Table 1,
are not.

Observations from January and February do not stand out among the simulated fea-
tures. The distances between estimated residual variances from the observed and the
simulated data are very small (Figure 8). March and April also show small distances be-
tween observed and simulated features, when the observation with the largest (absolute)
residual is removed from the analysis. Only one box plot is drawn for these months be-
cause not even the observation with the the largest absolute residual stands out among the
simulated features for them.

May, June and August show different distance distributions when the observations
with the largest (absolute) residuals are removed from the analysis. The distances be-
tween the observed and the simulated features increase when the observations with the
two largest (absolute) residuals are removed from the analysis, as compared to when the
observations with only the largest (absolute) residuals are removed. The distances also
increase when the three largest absolute residuals are removed (Figure 8).

September, October and November show changes in the distances when the observa-
tions with the two largest (absolute) residuals are removed compared to when the obser-
vation with the largest (absolute) residuals are removed. When the observations with the
three largest (absolute) residuals are removed, the distances do not change substantially.
There is a substantial change in the distances for December when the observations with
the two largest (absolute) residuals are removed (two box plots drawn in 8).

4.2 Profiles of Problematic Sites
The site Zaragoza features in Table 1 for every month, and Monteloro for eight of the
months. Since they have many outliers, these two problematic sites deserve a closer
examination. By the profile of a site we mean the time series plot of the observations for
the site over the period of the study. Figures 9 and 10 display the profiles of Zaragoza
and Monteloro, accompanied by profiles of sites that are located nearest to them, and
are at similar altitudes. The profiles are broken (discontinued) when observations are not
available.

Figure 9 indicates that the monthly average temperatures recorded at Zaragoza dif-
fer from their counterparts at the two sites closest to it (24.08 and 38.05 km away, re-
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Figure 8: Distances of estimated residual variances by month and group, h = 1, 2, 3,
marked at the bottom of the diagram. The group indicates the number of the largest
(absolute) residuals
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Figure 9: Time series of the sites close to Zaragoza. Month on the x-axis is counted from
January 1971, and month 384 corresponds to December 2002
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Figure 10: Time series for the sites close to Monteloro. Month on the x-axis is counted
from January 1971, and month 384 corresponds to December 2002
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spectively). The differences are so large that failure of the measurement instruments at
Zaragoza is the only plausible explanation.

Monteloro is compared with the site closest to it, 2612513 (the distance between them
is 36.46 km), in Figure 10. The time series of the original data of monthly average temper-
ature show that Monteloro had much larger fluctuations than site 2612513 in the period
1971 – 1991 (months 0 to 250).

We note that these diagrams have an ad hoc nature, and are effective only after sus-
pect observations or sites are identified. Otherwise, a lot of diagrams would have to be
inspected and subjective judgement exercised in some instances.

Other sites evaluated by similar graphs with their closest sites were Queremal, August;
Acuetulua, September; Buitrera, October; and 2608512, December, which show large
values, confirming that the observations in these months are outliers.

4.3 Impact of Data Reduction on Parameter Estimates

In this section, we compare the model fits for the original data and for the data reduced by
discarding observations adjudged to be outliers. We delete both some individual observa-
tions and all the observations from the sites Zaragoza and Monteloro in the period 1971
to 1991 (Andrade, 2009).

For most months, estimates of covariance parameters decrease, and σ̂2
γ3

increases
slightly for May, June, October and November. The residual variance estimate is re-
duced substantially when the outliers and observations from Zaragoza and Monteloro are
removed (Table 2). For models 2 – 6 we observed similar behaviour.

Table 2: Variance component estimates by month, for Model 1, fitted to all the observa-
tions (rows marked A), and with the outliers removed (W)

Month n σ2
γ2

σ2
γ1

cov(γ1, γ3) σ2
γ3

σ2
ε

Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.)

January
A 544 0.376 (0.105) 0.983 (0.308) 0.020 (0.008) 0.0005 (0.0002) 0.399 (0.026)
W 519 0.370 (0.102) 0.923 (0.288) 0.017 (0.007) 0.0004 (0.0002) 0.298 (0.020)

February
A 548 0.350 (0.097) 1.140 (0.349) 0.026 (0.010) 0.0008 (0.0003) 0.321 (0.021)
W 524 0.337 (0.093) 1.024 (0.315) 0.021 (0.008) 0.0007 (0.0003) 0.251 (0.017)

October
A 545 0.105 (0.033) 1.124 (0.345) 0.027 (0.010) 0.0008 (0.0003) 0.347 (0.023)
W 522 0.097 (0.029) 1.093 (0.329) 0.027 (0.010) 0.0009 (0.0003) 0.187 (0.012)

November
A 540 0.111 (0.034) 0.981 (0.310) 0.024 (0.010) 0.0009 (0.0004) 0.319 (0.021)
W 518 0.103 (0.031) 0.827 (0.261) 0.021 (0.009) 0.0012 (0.0004) 0.217 (0.015)

For model 1, in the majority of months the estimates of β0 are reduced slightly (Table
3). The estimates of β1 are also reduced, although there are increments between August
and October, and also in December. The estimates of β2 are reduced for some, and for β3
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Table 3: Estimates of the regression parameters for January, February, October and
November, Model 1, fitted to all the observations (rows marked A), and with the out-
liers removed (W). The p value quoted in the right-hand column is for the t-test of the
hypothesis that β3 = 0. The corresponding tests for β0, β1 and β2 are all significant at 5%
level for every month.

β0 β1 β2 β3

Month n Est. (s.e.) Est. (s.e.) Est. (s.e.) Est. (s.e.) p value
January

A 544 31.952 (0.529) –0.00775 (0.00035) –0.364 (0.077) 0.019 (0.013) 0.1372
W 519 31.807 (0.599) –0.00766 (0.00041) –0.341 (0.076) 0.015 (0.013) 0.2338

February
A 548 32.588 (0.558) –0.00806 (0.00038) –0.335 (0.066) 0.030 (0.013) 0.0241
W 524 32.361 (0.616) –0.00789 (0.00043) –0.335 (0.065) 0.026 (0.013) 0.0446

October
A 545 30.950 (0.471) –0.00710 (0.00032) –0.213 (0.060) 0.035 (0.009) 0.0001
W 522 31.084 (0.563) –0.00724 (0.00040) –0.192 (0.055) 0.030 (0.009) 0.0008

November
A 540 31.264 (0.530) –0.00740 (0.00038) –0.147 (0.056) 0.033 (0.009) 0.0007
W 518 30.945 (0.591) –0.00722 (0.00043) –0.130 (0.053) 0.025 (0.010) 0.0102

for all the months. As with model 1, estimates of regression parameters decrease in the
majority of the months in models 2 – 6.

Table 4 displays the predicted values and their standard errors based on model 1, for
the sites Base Aérea and La Esperanza, located at 954 and 1070 m, respectively. When
the outliers are removed, the predicted values are reduced (by between 0.01 and 0.17);
however, the standard errors are changed only slightly. Similar behaviour is observed for
models 2 – 6.

5 Discussion
Outliers are often regarded as undesirable observations among the data we analyse be-
cause they distort the results we obtain. Uncertainty about the outlier status of an ob-
servation is a common problem. In our analysis, the same observations are identified as
outliers with all six models, so we have high confidence that the appropriate observations
are singled out and excluded from the analysis. Admittedly, the most important variables,
altitude, year and the Southern Oscillation Index (SOI), are included in all the models,
but the other variables also have non-negligible effects. We conjecture that failure of
the equipment or mislabelling a collected data record are the most frequent causes of an
outlier.

The observations with the single largest (absolute) residuals for the months January
to April do not stand out among the simulated features; these months do not have large
(absolute) residuals in comparison with the rest of the months (see Table 1). For the other
months, the observations with the largest (absolute) residuals stand out among the simu-
lated features. Consistent with the characteristics of these observations, the residuals have
the largest (absolute) values, greater than 3.25. The profiles (time series plots) of the sites
closest to Zaragoza and Monteloro confirm that the observations from these two sites are
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Table 4: Predictions of monthly average temperatures by month, for Model 1, for sites
Base Aérea and La Esperanza, located at 954 and 1070 m, respectively. Fitted to all the
observations (rows marked A), and with the outliers removed (W)

Base Aérea La Esperanza

Month Prediction (s.e.) Prediction (s.e.)

January
A 24.719 (0.321) 23.820 (0.310)
W 24.647 (0.326) 23.758 (0.310)

February
A 25.331 (0.333) 24.127 (0.315)
W 25.264 (0.332) 24.082 (0.309)

October
A 24.279 (0.267) 23.478 (0.255)
W 24.268 (0.274) 23.448 (0.255)

November
A 24.300 (0.267) 23.442 (0.251)
W 24.134 (0.263) 23.297 (0.241)

implausible (Table 1 and Figures 9 and 10). These observations also show considerable
distances from the observed to the simulated features (estimates of the residual variance
σ2

ε ) for these observations are widely separated, and the observations have a strong impact
on the parameter estimates, especially on estimated values of σ2

ε .
The next question is whether the observation with the second and third largest (ab-

solute) residuals are also outliers. In the simulations, we use two elimination methods,
eliminating two (or three) observations with the largest (absolute) residuals simultane-
ously, and one at a time. The two methods yield the same estimated residual variance
values, for observed and simulated data. Graphs show that the observations with the three
largest (absolute) residuals stand out among the simulated features for May, June and
August. These months show changes in some of the (co)variance parameters, σ2

ε in par-
ticular (Andrade, 2009), and also in the distances between the observed and the simulated
features, which show increases. Therefore, the observations with the second and third
largest (absolute) residuals for May, June and August are declared as outliers. September,
October and November also show changes in distances when the two largest (absolute)
residuals are removed, and estimates of σ2

γ1
also decrease, but September and Novem-

ber (Table 2) do not show a substantial decrease in the estimates of σ2
ε . However, in the

case of the second largest residual for September, time series of the site close to Acue-
tulua (Andrade, 2009) show that observation 440 is out of the range of monthly average
temperature values. The observations with the third largest (absolute) residual for these
months are not declared as outliers, because they do not show changes in their distances
and in parameter estimates when they are removed from the model fitting.

The majority of observations declared as outliers belong to the sites Zaragoza and
Monteloro (see Table 1). Time series plots (profiles) for Zaragoza and sites closest to
it show a consistent pattern of implausibly large differences. The erratic behaviour we
observe is most likely due to a failure of the measurement equipment or the recording
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process. Large fluctuations are also identified for Monteloro and its neighbours in the
period 1971 – 1991. The parameter estimates are changed substantially when the obser-
vations from Monteloro and Zaragoza are excluded from the analysis.

Diagnostic plots confirm that observations Queremal, August (month 462); La Buitr-
era, October (288); and 2608512, December (317), are outliers (Andrade, 2009). In
the majority of months, when these observations, together with the observations from
Zaragoza and Monteloro, are eliminated, all covariance parameter estimates decrease, as
do the estimates of β’s in the majority of the months, for all six models; The predicted
values are also reduced.

The measurements from Zaragoza could not be repeated; in any case, this site was
closed in 1983. Therefore Zaragoza will be eliminated from the model fitting altogether.
The data from Monteloro for the period 1971 – 1991 will also be excluded from the model
fitting. In addition to these, four observations were eliminated from the model fitting:
Queremal, August (462), Acuetulua, September (440), La Buitrera, October (288), and
2608512, December (317).

Since our analysis involves many models to be fitted, an analyst’s propensity to declare
observations with large residuals as outliers has a substantial impact on the number of
outliers identified. We have presented an approach in which this propensity is greatly
ameliorated, and the process of model diagnostics gains greater objectivity and integrity.
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