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Abstract: The statistical properties of a novel approach to ordinal regres-
sion which was only recently introduced in the literature are discussed. It
is shown that for ordinal explanatory variables the approach is equivalent to
isotonic regression, with some advantages when dealing with two-sided alter-
natives. For ordinal response variables the procedure behaves very differently
and is asymptotically equivalent to a two-sample t-test between the extreme
categories. A penalized version is introduced to improve power, and the pro-
cedure is evaluated using Monte Carlo simulations. Finally the method is
applied to microarray gene expression data on prostate cancer.

Zusammenfassung: Die statistischen Eigenschaften einer Methode zur Be-
handlung von Regression mit ordinalen Variablen wird untersucht, die erst
vor kurzem in der Literatur vorgeschlagen wurde. Es wird gezeigt, dass sich
dieser Zugang für erklärende ordinale Variablen nicht von der bekannten iso-
tonen Regression unterscheidet. Ist hingegen die abhängige Variable ordinal,
so verhält sich die neue Prozedur asymptotisch so wie ein Zweistichproben
t-Test zwischen den beiden jeweils extremsten Kategorien. Eine pönalisierte
Version des Verfahrens liefert im allgemeinen etwas bessere Power, was in
einer Simulationsstudie dokumentiert wird. Schlussendlich wird die Methode
auf Microarray – Genexpressionsdaten einer Prostatakrebsstudie angewen-
det.

Keywords: Isotonic Regression, Ordinal Regression, Least Squares, Asymp-
totics, Microarrays.

1 Introduction
The study of regression models for ordered categorical response variables dates back to
the 1950’s, for a comprehensive recent review article see Liu and Agresti (2005). Incited
by a seminal article of McCullagh (1980) the topic of ordinal regression became a fruitful
field of research. In a recent paper Torra, Domingo-Ferrer, Mateo-Sanz, and Ng (2006)
proposed a new approach to regression with ordinal variables without latent variables.
They suggest to map the levels of the ordinal variable into the interval [0, 1] and take this
mapping into account when calculating least squares estimates. Up to our knowledge this
approach has not been investigated before, and the purpose of this article is to analyze
the statistical properties of such a procedure, which is not really dealt with in Torra et al.
(2006).

To this end we will restrict ourselves to simple univariate models, and we will study
separately the cases where only the explicatory variable or only the dependent variable
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is ordinal. In Section 1 we will show that in the first case the procedure is equivalent
to isotonic regression, though it has some advantages when dealing with two-sided alter-
native hypothesis. The second case will be dealt with in Section 2, where the approach
suggested by Torra et al. (2006) actually leads to a novel procedure, which is however
asymptotically equivalent to a two-sample t-test between the values of the explicatory
variable which correspond to the lowest and the highest level of the dependent vari-
able. We will introduce penalties to obtain a more interesting procedure, and compare
its power with simple regression where the levels of the dependent variable are assumed
to be equidistantly fixed, and with logistic regression based on the proportional odds as-
sumption (McCullagh, 1980). Finally the method is applied to publicly available gene
expression data from a study on clinical prostate cancer behavior Singh et al. (2002). The
performance of the new method is compared with the original data analysis and with an
approach to ordinal regression based on Gaussian processes Chu, Ghahramani, Falciani,
and Wild (2005).

2 Independent Variable Ordinal
Let X be an ordinal variable without an underlying latent variable, and Y a metric re-
sponse variable. Without loss of generality we will code throughout this section the l + 1
levels of X as ΩX := {0, 1, . . . , l}. We study the following type of model

Y = b0 + b1f(X) + ε , (1)

where f ∈ F := {f : ΩX → [0, 1], nondecreasing, not constant} is the set of all map-
pings of the levels of X into the interval [0, 1] with f(j) ≥ f(i) if j ≥ i. We do not
allow constant mappings to avoid trivial degenerations. The error term ε is some random
variable with E(ε) = 0, which we will not further specify.

The goal is to perform least squares estimation of b0 and b1, which also minimizes
over F . This means that for a random sample of observations (yj, xj), j = 1, . . . , n, we
want to solve

inf
b0,b1;f

{
n∑

j=1

(yj − b0 − b1f(xj))
2 : f ∈ F

}
. (2)

We can actually identify any function f ∈ F with a vector f of dimension l + 1, where
f = (c0, c0 + c1, . . . , c0 + · · ·+ cl)

>, with ci ≥ 0 and
∑

ci ≤ 1. Now due to linearity the
infimum of (2) is clearly shift invariant with respect to f , and without loss of generality
we can assume that c0 = 0. Having done so the infimum of (2) is also scale invariant and
we can further assume that c1 + · · ·+ cl = 1. By denoting c = (c1, . . . , cl)

>, we can thus
formulate a parameterized version of (2):

inf
b0,b1;c

{
n∑

j=1

(yj − b0 − b1gj(c))
2 : c ∈ ∆l

}
, (3)

where ∆l := {c ∈ Rl : ci ≥ 0, c1 + · · · + cl = 1} is the standard simplex of dimension
l, and gj(c) := f(xj) = c1 + · · · + cxj

corresponds to the state of the j−th observation
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of X . If we only want to consider nonincreasing regression lines, i.e. in the situation of a
one-sided test, we ask for b1 ∈ R+, otherwise we have b1 ∈ R.

The optimization problem (3) has a vary particular structure, it is a biquadratic pro-
gram over R2 ⊗ ∆l. Keeping c fixed we have the usual convex quadratic program of
ordinary linear regression, whereas keeping b0 and b1 fixed we obtain a so called standard
quadratic program (Bomze, 1998). Due to this special structure it is easy to prove that in
(3) the minimum is actually attained:

Proposition 2.1 The sum of squared errors R(b0, b1, c) :=
∑n

j=1(yj − b0 − b1gj(c))
2

attains its minimum within R2 ⊗∆l, i.e.

inf
b0,b1;c

{
R(b0, b1, c) : c ∈ ∆l

}
= min

b0,b1;c

{
R(b0, b1, c) : c ∈ ∆l

}
.

Proof. For each fixed c ∈ ∆l the minimum of R(b0, b1, c) is obtained by ordinary least
squares regression. The solution b0(c), b1(c) thus obtained is continuous in c, and ∆l is a
compact set. ¤

The same result holds for the one-sided situation where the minimum is attained in
R⊗R+⊗∆l. We will denote by b∗0, b

∗
1; c

∗ a vector that minimizes (3). Note that uniqueness
of the solution is not always guaranteed, e.g. in case of b∗1 = 0 there are no conditions on
c∗. In general it is fairly easy to solve (3), because we can explicitly calculate the critical
points. To this end we will introduce some notation. For an event J ⊂ ΩX = {0, . . . , l},
we denote the mean of all observations yj with xj ∈ J as ȳJ := 1

nJ

∑
xj∈J yj , where

nJ = #(xj ∈ J) is the number of observations with value in J . Without loss of generality
we will assume that #(xj = i) > 0 for all i ∈ ΩX , i.e. we will neglect categories without
any observations for our analysis.

Furthermore, we define the index set I ⊆ {1, . . . , l}, where i ∈ I signifies that the cor-
responding boundary condition for c is not active, i.e. ci > 0, whereas for i ∈ {1, . . . , l}\I
we have ci = 0. Because of c ∈ ∆l it is not possible that ci = 0 for all i ∈ {1, . . . , l}.
For any such I = {s1, . . . , sν}, 1 ≤ ν ≤ l, we define J0 := {0, . . . , s1 − 1}, J1 :=
{s1, . . . , s2− 1}, . . . , Jν := {sν , . . . , l}. Each Jk contains the indices such that if xj ∈ Jk

then f(xj) = cs1 + · · · + csk
. We adopt the common convention that

∑0
r=1 csr = 0, so

specifically J0 contains all categories of X which are mapped to 0 under f .
Let I := P({1, . . . , l})\∅ be the set of all nonempty index sets, I1 := {I ∈ I :

|I| = 1} and I2 := I\I1. The index sets in I1 with one index correspond to the edges
of ∆l, whereas the index sets of I2\ΩX correspond to the boundary manifolds of ∆l. The
minimum of (3) can occur either at the critical points of the manifolds indexed by I2, or
at the points given by I1. The following lemma describes all potential critical points:

Lemma 2.1 Let I = {s1, . . . , sν} ∈ I2 and assume that ȳJ0 6= ȳJν . If the vector

bI
0 = ȳJ0 ,

bI
1 = ȳJν − bI

0 ,

cI
si

= (ȳJi − bI
0)/b

I
1 −

i−1∑
r=1

cI
sr

, for 1 ≤ r < ν , (4)
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is strictly (3)-feasible (i.e. cI
si

> 0, for all i ∈ {1, . . . , ν}), then it is a critical point of 3.
The corresponding value of the objective function equals

R(bI
0, b

I
1, c

I) =
ν∑

i=0

∑
j:xj∈Ji

(yj − ȳJi)2 . (5)

Remark: Note that for the critical point in the interior of R2⊗∆l (i.e. for I = {1, . . . , l})
we obtain just the usual residual sum of squares of a one way ANOVA. This will be the
solution of (3) if the means over the different categories ȳi are monotonic in i. Otherwise
we will have a solution on the boundary of R2⊗∆l, which means that some categories are
joint together. In the one-sided situation strict feasibility requires additionally that b1 > 0.
Proof. For any given I we have ci > 0, for all i ∈ I and ci = 0, for all i ∈ ΩX\I . The
residual some of squares becomes

∑ν
i=0

∑
j:xj∈Ji

(b0 + b1

∑i
r=1 csr − yj)

2 = 0. Partial
derivation with respect to b0, b1, and ci for i ∈ I leads to the following system of linear
equations:

ν∑
i=0

∑
j:xj∈Ji

Tij = 0

ν∑
i=1

∑
j:xj∈Ji

Tij

i∑
r=1

csr = 0

b1

ν−1∑
i=s

∑
j:xj∈Ji

Tij = 0 , for 1 ≤ s < ν , (6)

where we have used the abbreviation Tij := b0 +b1

∑i
r=1 csr−yj . Now for b1 6= 0 we can

conclude that
∑

j:xj∈Ji
Tij = 0 for each i ∈ I , and it follows that (4) is a solution of (6). ¤

Obviously this problem is intimately related with isotonic regression. To clarify the
connection we introduce the following definition:

Definition 2.1 For a finite set X = {x0, . . . , xl} with simple order x0 ≤ x1 ≤ · · · ≤ xl a
real valued function g is called isotonic on X if x, y ∈ X and x ≤ y imply g(x) ≤ g(y).

Let us write ȳ(i) := ȳ{i} for the sample mean over each category and ȳ := (ȳ(0), . . . , ȳ(l))>.
As stated in the remark after Lemma 2.1 this natural estimate ȳ gives the optimal solution
of (3) when the order restrictions are fulfilled. Otherwise we have:

Theorem 2.1 For any sample (yj, xj), j ∈ {1, . . . , n}, a solution of (3) in the one-sided
situation (b1 ∈ R+) is given by the isotonic regression ȳ∗ of ȳ with weights (n0, . . . , nl),
which is defined as

ȳ∗ = min
g

{
l∑

i=0

(ȳ(i)− g(i))2ni

}
(7)

in the class of isotonic functions g on ΩX .
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Proof. For any arbitrary isotonic function g(i), i ∈ ΩX , define b0 = g(0), b1 = g(l) −
g(0), and f(i) = (g(i) − g(0))/(g(l) − g(0)). This defines an isomorphism between
functions b0 +b1f(i) with b1 ≥ 0, f ∈ F , and the class of isotonic functions on ΩX . Then∑n

j=1(yj− b0− b1f(xj))
2 =

∑l
i=0

∑
j:xj=i(yj−g(i))2 and from the usual decomposition

∑
j:xj=i

(yj − g(i))2 = (ȳ(i)− g(i))2ni +
∑

j:xj=i

(yj − ȳ(i))2

we conclude that the two problems (7) and (1) are equivalent. ¤

A general introduction to isotonic regression can be found either in Robertson, Wright,
and Dykstra (1988), or Barlow, Bartholomew, Bremner, and Brunk (1972) where in Chap-
ter 2 several algorithms are presented how to find the solution of (7). Specifically the
pool-adjacent-violator algorithm (PAVA) finds the isotonic regression ȳ∗ by starting with
ȳ and applying a process of amalgamation of means over categories till the pooled means
fulfill the order restriction. These pooled means are just of the form ȳJi as in Lemma 2.1,
which provides another possibility to establish equivalence of (7) and (1).

Isotonic regression is more naturally formulated for the one-sided case, which corre-
sponds to test the null hypothesis

H0 : µ0 = µ1 = · · · = µl

against the one-sided alternative

H1 : µ0 ≤ µ1 ≤ · · · ≤ µl .

This test was first introduced by Bartholomew (1959a), where one can find among others
the distribution of the test statistic χ̄2

l+1 := σ−2
∑l

i=0(ȳ(i) − ȳ∗(i))2ni under H0. In a
subsequent paper Bartholomew (1959b) considered the two-sided alternative

H2 : µ0 ≤ µ1 ≤ · · · ≤ µl or µ0 ≥ µ1 ≥ · · · ≥ µl ,

which he dealt with by applying isotonic regression separately under the increasing and
under the decreasing alternative. This situation can be easier handled within this frame-
work by minimizing (1) with b1 ∈ R. Solutions can be found e.g. via Lemma 2.1 and
applying a PAVA-like algorithm. The following example illustrates a peculiarity of the
two-sided case.

Example 2.1 Consider a sample of three instances with x = (0, 1, 2) and corresponding
y = (a, b, a), a, b ∈ R. Note that for f there is only one degree of freedom, namely
f(1) = c. For a 6= b there are two solutions of (3):

1. c = 1, b0 = a, b1 = (b− a)/2,

2. c = 0, b0 = (a + b)/2, b1 = (a− b)/2

with residual sum of squares R(b0, b1, c) = (b− a)2/2. In the trivial case a = b we have
the solution b0 = a, b1 = 0 and c might take any value within [0, 1].
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Thus, in the non-trivial case we obtain two solutions, one with negative and one with
positive slope. If the dependent variable Y itself is discrete this kind of behavior might be
quite undesirable. Of course if Y is continuous, then such a situation would occur only
with probability 0, but still there is some kind of instability with respect to small changes
in the data of the dependent variable. This sort of problem becomes in the current context
more transparent than in the formulation of two-sided isotonic regression.

3 Dependent Variable Ordinal
We next consider a metric variable X and an ordinal response with l + 1 categories, i.e.
ΩY := {0, 1, . . . , l}. The corresponding model has the form

f(Y ) = b0 + b1X + ε , (8)

where f ∈ F := {f : ΩY → [0, 1], f nondecreasing, f(0) = 0, f(l) = 1} and ε is
some error function. We actually have to demand f(l) = 1, because otherwise the whole
approach becomes entirely meaningless – for decreasing f(l) naturally the sum of mean
squared errors would also decrease. In the extreme case we would obtain the trivial so-
lution f ≡ 0 and b0 = b1 = 0. As in the previous section we obtain a parameterized
version by letting f(i) = c1 + · · · + ci for some vector c = (c1, . . . , cl)

> ∈ ∆l and
gj(c) := f(yj) = c1 + · · ·+ cyj

. In this section we will only consider the two-sided case,
thus both b0 and b1 take values in R.

Similar arguments as in Proposition 2.1 guarantee that a least squares estimate b∗0, b
∗
1, c

∗

can be obtained by solving

min
b0,b1;c

{
n∑

j=1

(gj(c)− b0 − b1xj)
2 : c ∈ ∆l

}
. (9)

Actually, (9) is in some sense simpler than (3), because we now have to deal with a
quadratic optimization problem, and not with a biquadratic one. However, the critical
points for this model do not have such a straight forward interpretation, and they are
qualitatively very different from those of (3). We will use again the notation of Lemma
2.1, furthermore we define for an index set J ⊂ ΩY the variance of the xj values with
corresponding yj ∈ J as

var(x)J :=
1

nJ

∑
yj∈J

(xj − x̄J)2 =
1

nJ

∑
yj∈J

x2
j − (x̄J)2 = x2

J − (x̄J)2 .

To solve (9) we can use the following Lemma:

Lemma 3.1 Let I = {s1, . . . , sν} ∈ I2. If the vector

bI
0 =

nJν

nJ0 + nJν

− bI
1x̄

J0∪Jν ,

bI
1 =

nJν (x̄
Jν − x̄J0∪Jν )

(nJ0 + nJν )var(x)J0∪Jν +
∑ν−1

i=1 nJi
var(x)Ji

,

cI
si

= bI
0 + bI

1x̄
Ji −

i−1∑
r=1

cI
sr

, for 1 ≤ i < ν , (10)
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is (9)-feasible (i.e. csi
> 0, for all i ∈ {1, . . . , ν}), then it is a critical point of (9). The

corresponding value of the objective function equals

R(bI
0, b

I
1, c

I) =
nJ0nJν

nJ0 + nJν

(
1− bI

1(x̄
Jν − x̄J0)

)
. (11)

Proof. Similar to the proof of Lemma 2.1 we can write the residual sum of squares for
fixed index I as

∑ν
i=0

∑
j:yj∈Ji

(b0+b1xj−
∑i

r=1 csr)
2. Writing Tij := b0+b1xj−

∑i
r=1 csr

partial derivation with respect to b0, b1, and csr leads to

ν∑
i=0

∑
j:yj∈Ji

Tij = 0

ν∑
i=0

∑
j:yj∈Ji

Tijxj = 0

∑
i=s

ν − 1
∑

j:yj∈Ji

Tij = 0 , for 1 ≤ s < ν . (12)

Now from the last set of ν−1 equalities we obtain
∑

j:yj∈Ji
Tij = 0, for all i ∈ {1, . . . , ν−

1}, which leads to

b0 + b1x̄
Ji −

i∑
r=1

csr = 0 , for 1 ≤ i < ν . (13)

The first equality of (12) gives

b0 + b1x̄
J0∪Jν =

nJν

nJ0 + nJν

(14)

and using (13) the second equality becomes

∑
j:yj∈J0

xj(b0 + b1xj) +
∑

j:yj∈Jν

xj(b0 + b1xj − 1) + b1

ν−1∑
i=1

∑
j:yj∈Ji

xj(xj − x̄Ji) = 0 . (15)

Inserting (14) into (15) and some easy calculations finish the proof. ¤

We want to remark that just as in Section 2 the solution of (9) is given by the minimum
of (11) over the finite number of critical points (with indices I ∈ I2) and over the edges
of ∆l (with indices I ∈ I1). In the latter case ν = 1 and all categories of Y are either
mapped to 0 or to 1. As we will see later on this is a rather untypical situation and will in
practice hardly occur. The optimal values of bI

0 and bI
1 are still given by the corresponding

formulas of (10).
The usual simple regression line has the property that the point (x̄, ȳ) lies on it.

Here this is typically not the case, but (10) shows that the regression line goes through
(x̄J0∪Jν , ȳJ0∪Jν ). The formula of the slope bI

1 resembles simple regression considering
only J0 and Jν , but the variances of J1, . . . , Jν−1 add to the denominator, and thus the
regression line gets flatter. Note that for bI

1 > 0 the regression line defined by (10) will
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be above the point (x̄J0 , 0) and below (x̄Jν , 1). In absolute terms its slope is smaller than
a line running through those two points. The larger the variances var(x)Ji the flatter the
line.

Assume for a moment that we drop the order restriction implied by F and allow also
for non-monotonous f . Clearly in the unrestricted case we obtain an optimal solution
of (9) by R(bI

0, b
I
1, c

I) as given in (11) for I = {1, 2, . . . , l}. In the terminology of iso-
tonic regression this is again a natural estimate and the solution under order restrictions
is obtained by isotonization. This leads to the problem of finding I which minimizes
R(bI

0, b
I
1, c

I) while maintaining the order relation, which can be accomplished as in the
previous section by applying a PAVA. For a more general discussion of algorithms of this
kind we refer to Best and Chakravarti (1990).

3.1 Inference
If we want to construct a statistical test based for example on the absolute value of b∗1 we
have to face the problem of how to specify the error function ε. This is not particularly
straight forward, actually even the specification of H0 and H1 are not as obvious as in
Section 2. Taking into account that Y is an ordinal variable we may simply consider the
case where Y has a discrete distribution with l + 1 levels and probabilities p0, . . . , pl. We
then can formulate the null hypothesis

H0 : Y is independent of X ,

where X might be considered as a random variable or as given data. Alternative hypoth-
esis will involve dependence of Y on X with some kind of inherent order. Denoting by
qi(x) := p0(x) + · · ·+ pi(x) the cumulative probabilities for given X one might consider
e.g. the two-sided alternative

H1 : All qi(x) either increase or decrease with x .

The following theorem deals with consistency; under H0 the regression line converges
almost surely towards a constant.

Theorem 3.1 Let Xi and Yi be an i.i.d. sequences of independent random variables, Xi

with finite mean µ, finite variance σ2 > 0 and Yi discrete with l+1 levels and probabilities
p0, . . . , pl. Furthermore let (b

(n)
0 ; b

(n)
1 ; c

(n)
1 , . . . , c

(n)
l ) be the solution of (9) for the first n

members of the random sequences. Then we have
(
b
(n)
0 ; b

(n)
1 ; c

(n)
1 , . . . , c

(n)
l

)
a.s.−→

(
pl

p0 + pl

; 0;
pl

p0 + pl

, 0, . . . , 0,
p0

p0 + pl

)
. (16)

Proof. Note that due to the strong law of large numbers x̄Ji
a.s.→ µ for any Ji. Because of

σ2 > 0 the variance terms in the denominator of bI
1 are bounded away from zero for any

I , and we immediately obtain that b
(n)
1

a.s.→ 0.
Next consider that the scaled objective function of (9) formally converges to

1

n

n∑
j=1

(gj(c)−b0−b1xj)
2→

l∑
i=0

lim
n→∞

1

n

∑
j:yj∈Ji

(b0−
i∑

r=1

cr)
2

= p0b
2
0+p1(b0 − c1)

2+p2(b0−c1−c2)
2+· · ·+pl(b0−1)2 . (17)
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It is obvious that the minimum of (17) is obtained at blim
0 := pl(p0 + pl)

−1 and clim :=

(pl(p0 + pl)
−1, 0, . . . , 0, p0(p0 + pl)

−1), and it remains to argue that b
(n)
0 and c(n) converge

almost surely towards this limit.
From (13) it is evident that lim sup b

(n)
0 ≤ 1 and lim inf b

(n)
0 ≥ 0. Using

∣∣∣∣∣∣
1

n

∑
j:yj∈Ji

[
b2
1x

2
j + 2b1xj(b0 −

i∑
r=1

cr)

]∣∣∣∣∣∣
≤ |b1|

∑
j:yj∈Ji

(
|b1|

x2
j

n
+ 2

∣∣∣∣∣b0 −
i∑

r=1

cr

∣∣∣∣∣
|xj|
n

)

and the fact that by our assumptions the first two moments of X are bounded we con-
clude that the convergence in (17) is almost sure uniformly for the compact set b0 ∈ [0, 1],
c ∈ ∆l. Now by standard arguments we conclude that b

(n)
0

a.s.→ blim
0 and c(n) a.s.→ clim. ¤

So asymptotically b∗1 converges towards 0, and it is easy to see that also E(b∗1) = 0 for
finite n. Therefore one might consider to construct a statistical test based on b∗1. For fixed
I the numerator of b1 in (10) can be rewritten as

nJν

(
x̄Jν − x̄J0∪Jν

)
=

nJ0nJν

nJ0 + nJν

(
x̄Jν − x̄J0

)
.

Due to the central limit theorem we have √nJi
x̄Ji

d→ N (µ; σ2) for any Ji and under H0

we have independence of the xj corresponding to different Ji, because by definition all Ji

are disjoint. Unfortunately independence between x̄J0 and x̄Jν is not given because nJ0

and nJν are dependent random variables. However, it is still possible to obtain for fixed I
that √

n
(
x̄Jν − x̄J0

) d−→ N (
0; σ2(p−1

J0
+ p−1

Jν
)
)

. (18)

A formal proof is provided in the appendix. Using the notation

S̃2
I := (nJ0 + nJν )var(x)J0∪Jν +

ν−1∑
i=1

nJi
var(x)Ji

for the denominator of b1 we define the test statistic

tI =
S̃I
√

nJ0 + nJν√
nJ0nJν

bI
1 . (19)

Note that S̃2
I /σ

2 is asymptotically χ2-distributed with n − ν degrees of freedom, and
therefore tI will be approximately t-distributed with n− ν degrees of freedom.

Of course what we are actually interested in is tI
∗ , the test statistic corresponding to b∗1,

the optimal solution of (9). By conditioning we immediately can see that the distribution
of tI

∗ will be a mixture of t-distributions. Like in the case of isotonic regression one
could try to determine the level properties for each I , but we will not pursue this direction
here. For testing one might consider the quantile of a t-distribution with n− 1 degrees of
freedom as upper bound, and with n − l degrees of freedom as lower bound for the true
critical value.

We want to emphasize that in the given form the procedure roughly resembles a t-test
between the X-values corresponding to the largest level and the smallest level of Y ; as a



F. Frommlet 191

consequence of Theorem 3.1 we can be almost sure for large n under H0 that J0 = {0}
and Jν = {l}, even when we cannot be certain what I∗ will exactly look like. We want
to illustrate this behavior with a simple example, where we use step functions to simulate
models under the alternative hypothesis H1.

Example 3.1 Let X be uniformly distributed on [0, 1] and Y categorical with five levels,
i.e. l = 4. We will generate test examples where the cumulative probabilities qi(x) are
non-increasing step functions with jumps at x = 0.1, 0.2, 0.8, 0.9. In other words we
partition [0, 1] into five intervals

M0 = [0, 0.1],M1 = (0.1, 0.2],M2 = (0.2, 0.8],M3 = (0.8, 0.9],M4 = (0.9, 1] .

and define on each of those intervals Y a different discrete distribution, such that there
is an order with respect to X . Note that non-increasing qi(x) lead to positive correlation
between X and Y .

The joint distribution of X and Y can be specified by a 5× 5 matrix P , where P (i, j)
is the probability that Y = i − 1 given that X ∈ Mj−1. We will consider matrices of the
form P = 1

5
E + δB where E is the all one matrix, B is some fixed matrix specifying the

effect of a particular alternative and δ is a scalar parameter. For δ = 0 we just obtain
the null hypothesis H0, where Y is uniformly discrete. Letting δ grow we can study the
power of (19) which we compare with simple linear regression (keeping Y fixed) and with
logistic regression using the proportional odds assumption (McCullagh, 1980).

We will consider three instances:

B1 =




2 1 0 −1 −2
1 0 0 0 −1
0 0 0 0 0

−1 0 0 0 1
−2 −1 0 1 2




, B2 =




1 0 −1 −2 −2
0 0 0 1 1
0 1 2 1 0
1 1 0 0 0

−2 −2 −1 0 1




, B3 =




0 0 0 0 0
2 1 0 −1 −2
0 0 0 0 0

−2 −1 0 1 2
0 0 0 0 0




Figure 1 shows the cumulative probabilities qi(x) for δ = 0.09.

Figure 1: Cumulative probabilities qi(x) of example 3.1 for δ = 0.09.
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In Figure 2 we provide the corresponding power functions obtained by simulating
10000 replicates with n = 100 for various values of δ ranging from 0 to 0.1. Using the
quantile of a t-distribution with 99 degrees of freedom as critical values leads to reason-
able asymptotic behavior: At a significance level of α = 0.05 and under the null hypoth-
esis 5.16% of all test statistics lie above the threshold. For B1 the new procedure is only



192 Austrian Journal of Statistics, Vol. 39 (2010), No. 3, 182–202

slightly less powerful than simple regression, for B2 it is much more powerful, whereas
for B3 it cannot compete at all. In all three cases the multinomial logistic regression
turned out to be strictly less powerful than simple regression.

The results of Example 3.1 are easy to understand when we consider that the new
procedure is very similar to applying a two sample t-test between the data xj with cor-
responding yj = 0 and yj = l respectively. Basically all the information contained in
the middle three rows of Bi does not enter into the decision process. This does not have
a strong effect in case of instance B1, though some power is lost by neglecting the in-
formation of the second and the fourth row. On the other hand in case of B2 when only
considering the three intermediate levels one observes an inverse trend, and discarding
this information actually gives larger power. The situation for instance B3 is the other
extreme, where the dependence between X and Y is entirely due to the three intermediate
levels. It is actually quite interesting to observe that the procedure has some very small
power to detect large effects and is therefore not entirely equivalent with a two-sample
t-test. But we conclude that a test based on tI

∗ looses too much information to be of
general interest, except in fairly particular situations.

3.2 Penalizing
One possibility of improvement consists in adding penalties for values of c2, . . . , cl−1

getting too small, and for c1 and cl getting too large. To retain a quadratic optimization
problem one might consider penalties of the form Ki(ci − γi)

2, i ∈ {1, . . . , l}. To decide
how to choose the Ki we note that under H0 the residual sum of squares (11) for the
unpenalized model converges asymptotically towards R∗ = (n0nl)(n0 + nl)

−1. Thus if
Ki = o(n) the penalties will have for large n hardly any influence, whereas if Ki grows
faster than n the contribution of the penalty terms for ci 6= γi will dominate R∗, which
enforces ci ≈ γi for large n. So the most interesting situation arises if the Ki are actually
of order n, i.e. Ki = λin.

We will present here a particularly simple penalization scheme, with all γi set to 0:

min
b0,b1;c∈∆l

{
n∑

j=1

(gj(c)− b0 − b1xj)
2 + n

∑
i = 1lλic

2
i

}
. (20)

For the discussion of a more general penalization scheme we refer to Frommlet (2008).
The crucial idea is to choose the vector λ = (λ1, . . . , λl) in such a way, that under the null
hypothesis ci → clim

i for some prespecified values of clim
i . These asymptotic values can be

interpreted as a subjective expression of how close one believes different categories to be.
Choosing for example clim

1 = · · · = clim
l amounts to some prior believe that all categories

are equidistant – which relates to a simple regression model. However, depending on the
actual data the values of ci are not fixed, which distinguishes the method from simple
weighted regression. The original test statistic (19) based on Torra et al. (2006) corre-
sponds to the rather unusual prior believe that all categories except for the two extreme
ones are more or less identical.

By adding the penalty terms we loose the simple structure of (9) which allowed us to
give explicit solutions of b0, b1 and a simple recursion formula to compute c. However,
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we can still follow the approach of Lemma 3.1 to obtain critical points. In the typical
situation where no merging occurs for Y = 0 and Y = l, i.e. for I = (1, s2, . . . , sν−1, l)
we obtain

bI
0 =

nl

n0 + nl

− bI
1x̄

0,l +
n

n0 + nl

(λ1c
I
1 − λlc

I
l )

and

bI
1 =

n0nl

n0+nl
(x̄l − x̄0) + n

∑ν−1
i=2 Ψi(x̄

Ji − x̄Ji−1) + nΨ1(x̄
J1 − x̄0,l) + nΨν(x̄

0,l − x̄Jν−1)

(n0 + nl)var(x){0,l} +
∑ν−1

i=1 nJi
var(x)Ji

,

with Ψi = λsi
cI
si

for i = 1, . . . , ν. Therefore, both bI
0 and bI

1 depend on cI which can in
general not be expressed in a simple way. In any case all Ψi are bounded and therefore
consistency still holds: b

(n)
1

a.s.→ 0 for n →∞ under H0. However, a general result like (16)
in Theorem 3.1 cannot be established, because everything depends now on the choice of
the penalty parameters. Still we obtain the asymptotic distribution of the scaled numerator
of bI

1. For the sake of convenient notation we write x̄J0 := x̄0,l as well as x̄Jν := x̄0,l and
thus obtain

1√
n

n0nl

n0 + nl

(x̄l − x̄0) +
√

n

ν∑
i=1

Ψi

(
x̄Ji − x̄Ji−1

) d−→ N
(

0; σ2

(
p0pl

p0 + pl

+ Ωlim

))
,

where

Ω =
ν−1∑
i=1

n

ni

(Ψi −Ψi+1)
2 +

n

n0 + nl

(Ψν −Ψ1)
2

is the variance contribution from the penalty terms and Ωlim is its asymptotic limit. This
leads immediately for given I to the test statistic

tI =
S̃I√

n0nl

n0+nl
+ Ω

bI
1 ,

which is a generalization of (19) taking into account the penalties and which is again
approximately t-distributed with n− ν degrees of freedom.

To choose the penalties λi we assume that in the asymptotic limit under H0 no merging
between categories occurs, i.e. I lim = {1, 2, . . . , l}. For given clim

1 , . . . , clim
l the penalties

λi are computed by solving the following system of linear equations:

λk+1c
lim
k+1 − λkc

lim
k = pk

(
k∑

r=1

clim
r − blim

0

)
, k ∈ {1, . . . , l − 1} , (21)

where blim
0 = pl

p0+pl
− 1

p0+pl
(λ1c

lim
1 − λlc

lim
l ). This system has l− 1 equations for l penalty

parameters. To fully determine the penalties we add an equation for the overall weight of
the penalty

λ1 + · · ·+ λl = K .

According to simulations the actual choice of K has no strong influence on the results
and we choose K = l. Using this penalty scheme we study again Example 3.1. To assess
the effect of various parameters on the statistical power of the given model we study three
cases:
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Model 1: clim
1 = clim

2 = 0.25, which corresponds to simple linear regression,

Model 2: clim
1 = 0.4, clim

2 = 0.1, which is closer to the model without penalty,

Model 3: clim
1 = 0.1, clim

2 = 0.4,

and according to symmetry clim
4 = clim

1 and clim
3 = clim

2 .
Table 1 provides the power of the various models at a significance level α = 0.05 and

for δ = 0.1, the largest effect parameter in our simulations. We used the same random
instances generated in the previous simulations. In all simulations the asymptotic approx-
imation worked quite well and one can rely upon the test statistic being t-distributed under
the null hypothesis. For sample sizes much smaller than n = 100 one might prefer to use
permutation tests or bootstrap sampling rather than threshold levels based on asymptotics.

Model B1 B2 B3

No penalty 0.88 0.93 0.06
Model 1 0.90 0.62 0.33
Model 2 0.90 0.86 0.11
Model 3 0.87 0.39 0.54

Simple Reg. 0.91 0.64 0.34
Logistic Reg. 0.84 0.43 0.24

Table 1: Power of various models for three instances of Example 3.1 at effect size δ = 0.1

As expected, for the first models with clim
i = 0.25 the results are fairly close to simple

regression for all three instances B1, B2, and B3. Specifically the advantage of the new
approach for instance B2 is lost by introducing this kind of penalties. For model 2, where
clim
1 = 0.4 and clim

2 = 0.1, the general behavior is similar to the model without penalties,
though a little bit less extreme – the model without penalties corresponds to clim

1 = 0.5 and
clim
2 = 0. Compared to simple regression model 2 performs slightly worse for instance

B1, it performs much better for instance B2 and it has smaller power for instance B3.
Finally model 3 shows exactly the opposite behavior, it outperforms simple regression for
instance B3, but it does not work well for instance B2. Figure 2 illustrates the general
behavior of the power for the various models.

3.3 Gene expression analysis
We will use now our approach to analyze publicly available gene expression data from
a study on prostate cancer Singh et al. (2002). Based on microarray experiments the
expression levels of 12600 genes are compared with the Gleason score, which evaluates
how effectively cancer cells are able to structure themselves. A Gleason score between
2 and 4 means well differentiated cells, a score between 5 and 6 describes intermediate
differentiation, a score of 7 is intermediate to badly differentiated, and a Score between 8
and 10 means badly or undifferentiated tumors. The study included 52 patients, 26 with
score 6 and 20 with score 7. The 6 patients with score larger than 7 were merged to form
the top level.
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Figure 2: Results for the three instances of example 3.1: The power of ordinal regression
procedures with penalties (Model 1, 2, and 3) is compared with simple regression and with
the ordinal regression procedure without penalties. The order of performance is reflected
by the order in the legends.
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In the original analysis of Singh et al. (2002) the Gleason score was treated as a met-
ric variable. It is indicated that significant association was statistically determined by
permutation tests with respect to Pearson correlation coefficients. However, 29 genes are
reported with p-values smaller than 0.001, and it would appear that these are not p-values
based on permutation tests but ordinary p-values. Furthermore these 29 genes are pre-
sented in such a way, that 8 of them are not at all identifiable in the original list of 26000
genes, and only 18 can be determined with certainty. For several other genes there are two
possible interpretations of the given specification. We base our comparison with the orig-
inal results on the 18 clearly identifiable genes and include if possible also the ambiguous
ones in our discussion.

In Chu et al. (2005) it was pointed out that the Gleason score is clearly an ordinal
variable, and thus the problem of predicting the score from gene expression data is a
typical problem of ordinal regression. Chu et al. (2005) develop an ordinal regression
procedure based on Gaussian processes. They assume there is an unobservable latent
function f(Xi) ∈ R associated with the gene expression labels Xi, where the categories
of the ordinal scale correspond to intervals on the real line, and the specific value of Yi

is determined by f(Xi). They use a Bayesian approach for prediction of categories, and
based on leave-one-out cross validation they determine a set of 21 genes to predict the
Gleason score.

For the selected genes of Chu et al. (2005) the serial numbers of the original data are
given, which makes a comparison of results much easier. It is remarkable that there is
not a single gene which was selected both by Singh et al. (2002) and Chu et al. (2005),
which puts the results of both manuscripts somewhat into perspective. Clearly the focus of
Chu et al. (2005) was on prediction, whereas Singh et al. (2002) was applying a multiple
testing approach, but the discrepancy between their results is quite disturbing.

We will reanalyze the data applying simple linear regression as well as our ordinal
regression procedure without penalties, and with the following penalties:

Model 1: λ1 = 1.3734, λ2 = 0.6266, ⇒ clim
1 = 0.3, clim

2 = 0.7,

Model 2: λ1 = 0.9260, λ2 = 1.0740, ⇒ clim
1 = 0.5, clim

2 = 0.5,

Model 3: λ1 = 0.4787, λ2 = 1.5213, ⇒ clim
1 = 0.7, clim

2 = 0.3.
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Index No penalty Model 1 Model 2 Model 3 Lin. Reg. Chu # Singh
583 9.7e-05 7.3e-05? 3.2e-05 ?? 3.9e-05 ?? 4.3e-06 ?? 1

8803 1.4e-04 1.0e-04 5.3e-05 ?? 7.2e-05 ?? 1.1e-05 ??
11421 4.8e-04 3.4e-04 2.4e-04 3.6e-04 1.2e-04
12022 1.2e-04 1.0e-04 1.5e-04 4.2e-04 5.3e-05 SPARC
12092 2.0e-04 1.4e-04 7.6e-05 ?? 1.0e-04 ? 2.0e-05 ?
5837 3.8e-04 1.7e-04 1.8e-04 7.2e-05 13
1667 1.2e-04 1.1e-04 2.3e-04 9.5e-05 Collagen
6599 6.1e-05 9.1e-05 3.6e-04 1.4e-04
9335 3.1e-04 2.6e-04 3.7e-04 2.2e-04

10787 4.3e-06 ?? 2.8e-05 ?? 3.8e-04 6.5e-05 16
6118 2.8e-04 1.1e-04 ? 1.2e-04 4
8795 4.3e-04 4.1e-04 2.6e-04
4325 4.8e-06 ?? 4.0e-05 ?? 1.2e-04 12

11355 2.9e-04 4.4e-04
7750 3.4e-04
1666 2.7e-04 3.0e-04 Collagen
6174 2.0e-04 3.9e-04
6658 3.6e-04 4.7e-04
7901 1.9e-04 2.6e-04 Follastin
9277 3.6e-04 4.5e-04

10458 3.4e-04 4.8e-04
4998 2.9e-04
7954 2.1e-04

Table 2: Results from micro array data analysis. The first column gives the serial numbers
of the original data, bold print indicates genes that were significant under permutation
test for at least one model. The next five columns give unadjusted p-values for ordinal
regression (based on asymptotic approximation) as well as linear regression; only p-values
with p ≤ 0.0005 are listed. Genes are ordered according to which models had p ≤ 0.0005.
?? indicates significance for permutation tests at level α = 0.05, ? at level α = 0.1. The
last two columns specify genes which were also detected by Chu et al. (2005) and Singh
et al. (2002), respectively. The column ’Chu #’ gives the serial number in Table 6 of Chu
et al. (2005), the column ’Singh’ gives the annotation provided in Figure 1 of Singh et
al. (2002).

Table 2 provides the results of our analysis. Unadjusted p-values based on asymptotic
theory are provided for all genes with p ≤ 0.0005. This threshold value was chosen
in such a way that comparison with the results of Singh et al. (2002) and Chu et al.
(2005) becomes possible. For a proper treatment of multiple testing permutation tests
were performed. Based on 10000 random permutations of the Gleason score variable test
statistics for the Five models were computed and the maximum over the 12600 genes
taken. Threshold values were than obtained for each of the 5 models based on the upper
tail quantiles controlling at α = 0.05, and α = 0.1. Test statistics exceeding those
threshold values are indicated with ?? and ? respectively in Table 1. Based on permutation
tests we would recommend to consider only five (α = 0.05) or six (α = 0.1) genes as
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Figure 3: Gleason Score data for three genes: Gene expression levels on x-axis vs. Glea-
son score (GS) on y-axis. For better visibility of the data random noise was added to GS.
The symbol + gives the mean values of x within groups.
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significant. Interestingly four of them were also detected by Chu et al. (2005), though
none of them by Singh et al. (2002).

Concerning the original results reported by Singh et al. (2002) only three of the 29
reported genes show up in Table 2, one of them twice because the description ’Collagen
type I, alpha-2’ fits both to gene #1666 and #1667. Taking into account that the statistical
analysis described in Singh et al. (2002) is fairly similar to the linear regression approach
it is difficult to understand how the results presented in their Figure 1 were actually ob-
tained. From the reported genes which were identifiable in particular #2741 (HSU66684),
#4756 (STE20-like kinase), #8935 (acetolactate synthase) and #9153 (cyclin H) showed
no association with the Gleason score at all. It is not clear if the particular results pre-
sented in Figure 1 of Singh et al. (2002) are actually based on the data published at

http://www.broadinstitute.org/cgi-bin/cancer/

publications/pub_paper.cgi?mode=view&paper_id=75

It is certain however, that the work of Chu et al. (2005) is based on the very same data.
In Figure 3(a) the measurements for gene #8803 are shown, one of the two genes which
we consider as important that was not reported in Chu et al. (2005). There appears to be a
rather strong positive trend, and the graph for gene #12092 looks very similar. One reason
why those two genes might have been neglected by Chu et al. (2005) is that they take a
model based approach, and as usual in micro array data there is a strong amount of mul-
ticollinearity. Specifically both genes #8803 and #12092 are negatively correlated with
gene #583, which has the strongest association with the Gleason score. In this particular
setting it would appear to be rather desirable to learn about all genes which are related
with the Gleason score. Missing two important genes would speak against the algorithm
from Chu et al. (2005).

On the other hand Figure 3(b) presents data for the second of the 21 genes reported
by Chu et al. (2005). From visual inspection it is difficult to argue that there would be
any influence of gene #7714 on the Gleason score at all. Among the 21 reported genes
there are 5 which are entirely unrelated with GS (these are gene #7714, #9264, #7049,
#9878 and #11233). All other reported genes had at least in one of our considered models
unadjusted p-values smaller than 0.05, but except for those listed in Table 2 no reported
gene had p-values smaller than 0.0001.
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We mentioned already that the expression levels of the first three genes (#583, #8803,
#12092) selected under permutation tests were strongly correlated. Their data suggests a
trend, where larger expression levels of gene #583 (as well as smaller expression levels of
#8803 and #12092) are associated with less cell differentiation. This is best captured by
Model 2 and the linear regression model. It is striking that under permutation tests none
of the three genes was detected by the model without penalties. On the other hand genes
#4325 and #10787, whose expression levels were also strongly correlated, were only
detected by Model 1 and the model without penalties. Figure 3(c) provides the explanation
why this is the case. Expression levels for GS = 6 and GS = 7 appear practically identical,
but 4 of the 6 individuals with extremely bad cell differentiation had particularly large
expression levels of gene #4325 and #10787. Both of these genes were also found by Chu
et al. (2005), but based on our analysis it becomes quite clear that for those two genes the
influence on GS is qualitatively much different compared with the previous three genes.

4 Conclusion

In this article we have analyzed the statistical properties of an approach to ordinal regres-
sion introduced by Torra et al. (2006), where ordinal variables are mapped into the interval
[0, 1]. The authors claim that fixing these mappings a priori would lead to a bias in the
resulting models, and therefore they suggest to estimate them by least squares optimiza-
tion. We have shown in Section 2 that in the case of an ordinal explicatory variable the
approach actually works, though it coincides with the well known procedure of isotonic
regression.

In Section 3 we have seen that if the dependent variable is ordinal then the least squares
estimation of the maps f in (8) does not at all lead to an “unbiased” situation. Asymptoti-
cally the procedure is equivalent to choosing the map f(i) = pl(p0+pl)

−1 for 0 < i < l, a
choice which in most situations leads to a significant loss of power compared e.g. to sim-
ple regression, which is equivalent to the choice f(i) = i/l. Torra et al. (2006) introduced
their new approach to ordinal regression actually when both dependent and explicatory
variables are ordinal. In Frommlet (2008) the shortcomings in this specific situation are
discussed.

In summary the procedure of Torra et al. (2006) cannot really be recommended for
dependent ordinal variables. An improvement based on penalties was suggested and eval-
uated in a small simulation study. In principle the choice of such penalties based on
asymptotic considerations is not much different from choosing a-priori a specific map f .
Different penalties are suitable for different alternative hypothesis, which can be described
in terms of the relative proximity of adjacent ordinal scales. This was made transparent
by Example 3.1 as well as by the analysis of micro array data.

Specifically in the gene expression data analysis the type of model for which a gene
is significant has some direct interpretation: Genes selected only by model 1 are signifi-
cantly different expressed only for Gleason score GS > 7, genes selected by model 2 tend
to have a trend, etc. In general our analysis suggests that the number of important genes
reported both in Singh et al. (2002) as well as in Chu et al. (2005) are rather optimistic. In
particular the findings of the original study Singh et al. (2002) can hardly be confirmed.
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Based on the data we would suggest the following slightly more modest conclusion:
Three genes (#583, #8803, #12092) have a general influence on cell differentiation. Gene
#583 (RET finger protein-like 3) is known to be related with oncogenic activity Chu et
al. (2005) and its role in the regulation of growth or differentiation of different cell types
has been discussed for a long time Tezel et al. (1999). Gene #8803 is known to express
insulin-like growth factor-binding protein-3, and gene #12092 expresses apolipoprotein E.
For two genes (#4325, #10787), both known to be related with the development of drug
resistance, expression in patients with GS > 7 was significantly enhanced. Finally for
gene #6118, whose functional role is not yet known, expression was somewhat larger for
better differentiated cells. Although one might expect that more genes have an influence
on differentiation of tumor cells, evidence from the data appears to be not particularly
strong, which is largely due to the rather small sample size. We would therefore suggest
that all other genes reported both in Singh et al. (2002) and Chu et al. (2005) should be
considered only with great precaution.

In this article we have only considered the least squares approach suggested by Torra et
al. (2006). As an alternative to the presented penalizing scheme one might like to consider
a likelihood ratio test. To this end it is necessary to specify a probabilistic model. The
simplest scenario is to require that X conditional on each level of Y is normal distributed
with fixed variance σ2. It is then easy to show that under these assumptions the ML-
estimate and the least squares estimate with regard to (8) coincide. However, to construct
a likelihood ratio test we also need the likelihood function under the null hypothesis, but
for b1 → 0 the likelihood flattens out and converges towards 0. We are confronted with
the situation that under the null hypothesis the parameters c are not identifiable and have
to be treated as nuisance parameters. It might be an interesting topic for further research
to address this particular problem of inference where some nuisance parameters are not
identified under the null hypothesis.
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Appendix (Proof of (18) in Section 3.1)
For the sake of notational convenience we want to prove

√
n(x̄Jν − x̄J0)

d→ N (0; σ2(p−1
J0

+ p−1
Jν

))

only for the situation where J0 = {0} and Jν = {l}. The generalization should be
obvious.

Lemma 4.1 Let Xi and Yi be i.i.d. sequences of independent random variables, Xi with
finite mean µ, finite variance σ2 > 0 and Yi discrete with probabilities (p0, p1, . . . , pl).
We then have

√
n(X̄ l − X̄0)

d→ N (0; σ2(p−1
0 + p−1

l )).

Proof: We can write

√
n

(
1

nl

∑

i:Yi=l

Xi − 1

n0

∑
i:Yi=0

Xi

)
=
√

n


 1

E(nl)

E(nl)∑
j=1

Xij −
1

E(n0)

E(n0)∑

k=1

Xik




+
√

n


 1

nl

∑

i:Yi=l

Xi − 1

E(nl)

E(nl)∑
j=1

Xij


 +

√
n


 1

E(n0)

E(n0)∑

k=1

Xik −
1

n0

∑
i:Yi=0

Xi


 ,

where we still have to specify how exactly we choose the subindices ij and ik. If we
request that ij 6= ik for all j and k then

∑E(nl)
j=1 Xij and

∑E(n0)
k=1 Xik are independent and
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we immediately conclude from the central limit theorem that the first term on the right
hand side converges as desired:

√
n


 1

E(nl)

E(nl)∑
j=1

Xij −
1

E(n0)

E(n0)∑

k=1

Xik


 d→ N (0; σ2(p−1

0 + p−1
l )) .

Due to Cramer’s (or Slutsky’s) theorem it remains to show that the other two terms on the
right hand side converge in probability towards 0. It is evident that the second term can
be rewritten as

T2 :=
√

n


 1

nl

∑

i:Yi=l

(Xi − µ)− 1

E(nl)

E(nl)∑
j=1

(Xij − µ)




and similar for the third term, so without loss of generality we can assume that µ = 0.
Concerning the choices of the subindices we have basically four situations:

• n0 ≥ E(n0), nl ≥ E(nl): The choice is obvious, ij has to be a subset of {i : Yi = l}
and ik has to be a subset of {i : Yi = 0}.

• n0 < E(n0), nl < E(nl): For ij choose first all indices {i : Yi = l} and then choose
arbitrary indices from {i : Yi 6= 0}. For ik choose again first all indices {i : Yi = 0}
and then arbitrary from the remaining unused indices.

• n0 < E(n0), nl ≥ E(nl): First choose the ij as a subset of {i : Yi = l}, then choose
for ik first all i : Yi = 0, and then fill up arbitrarily.

• n0 ≥ E(n0), nl < E(nl): Like above, only n0 and nl exchange roles.

Having made those choices we can now look at the behavior of the second term. Let
us first look at the situation where nl ≤ E(nl). We can then rewrite

T2 =
√

n

(
1

nl

− 1

E(nl)

) nl∑
i=1

Xi −
√

n
1

E(nl)

E(nl)∑
i=nl+1

Xi

=
npl − nl

pl

√
n

1

nl

nl∑
i=1

Xi − 1

pl

√
n

E(nl)∑
i=nl+1

Xi .

Due to the central limit theorem the term nl−npl

pl
√

n
converges in distribution towards a

normally distributed random variable and due to the law of large numbers for randomly
indexed sequences 1

nl

∑nl

i=1 Xi converges to 0 in probability (we need that nl converges
almost surely towards infinity, which is clear). Now according to Cramer’s theorem the
product of both converges in distribution towards 0, which furthermore implies conver-
gence in probability towards 0.

For the second term we first apply Chebyshev inequality with respect to
∑npl

i=nl+1 Xi

for given nl:

Pr

(∣∣∣∣∣
1

pl

√
n

npl∑
i=nl+1

Xi

∣∣∣∣∣ > ε
∣∣∣nl

)
≤ (npl − nl)σ

2

np2
l ε

2
.
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Taking expectation with respect to nl and applying Lyapunov’s inequality leads to

Pr

(∣∣∣∣∣
1

pl

√
n

npl∑
i=nl+1

Xi

∣∣∣∣∣ > ε

)
≤ σ2

np2
l ε

2

(
E(nl − npl)

2
)1/2

= O(n−1/2) .

The case nl > E(nl) can be dealt similarly.
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