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Abstract: One important tool for assessing whether a data set can be de-
scribed equally well with a Rasch Model (RM) or a Linear Logistic Test
Model (LLTM) is the Likelihood Ratio Test (LRT). In practical applications
this test seems to overly reject the null hypothesis, even when the null hypoth-
esis is true. Aside from obvious reasons like inadequate restrictiveness of lin-
ear restrictions formulated in the LLTM or the RM not being true, doubts have
arisen whether the test holds the nominal type-I error risk, that is whether its
theoretically derived sampling distribution applies. Therefore, the present
contribution explores the sampling distribution of the likelihood ratio test
comparing a Rasch model with a Linear Logistic Test Model. Particular at-
tention is put on the issue of similar columns in the weight matrix W of the
LLTM: Although full column rank of this matrix is a technical requirement,
columns can differ in only a few entries, what in turn might have an impact
on the sampling distribution of the test statistic. Therefore, a system of how
to generate weight matrices with similar columns has been established and
tested in a simulation study. The results were twofold: In general, the ma-
trices considered in the study showed LRT results where the empirical alpha
showed only spurious deviations from the nominal alpha. Hence the theo-
retically chosen alpha seems maintained up to random variation. Yet, one
specific matrix clearly indicated a highly increased type-I error risk: The em-
pirical alpha was at least twice the nominal alpha when using this weight
matrix. This shows that we have to indeed consider the internal structure of
the weight matrix when applying the LRT for testing the LLTM. Best prac-
tice would be to perform a simulation or bootstrap/re-sampling study for the
weight matrix under consideration in order to rule out a misleadingly signifi-
cant result due to reasons other than true model misfit.
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hood Ratio Test, Sampling Distribution.

1 Introduction
G. Rasch (1960) introduced a statistical model that allows for describing the probability
of a positive response to a dichotomous item by means of two real-valued parameters, βi

(i = 1, . . . , k) covering the difficulty (or easiness) of the item i and θv (v = 1, . . . , n)
characterizing person v in terms of the ability to solve this item or proneness to endorse a
statement:

p(+|θv, βi) =
eθv−βi

1 + eθv−βi
. (1)
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The Linear Logistic Test Model (LLTM; Fischer, 1972, 1973, 1983, 1995; Scheiblech-
ner, 1971, 1972) is an extension of the Rasch Model (RM). It decomposes each item dif-
ficulty parameter βi into a weighted sum of basic parameters ηj (j = 1, . . . , p), represent-
ing for example item components or cognitive operations required for solving the item. A
weight matrix W = {wij} of size k × p stipulates which basic parameter contributes to
each item:

βi =

p∑
j=1

wijηj + c . (2)

The weight matrix W must have full column rank p and is defined according to the-
oretical considerations. Many applications work with entries of W equalling 0 or 1, but
any other real-valued entry could be chosen as well—as long as they are justifiable from a
substantive point of view and established prior to parameter estimation. The normalizing
constant c is required to compensate for an (admissible) shift of the βi (for instance for
norming purposes) without affecting the ηj (Fischer, 1995). In fact, it can be eliminated
by setting c = −1/k

∑
i

∑
j wijηj , hence w∗

ij = wij−1/k
∑

i wij (Fischer, 1983). Apply-
ing the LLTM when the RM does not hold would be of little interest, as it would boil down
to the decomposition of an item parameter that innately has not adequately described the
data.

Both the RM and the LLTM allow for conditional maximum likelihood (CML) esti-
mation (Andersen, 1970, 1972). Beside the advantageous fact that this method provides
for handling of the incidental parameter problem (Neyman and Scott, 1948; revisited by
Lancaster, 2000) by conditioning on the sufficient statistics, it also allows for the appli-
cation of Conditional Likelihood Ratio Tests (LRT; Andersen, 1973) to assess model fit.
Fischer (1995, 1997) offers two different assessments determining the interrelation of the
two models: from a theoretical point of view, the LLTM can be regarded a more general
model than the RM, because the RM is a special case of the LLTM if W is an identity ma-
trix. From an empirical perspective, the LLTM can be considered a restriction of the RM,
because it imposes a (linear) structure on the item parameters βi. Adopting the empirical
point of view allows for applying the LRT to test the adequacy of the decomposition (2).
Let r be the vector of rawscores of a data set X. We will call LRM the maximum of the
conditional likelihood function of the Rasch Model, LC(X|r, β̂) , and LLLTM the maxi-
mum of the conditional likelihood function of the LLTM, LC(X|r, β̂,W). Then, the test
statistic λ = −2 log(LLLTM/LRM) is asymptotically χ2 distributed with k−p−1 degrees
of freedom. If for a given data set the test does not reject the null hypothesis of whether
the data can be described equally well with the LLTM and the RM (given a type-I error
risk α), an estimate of the item difficulty parameter β̂i can be determined from the vector
of basic parameter estimates η̂ and the structure implied by W.

1.1 Problem

The LRT seems to be problematic as in most applications the LLTM is rejected, as has
already been shown by Fischer (1995, 1997). Two reasons seem obvious for this increased
rejection rate: Either the theoretical assumptions concerning the decomposition of item
parameters into basic parameters expressed in W are too restrictive for most empirical
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data or the requirement of the RM to hold for the data does not apply. Both reasons
depend on the respective set(s) available, therefore a general analysis is difficult. Another
reason why the LRT may appear likely to reject the null hypothesis of model equivalence
could relate to the sampling distribution of the test statistic as well: it could be possible
that the theoretically derived distribution does not apply so that the test does not hold the
nominal alpha risk. Some evidence for a systematic increase of the type-I error risk has
been provided by Hohensinn et al. (2008).

The present study examines whether certain configurations of W principally result
in a higher (than the nominal α) rejection rate of the null-hypothesis when applying the
LRT. The specific issue that shall be dealt with in the present study is linear independence
of columns: The matrix W must have full column rank, otherwise the decomposition
of item parameters into the basic parameters is not unique. Although this rule is unam-
biguous from a mathematical point of view, a perturbing variation can be thought of: full
column rank does not prevent columns from being similar (yet linearly independent in the
algebraical sense). Similarity in this context means that the item parameter decomposi-
tion (2) leads to all but one (or a few) items sharing a certain component (described by its
basic parameter). Then, the entries in the respective columns of W will be nearly identi-
cal except for a few cell entries. We want to investigate, whether such similarities in the
columns of W may cause the LRT to violate the nominal alpha. This article will not con-
sider a misspecification of the design matrix W, that issue has been dealt with by Baker
(1993) or Klein (2003), for example. Therefore, only design matrices correctly describ-
ing the true decomposition of item parameters into basic parameters shall be taken into
account. We want to confine ourselves to binary entries of W, which are most common
in practical applications. Of course, other entries could be used as well, but a substantive
justification of non-integer wij seems difficult: why should, for example, a basic parame-
ter be weighted with 0.6 and not 0.7 or 0.5 for determining the difficulty of an item? Of
course, if a basic parameter describes a cognitive operation required to solve a task, and
the operation has to be applied twice (or 3 times, . . . ) when working on a certain task,
then an entry wij of 2 (or 3, . . . ) would be appropriate. But such applications seem rare,
hence non-binary weighting shall not be considered in this study.

1.2 Method

In order to assess the empirical type-I error risk alpha of the LRT with respect to vari-
ations in the weight matrix W, a simulation study has been performed. The empirical
rejection rate of the LRT was assessed for a large number of data sets complying with
both the RM and a given matrix W. The simulations were conducted according to the
following scheme: Based on a set of basic parameters ηj and a weight matrix W, the cor-
responding item difficulty parameters βi were determined. Along with a vector of ability
parameters θ, the item-response matrix X was generated according to the usual principles
for generating data pursuant to the RM (van den Wollenberg, 1982). Then both the item
parameters of the RM and the basic parameters according to the LLTM were estimated,
resulting in a likelihood for each of the two models. The LR test statistic, the respective
degrees of freedom, and the p-value were stored. This procedure was repeated m = 1000
times for each weight matrix W (see below), and the number of significant results s was
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computed. The relative frequency of s gives an estimate for the empirical alpha (αemp).
The LRT is considered correct if αemp does not differ from the nominal α (evaluated at
0.01, 0.05, and 0.10) but for random variation. This means that the empirical α does not
exceed an interval ε of±10% and 20% (the 10% interval covers values between 0.045 and
0.055 and the 20% interval covers values between 0.04 and 0.06).

1.3 Designs
In order to establish a system of matrices exhibiting increasingly similar columns, the
following approach was chosen: We started with a matrix W0 which we would a priori
consider perfect in terms of linear independence, as it consists of all 2p patterns that can
be formed with p basic parameters. Columns exhibit maximum dissimilarity in such a
matrix. We then systematically added columns similar to the existing ones, thus obtaining
an extended matrix W∗. These additional columns (p + 1), . . . , 2p are copies of the
columns 1 to p of W0, in which one element per column has been altered. Each single
column of W0 can result in up to p new columns, allowing for a maximum of p(2p + 1)
columns. This, of course, would in some cases violate the necessity of p < k, therefore
the admissibility of each matrix W has to be checked. In the present study, we copied
each of the p columns of W0 either one or two times and altered one entry in each copy.
This process will be labelled by a three digit notation throughout the text: the first digit
will denote the number of original columns, p. The second digit, c1 will give the number
of columns of W0 copied (and altered) for the first time and the third digit, c2 will give
the number of columns copied (and altered) a second time (note that the implementation
started with the rightmost column of W0, which has no implications at all). Table 1
contains the design 4–4–4 as an example:

Table 1: Example of W∗ with the description 4–4–4
1 2 3 4 4* 3* 2* 1* 4** 3** 2** 1**

1 0 0 0 0 ?
2 0 0 0 1 ?
3 0 0 1 0 ?
4 0 0 1 1 ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13 1 1 0 0 ?
14 1 1 0 1 ?
15 1 1 1 0 ?
16 1 1 1 1 ?

Note: Column headers denote the number of the respective column in W0, and asterisks indicate
first and second copies of the original columns. The cells marked with an ? indicate reversed
entries. Ellipses indicate that no changes compared to the corresponding cells of columns 1 to p

have been made.

The simulation covered the following cases: For each p the number of copies c1 ranged
from zero to p while c2 remained zero. Then c2 took all values from zero to p while c1

remained zero. And finally, c1 and c2 took all values from 1 to p at the same time. This
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system was applied to values of p ranging from 3 to 5. Sample sizes were 250 and 750
for all designs. Basic parameters ηj (j = 1, . . . , p∗; p∗ = p + c1 + c2) were chosen
equidistantly from the interval [−1, 1]. Moreover, some specific designs were analysed as
well, but due to exorbitant runtime no systematic assessment was possible. The analysis
of the specific designs will not be presented in detail, however none of them showed
results contradicting those presented in this article.

All computations were performed with R (R Development Core Team, 2008), using
the library eRm (Mair and Hatzinger, 2007a, 2007b).

2 Results
The empirical p-values for all designs and evaluated at a nominal alpha of 0.01, 0.05, and
0.1 are given in Table 3 along with an indication whether the values either exceed the
10% epsilon interval or the 20% epsilon interval (see note beneath Table 3 for the coding
scheme). The designs 3–2–2 and 3–3–3 had to be skipped, as the corresponding design
matrices W do not have full column rank. The number of designs indicating violations of
the nominal α according to the criteria mentioned above is given in Table 2 (broken down
by αnom and n).

Table 2: Empirical α broken down by nominal α and sample size n
αnom 0.01 0.05 0.10
n 250/750 Total 250/750 Total 250/750 Total
αemp above αnom 13/12 25 11/10 21 7/6 13

exceeding +2ε 7/7 14 4/5 9 2/2 4
exceeding +1ε 6/5 11 7/5 12 5/4 9

correct 8/8 16 17/19 38 24/22 46
αemp beyond αnom 16/17 33 9/8 17 6/9 15

exceeding −1ε 3/9 12 4/2 6 1/0 1
exceeding −2ε 13/8 21 5/6 11 5/9 14

Total 37/37 74 37/37 74 37/37 74

The number of results to be considered robust increases with the nominal α: Roughly,
compared to αnom = 0.01, the number of correct results for αnom = 0.05 is twice as
high, and for αnom = 0.1 it is about three times as high, independent of sample size.
Accordingly, the number of deviating results decreases with increasing αnom but not in
a certain direction: the number of designs showing a progressive characteristic (αemp >
αnom) is approximately equal to the number of designs exhibiting a conservative tendency
(αemp < αnom), again independent of sample size. The extent of transgression follows
the same overall tendency, it decreases when αnom increases.

In general, no global pattern of aberration was discernible in a designwise analysis (cf.
Table 3), neither in terms of direction (αemp below or above αnom) nor extent (exceeding
ε = 0.1 or ε = 0.2). However, one specific design was identified that revealed a strikingly
deviant behaviour: The design 4–4–4 exceeded the nominal alpha to a remarkable extent
(note that the weight matrix W of this design has been chosen for the exemplification
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Table 3: Empirical α and robustness broken down by design
n = 250 n = 750

Mod α̂.01 δ.01 α̂.05 δ.05 α̂.10 δ.10 α̂.01 δ.01 α̂.05 δ.05 α̂.10 δ.10

300 .011 0 .056 1 .102 0 .009 −1 .044 −1 .092 0
301 .015 2 .055 0 .110 0 .009 −1 .055 0 .098 0
302 .012 1 .051 0 .105 0 .010 0 .059 1 .118 1
303 .010 0 .042 −1 .101 0 .014 2 .060 2 .118 1
310 .008 −1 .057 1 .114 1 .006 −2 .041 −1 .104 0
320 .009 −1 .050 0 .111 1 .008 −1 .040 −1 .084 −1
330 .012 2 .064 2 .100 0 .008 −1 .050 0 .095 0
311 .012 1 .044 −1 .089 −1 .013 2 .052 0 .100 0
400 .010 0 .054 0 .104 0 .007 −2 .038 −2 .085 −1
401 .008 −1 .039 −2 .086 −1 .007 −2 .051 0 .110 0
402 .012 1 .051 0 .108 0 .014 2 .061 2 .104 0
403 .012 1 .057 1 .110 0 .009 −1 .042 −1 .088 −1
404 .009 −1 .054 0 .108 0 .006 −2 .051 0 .097 0
410 .019 2 .054 0 .100 0 .007 −2 .052 0 .110 0
420 .009 −1 .041 −1 .091 0 .015 2 .047 0 .101 0
430 .009 −1 .053 0 .097 0 .007 −2 .051 0 .107 0
440 .011 0 .057 1 .111 1 .011 0 .050 0 .083 −1
411 .004 −2 .039 −2 .086 −1 .010 0 .055 0 .097 0
422 .008 −1 .052 0 .098 0 .011 0 .060 1 .107 0
433 .018 2 .064 2 .127 2 .006 −2 .046 0 .095 0
444 .024 2 .090 2 .185 2 .031 2 .102 2 .179 2
400 .010 0 .054 0 .104 0 .007 −2 .038 −2 .085 −1
501 .010 0 .036 −2 .074 −2 .021 2 .068 2 .131 2
502 .009 −1 .050 0 .098 0 .011 0 .047 0 .089 −1
503 .009 −1 .054 0 .106 0 .012 1 .045 0 .092 0
504 .004 −2 .051 0 .119 1 .008 −1 .048 0 .107 0
505 .013 2 .055 0 .115 1 .009 −1 .052 0 .089 −1
510 .012 1 .056 1 .103 0 .011 1 .055 1 .104 0
520 .009 −1 .053 0 .095 0 .011 0 .051 0 .099 0
530 .008 −1 .043 −1 .100 0 .012 1 .056 1 .099 0
540 .008 −1 .043 −1 .085 −1 .009 −1 .043 −1 .085 −1
550 .011 0 .064 2 .108 0 .007 −2 .044 −1 .087 −1
511 .013 2 .060 1 .109 0 .012 1 .062 2 .108 0
522 .012 1 .052 0 .106 0 .013 2 .058 1 .118 1
533 .010 0 .055 0 .106 0 .010 0 .054 0 .093 0
544 .005 −2 .031 −2 .080 −1 .011 0 .052 0 .111 1
555 .008 −1 .056 1 .108 0 .012 1 .051 0 .102 0

Note: Mod = Three-digit model specification (p—c1—c2); α = empirical p-value for αnom; δ = deviation
indicator: −2 = empirical p-value beyond ε = 0.2-interval;−1 = empirical p-value beyond ε = 0.1-interval;
0 = empirical p-value within the ε = 0.1-interval; ; +1 = empirical p-value exceeds ε = 0.1-interval; +2 =
empirical p-value exceeds ε = 0.2-interval; α̂ = αemp

given in Table 1). This design did not only exhibit deviations from the nominal alpha for
all levels and combinations of αnom, ε, and n, but the deviations observed were enormous
too: the observed significances αemp amounted to roughly twice (or even three times) the
respective αnom in all cases considered. In order to check this result for both error and
chance, the simulation of this specific design was repeated with m = 300000 (n = 100
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only). The results were virtually identical, with empirical alpha values of 0.024, 0.103,
and 0.185 for αnom = 0.01, 0.05, and 0.1, respectively.

3 Discussion

The main focus of this study was, whether linearly independent yet very similar columns
in W have an impact upon the test’s actual type-I error risk given the H0 holds. For
that purpose, a system was established which allows for the generation of an indefinite
number of weight matrices with similar columns, a selection of which has been analysed.
The empirical alpha was evaluated using two tolerance levels ε, 10% and 20%, the more
stricter of which (10%) will be used for our decision concerning the correctness of the
LRT (cf. D. Rasch, Kubinger, Schmidtke, and Häusler, 2004).

Several designs with empirical alpha levels outside the 10% ε interval were found.
This might, at first sight, be taken as an indicator for the sampling distribution of the
test statistic to be different from the theoretically derived χ2 distribution with degrees
of freedom equalling the difference in the number of parameters estimated for the RM
and the LLTM. Nevertheless, a closer inspection unambiguously revealed that the ob-
served rejection rate was sometimes below and sometimes above the nominal alpha. But
the pattern of empirical alpha values outside the ε interval was unpredictable, consider-
ing the respective structure of the weight matrix W, the chosen nominal alpha, or the
sample size. Therefore, the results do not allow for determining a general pattern of de-
viation from the nominal alpha. Rather, the observed deviations of αemp from αnom have
to be attributed to the simulation design: Obviously, the chosen number of replications
(m = 1000) does not suffice to obtain sufficiently stable results. This conjecture could be
substantiated by means of additional simulations, which were carried out with a larger m:
results were considerably more stable and the 10% interval limits were violated to a lesser
extent. Therefore, we conclude that the observed deviations of αemp to αnom have to be
considered spurious and the central χ2 distribution (with degrees of freedom equalling
the difference of the number of parameters estimated in the RM and the LLTM) seems to
generally apply for the test statistic under the null hypothesis. The reason for the present
study to only use 1000 replications was that it focused on facilitating numerous (37) dif-
ferent design matrices W to be analysed in finite time (computer runtime is still a limiting
factor, as it took weeks to obtain the results presented here).

Nevertheless, one matrix (4–4–4) proved highly progressive according to all levels
of nominal alpha (1%, 5%, and 10%) and sample sizes (250 and 750). The empirical
alpha was at least twice the nominal alpha in all cases. In order to rule out that an in-
sufficient number of replications (1000) has been chosen, the simulation of the 4–4–4
matrix has been repeated using 300000 samples of size 100. This simulation revealed
identical results, therefore the highly increased empirical alpha of this matrix W cannot
be considered spurious. Rather, the decomposition of item difficulty parameters into basic
parameters according to this specific weight matrix in fact seems to lead to an increased
type-I error risk.

Because most of the design matrices considered showed correct results, both the pos-
tulated chi-square distribution of the test statistic under the null hypothesis and the pur-
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ported degrees of freedom seem appropriate. The fact that one specific weight matrix
deviated heavily (and reproducibly) from this general tendency leads us to the conclusion
that the inner structure of the weight matrix W—always being non-singular—plays a de-
cisive role for the factual type-I error risk of the LRT. Therefore, for practical applications,
no general rule could have been established so far. Hence, the respective matrix W has to
be examined anew. For that purpose, one could either perform an a priori simulation study
comparable to the present one or a post-hoc bootstrap analysis. Concerning the latter, a
parametric bootstrap (cf. Davison and Hinkley, 1997; Efron and Tibshirani, 1993; Shao
and Tu, 1995) seems appropriate, as we know the model and have parameter estimates
at our disposal. Such an additional analysis would allow for the distinction, whether a
significant test result indicates a true model deviation or has to be considered a method
artifact due to the structure of the respective weight matrix. As only one single weight
matrix (or maybe a few) will be considered, a much larger number of replications than
1000 is feasible (for instance, 50000), hence results will be stable.

Altogether, the conclusions of this study are twofold: on the one hand, the LRT in
general seems to keep the nominal alpha, so the theoretically assumed sampling distribu-
tion of the test statistic appears to apply. Hence, the LRT seems to work across a wide
range of designs, significant test results are more likely to reflect true model violations
than method artifacts. On the other hand, certain weight matrices may lead to false rejec-
tions, as has been shown in the present study. Therefore the structure of the weight matrix
has to be taken into consideration. As a next step, of course, we have to find a criterion
indicating which weight matrices are likely to lead to an increased type-I error risk.

Some general remarks seem necessary in this context: The results presented do not
supersede the crucial requirement of the test that might easily be violated in practical
application: the denominator model has, of course, to be true. Now, in our case, this
is the Rasch Model, the appropriateness of which can be tested—but again we rely on
tests. This means that our decision can be correct with probability 1 − α (in the non
significant case) or 1 − β (in the significant case). Concerning the first (non-significant)
case, we have to bear in mind that failing to reject the null hypothesis will not prove that
it is true. Only, if we succeed in not rejecting the null hypothesis of model fit for many
times, then its corroboration—according to Popper—increases. However, regarding both
cases, we have to keep an eye on sample size: Too small a sample will render relevant
model violations undetectable and too large a sample will cause irrelevant discrepancies
to become significant. Most of all, the first case will cause the erroneous acceptance of
the RM and its unjustified use for testing the LLTM. Of course, one could argue that in
such a case, the LRT will as well be underpowered—but actually we cannot be sure about
that. Kubinger and Draxler (2007) have already pointed out that there is still a gap in
the investigation of the power of the LRT. Hence, the problem of the LRT is retained,
namely the lack of knowledge concerning the power of the test along with the availability
of an adequate effect size measure (an interesting approach has been proposed by Draxler,
2007). Lastly, in the present context, the missing knowledge concerning test power and
effect size measure reappears again: We do not know which differences between the RM
and the LLTM should be considered relevant and which sample size would be required to
evidence those differences with a given type-I and type-II error risk. These issues have to
be tackled in further studies.
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This leads us to another—and by far more elementary—problem of assessing whether
premises of a test can be considered given: the application of the test of interest (the
LRT for testing the restrictions expressed in W) depends on whether or not a previously
applied test (in our case the LRT for assessing the fit of the RM) has been significant or
not. The same phenomenon occurs, for instance, when we decide to use either the t-test or
the Welch test depending on a preliminarily applied F- or Levene-test. As these two tests
(in both cases) are not independent of each other, we cannot ascertain the type-I-error-risk
of the whole procedure (cf. Zimmerman, 2004).

But, finally, to the extent we succeed in constructing theoretically sound and struc-
turally justified items, such problems diminish. Again, sophisticated methodological con-
siderations cannot substitute a sound theoretical framework. The Rasch family of models
represents this in its purest form—maybe one reason why some refrain from applying
them.
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