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Abstract: Determining the optimum number of components to be retained
is a key problem in principal component analysis (PCA). Besides the rule
of thumb estimates there exist several sophisticated methods for automati-
cally selecting the dimensionality of the data. Based on the probabilistic PCA
model Minka (2001) proposed an approximate Bayesian model selection cri-
terion. In this paper we correct this criterion and present a modified version.
We compare the novel criterion with various other approaches in a simulation
study. Furthermore, we use it for finding the optimum number of principal
components in hyper-spectral skin cancer images.

Zusammenfassung: Ein zentrales Problem der Hauptkomponentenanalyse
(PCA) ist es, die Anzahl an wichtigen Komponenten zu wählen. Neben den
bekannten Faustregeln gibt es verschiedene fortgeschrittene Methoden zur
automatischen Wahl der optimalen Dimensionalität der Daten. Beispiels-
weise wurde von Minka (2001), basierend auf dem probabilistischen PCA
Modell, ein approximativ Bayes’sches Kriterium zur Modellwahl vorgeschla-
gen. In der vorliegenden Arbeit korrigieren wir dieses Kriterium und stellen
eine modifizierte Version vor. Das neue Kriterium wird mit anderen Ver-
fahren in einer Simulationsstudie verglichen. Weiters wird es zum Finden
der optimalen Anzahl an Hauptkomponenten in hyper-spektralen Hautkrebs-
daten verwendet.
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1 Introduction
Principal component analysis (PCA) was introduced by Pearson (1901) and is a linear
orthogonal data transformation. The data is transformed in such a way that in the new
coordinate system the components are uncorrelated and sorted in a descending order ac-
cording to their variance. PCA is a standard tool for reducing multidimensional data sets
to lower dimensions for further statistical analysis by omitting higher-order components.
Determining the optimum number of components to be retained is a major problem in
PCA. Besides certain rule of thumb estimates there exist numerous sophisticated methods
for automatically selecting the dimensionality of the data. For the Gaussian probabilis-
tic PCA model of Tipping and Bishop (1999) an approximate Bayesian model selection
criterion was proposed by Minka (2001). Although mentioned in books and used in var-
ious applications, we found some mistakes in its proof. In the following we correct this
criterion and present a modified version.

The paper is organized as follows. Section 2 presents the probabilistic PCA model
and mentions its basic properties. In Section 3 the model selection criterion proposed by
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Minka (2001) is corrected. Section 4 compares the corrected criterion with several other
approaches in a simulation study while Section 5 presents the results when it is applied to
hyper-spectral skin cancer image data. Section 6 is devoted to conclusions.

2 Probabilistic PCA
A probabilistic model for PCA was introduced by Tipping and Bishop (1999) and is a
special case of the factor analysis model (see Basilevsky, 1994). It assumes that the
random vector x is a linear combination of basis vectors and an additive noise term,

x =
k∑

i=1

hjwj + µ + ε = Hw + µ + ε , (1)

where x has length d, w has smaller length k, µ is the mean of x and the noise model
is isotropic Gaussian, p(ε) ∼ N (0, σ2Id). Moreover, the density of w is assumed to be
standard Gaussian, p(w) ∼ N (0, Ik). Therefore, the probability of observing x follows
a normal distribution, p(x | w, H ,µ, σ2) ∼ N (Hw + µ, σ2Id), and the marginal distri-
bution of x is p(x | H ,µ, σ2) ∼ N (µ,HHT +σ2Id). With this, the likelihood of a data
set, D = (x1, . . . , xn), is

p(D | H ,µ, σ2) = (2π)−
nd
2 |HHT + σ2Id|−n

2 exp
{
−n

2
tr

[
(HHT + σ2Id)

−1S
]}

,

(2)
where S = 1

n

∑n
i=1(xi−µ)(xi−µ)T . Consequently, the maximum-likelihood estimate,

µ̂, for µ is the arithmetic mean. Defining Ŝ = 1
n

∑n
i=1(xi − µ̂)(xi − µ̂)T and C =

HHT + σ2Id the log-likelihood evaluated at µ̂ is

log p(D | H , µ̂, σ2) = −n

2

(
d log(2π) + log |C|+ tr

[
C−1Ŝ

])
. (3)

Next we show how the maximum-likelihood estimates for H and σ2 can be obtained.
Using the symmetry of C and Ŝ the gradient of (3) with respect to H is

∂ log p(D | H , µ̂, σ2)

∂H
=

n

2

((
C−1ŜC−1

)T

−C−T

)
2H

= n
(
C−1ŜC−1H −C−1H

)
.

Setting the gradient to zero and multiplying with C from the left yields

ŜC−1H = H . (4)

We are interested in the solutions of (4) for H . A possible solution would be Ĥ = 0
which corresponds to a minimum of the likelihood. A second solution is C = Ŝ, where
the covariance model is exact. In this case, HHT = Ŝ − σ2Id, which has the solution
Ĥ = U (L−σ2Id)

1/2R, where U ∈ Rd×d is the orthogonal matrix with the eigenvectors
of Ŝ in its columns, L ∈ Rd×d is the diagonal matrix containing the corresponding eigen-
values and R ∈ Rd×d is an arbitrary orthogonal matrix. As Tipping and Bishop (1999)
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note, having an exact covariance model is generally undesirable because this information
is effectively discarded in the dimensionality reduction process anyway.

For the general and more interesting case consider all solutions of (4), but Ĥ 6= 0
and C 6= Ŝ. Using the singular value decomposition we know that the estimator can be
written as Ĥ = UDRT , where now U ∈ Rd×k is a matrix with orthonormal columns
(u1, . . . , uk), D ∈ Rk×k is the diagonal matrix containing the singular values d1, . . . , dk,
and R ∈ Rk×k is again an arbitrary orthogonal matrix. We deduce from (4) that

Ŝ
(
UD2UT + σ2Id

)−1
UDRT = UDRT =⇒ ŜUD = U

(
D2 + σ2Ik

)
D .

If di = 0, i = 1, . . . , k, the vector ui can be chosen arbitrarily such that U has orthonor-
mal columns. If di 6= 0, we have Ŝui = (σ2 + d2

i )ui which means that each column of
U has to be an eigenvector of Ŝ corresponding to the eigenvalue li = σ2 + d2

i . Therefore,
di = (li − σ2)1/2 and all maximum-likelihood solutions for H must have the form

Ĥ = U (L− σ2Ik)
1/2R , (5)

where now L ∈ Rk×k is the diagonal matrix with entries li and U contains the corre-
sponding eigenvectors. With this, we can simplify
∣∣∣ĤĤ

T
+ σ2Id

∣∣∣ =
∣∣U (

L− σ2Ik

)
UT + σ2Id

∣∣ = σ2(d−k)
∣∣(L− σ2Ik)U

T U + σ2Ik

∣∣

= σ2(d−k)
∣∣L− σ2Ik + σ2Ik

∣∣ = σ2(d−k) |L| = σ2(d−q)

q∏
i=1

li , (6)

where q is the number of non-zero di and equals the rank of Ĥ . Therefore, the eigenvalues
l1, . . . , lq correspond to those components retained in PCA and lq+1, . . . , ld correspond to
those discarded. Using the Woodbury matrix identity we find that

(
ĤĤ

T
+ σ2Id

)−1

= σ−2Id − σ−2U
((

L− σ2Ik

)−1
+ σ−2Ik

)−1

UT σ−2

= σ−2Id + U
(
L−1 − σ−2Ik

)
UT . (7)

Since UT ŜU = L, we get that

tr

[(
ĤĤ

T
+ σ2Id

)−1

Ŝ

]
= tr

[
σ−2Ŝ

]
+ tr

[
U

(
L−1 − σ−2Ik

)
UT Ŝ

]

=
1

σ2

d∑
i=1

li +

q∑
i=1

(
1

li
− 1

σ2

)
li = q +

1

σ2

d∑
i=q+1

li .

Plugging the latter result and (6) into the log-likelihood (3) we get

log p
(
D | Ĥ , µ̂, σ2

)
= −n

2

(
q∑

i=1

log li + (d− q) log σ2 + d log 2π + q +
1

σ2

d∑
i=q+1

li

)
.

(8)
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The maximum-likelihood estimate for σ2 turns out to be the average of the discarded
eigenvalues:

n(d− q)

σ
+

n

σ3

d∑
i=q+1

li = 0 =⇒ σ̂2 =
1

d− q

d∑
i=q+1

li . (9)

Substituting σ̂2 into the log-likelihood (8) we arrive at

log p
(
D | Ĥ , µ̂, σ̂2

)
= −n

2

(
q∑

i=1

log li + (d− q) log

(
1

d− q

d∑
i=q+1

li

)
+ d log 2π + d

)
.

(10)
In order to find those eigenvalues of Ŝ that correspond to discarded components we have
to maximize the above log-likelihood with respect to their choice. The sum of all eigen-
values is constant implying that maximization of (10) with respect to the eigenvalues is
equivalent to minimizing

min
li

i=q+1,...,d

log

(
1

d− q

d∑
i=q+1

li

)
− 1

d− q

d∑
i=q+1

log li .

The above function is minimized when all li, i = q + 1, . . . , d, have the same value.
Hence, the discarded eigenvalues are adjacent in the ordered spectrum of Ŝ. From the
fact that li > σ2, ∀i = 1, . . . , q and (9) we know that the smallest eigenvalue of Ŝ is
definitely discarded. This implies that the smallest d − q eigenvalues of Ŝ are discarded
and the top q eigenvalues are retained. Seen from this angle, the estimate for σ2 can be
interpreted as the average information loss when reducing the dimension of the data.

3 Choosing the Number of Principal Components Using
Bayesian Model Selection

For the probabilistic PCA model with positive definite covariance matrix Minka (2001)
developed a fast and efficient criterion to select the optimum number of principal com-
ponents. It is based on Bayesian model selection and is therefore sometimes called the
MIBS criterion (Minka Bayesian model Selection) in the literature. A variety of books
refer to this criterion, for example Cichocki and Amari (2002), Smidl and Quinn (2005)
and Bishop (2008). It showed good results for PCA and also for independent component
analysis. Although the MIBS criterion is widely used, we found some errors in its proof.
In this section we give a corrected proof and propose a modified criterion for selecting the
optimum number of principal components.

3.1 Choice of the Prior
In contrast to maximum-likelihood estimation performed in Section 2 we have to assign
priors to the parameters µ, H and σ2 in the probabilistic PCA model (1) when we want
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to go the Bayesian way. For the mean µ we use a non-informative, flat prior, p(µ) ∝ 1.
Integrating the likelihood (2) with respect to µ yields

p(D | H , σ2)=n−
d
2 (2π)−

d(n−1)
2

∣∣HHT+σ2Id

∣∣−n−1
2 exp

{
−n

2
tr

[(
HHT+σ2Id

)−1
Ŝ

]}
.

(11)
The prior for H is constructed similar to decomposition (5), H = U (Λ − σ2Ik)

1/2R.
In contrast to Section 2, here the orthogonal matrix R and the matrix U , which has or-
thonormal columns, are model parameters. Λ is a diagonal matrix containing parameters
λi, i = 1, . . . , k. Minka (2001) found a conjugate prior for U , Λ, R and σ2. This prior is
parameterized by a single parameter α > 0 and by applying simplifications similar to (6)
and (7) it can be written as

p(H , σ2) = p(U ,Λ,R, σ2)

∝
∣∣HHT + σ2Id

∣∣−α+2
2 exp

{
−α

2
tr

[(
HHT + σ2Id

)−1
]}

∝ |Λ|−α+2)
2 σ−(α+2)(d−k) exp

{
−α

2

(
tr

[
Λ−1

]
+

d− k

σ2

)}
. (12)

With this definition of the prior the parameters are a-priori independent since their joint
prior density (12) factors into the product of the marginal prior densities for each of the
parameters:

p(U ,Λ,R, σ2) = p(σ2)p(U )p(R)
k∏

i=1

p(λi) ,

where p(σ2) ∼ χ−2(α(d − k), (α + 2)(d − k) − 2) and p(λi) ∼ χ−2(α, α) are scaled
inverse-χ2 priors. To be least informative the prior for U is chosen as the reciprocal of the
area of the orthonormally constrained subset of the Cartesian product of k d-dimensional
unit hyperballs, known as the Stiefel manifold (see Khatri and Mardia, 1977 and James,
1954):

p(U ) = 2−kπ
1
4
k(k−1−2d)

k∏
i=1

Γ

(
d− i + 1

2

)
∝ 1 .

The prior for R can also be assumed constant but as the variable does not appear in the
likelihood (11) we can integrate it out.

3.2 The Corrected MIBS Criterion
Among the well-known statistical model selection criteria are Akaike’s information cri-
terion (AIC) and the minimum description length (MDL) criterion. These can be easily
used for finding the optimum number of principal components. Assume we observe sam-
ples D = (x1, . . . , xn) from a zero-mean normal random vector. An appropriate number
of principal components is the value of k = 1, . . . , d for which

AIC(k) = −2n(d− k) log ρ(k) + 2k(2d− k) , (13)

MDL(k) = −n(d− k) log ρ(k) +
k

2
(2d− k) log n , (14)
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is minimized. In (13) and (14) the function ρ(k) is

ρ(k) =
(lk+1lk+2 · · · ld)

1
d−k

1
d−k

(lk+1 + lk+2 + · · ·+ ld)
.

The criterion that was recommended in Minka (2001) has shown reasonable performance
in various applications and is fast to evaluate (see Cichocki and Amari, 2002 and Leonowicz,
Karvanen, Tanaka, and Rezmer, 2004):

p(D | k) ≈ 2
m−k

2 ρ(k)−n(d−k)|A|− 1
2 n−

k
2

k∏
i=1

Γ

(
d− i + 1

2

) k∏
i=1

l
−n

2
i

d∏

i=k+1

lni , (15)

where m = dk − k(k + 1)/2 and |A| is defined as

|A| = nm

k∏
i=1

d∏
j=i+1

(
l̃−1
j − l̃−1

i

)
(li − lj) where l̃i =

{
li, if i ≤ k ,

1
d−k

∑d
j=k+1 lj, if k < i ≤ d .

The number of principal components to retain is taken to be the value of k = 1, . . . , d
for with p(D | k) is maximized. Dropping all the terms that do not grow with n a BIC
approximation was also proposed in Minka (2001)

p(D | k) ≈ n−
m+k

2 ρ(k)−n(d−k)

k∏
i=1

l
−n

2
i

d∏

i=k+1

lni . (16)

The following theorem corrects the existing MIBS criterion (15) and serves as a guideline
for easy implementation of the novel criterion proposed therein.

Theorem: Consider the probabilistic principal component model (1) with a prior for the
parameters H , µ, and σ2 as discussed in Section 3.1

p(H ,µ, σ2) ∝
∣∣HHT + σ2Id

∣∣−α+2
2 exp

{
−α

2
tr

[(
HHT + σ2Id

)−1
]}

, (17)

where α > 0 is the prior parameter. By applying Laplace approximation the marginal
likelihood of D = (x1, . . . , xn) for a model with k < d principal components is

p(D | k) ≈ 2kck

∣∣Λ̂
∣∣−N

2
+1

σ̂−N(d−k)+2 exp
{−Nd

2
+k+1

}
(2π)

m+k+1
2 (|AU ||AΛ||Aσ2|)− 1

2 ,
(18)

where m = dk − k(k + 1)/2, N = n + 1 + α, Λ̂ is a diagonal matrix with entries λ̂i,
i = 1, . . . , k, and

ck =
n−

d
2 (2π)−

(n−1)d
2 π

1
4
k(k−1−2d)

2kΓ
(

(α+2)(d−k)
2

− 1
)

Γ
(

α
2

)k

(
α(d− k)

2

) (α+2)(d−k)−2
2 (α

2

) kα
2

k∏
i=1

Γ

(
d− i + 1

2

)
.

(19)
Moreover, if l1, . . . , ld denote the eigenvalues of Ŝ = 1

n

∑n
i=1(xi − µ̂)(xi − µ̂)T , where

µ̂ = 1
n

∑n
i=1 xi, we have
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|Aσ2| =
N(d− k)− 2

2
,

|AΛ| =

(
N

2
− 1

)k

,

σ̂2 =
n

∑d
i=k+1 li

N(d− k)− 2
,

λ̂i =
nli + α

N − 2
,

|AU | = nm

k∏
i=1

d∏
j=i+1

(
λ̃−1

j − λ̃−1
i

)
(li − lj) where λ̃i =

{
λ̂i, if i ≤ k ,
σ̂2, if k < i ≤ d .

The value for α is typically chosen very small to make the prior less informative.
Large values for α may lead to inferior results especially when the number of samples is
small.

3.3 Proof of the Corrected MIBS Criterion
The marginal likelihood can be written as

p(D | k) = ck

∫ ∣∣HHT + σ2Id

∣∣−N
2

× exp
{
−n

2
tr

[(
HHT + σ2Id

)−1
(
Ŝ +

α

n
Id

)]}
dUdΛdσ2 , (20)

where N = n + 1 + α. The multiplier ck defined in (19) combines the constants of
the prior (12) and the integrated likelihood (11). To evaluate the integral in (20) we
use Laplace approximation as described in Lindley (1980). The matrix U ∈ Rd×k has
m = dk − k(k + 1)/2 free parameters since we have k(k + 1) constraints because of the
orthonormality condition for the columns of U . Laplace approximation can therefore be
written as

∫
p(D,U ,Λ, σ2 | k)dUdΛdσ2 ≈ p(D, Û , Λ̂, σ̂2 | k)(2π)

k+m+1
2 |AUΛσ2|− 1

2 , (21)

where
(
Û , Λ̂, σ̂2

)
= arg maxU ,Λ,σ2 p(D,U ,Λ, σ2 | k) and AUΛσ2 is the negative Hessian

of the integrand at
(
Û , Λ̂, σ̂2

)
. It is important to know that Laplace approximation is a ba-

sis dependent method, so we have to choose an appropriate parameterization,
(
Z, Λ́, σ́2

)
,

for (U ,Λ, σ2). In the case of Λ and σ2 it is easy to guess a good parameterization, since
Laplace approximation works better when using integrals over the whole real axis than
just over the positive real numbers. Therefore, one can use σ́2 = log σ2 and λ́i = log λi

for all i = 1, . . . , k, where λ́i are the diagonal elements of Λ́. The Jacobian matrices for
the transformations are

JΛ =
∂(λ1, . . . , λk)

∂
(
λ́1, . . . , λ́k

) =




exp{λ́1}
. . .

exp{λ́k}


 = Λ , Jσ2 = σ2 .
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The matrix U is expressed in Euler vector coordinates

U = U d exp{Z}
[
Ik

0

]
, (22)

where Z ∈ Rd×d is a skew-symmetric matrix of parameters and U d ∈ Rd×d is a fixed
orthogonal matrix. The free parameters of Z are the first k rows of the upper triangle:
d(d − 1)/2 − (d − k)(d − k − 1)/2 = m, as desired. If Λ and σ2 are fixed, we can use
the result in (7) and write p(D, U | k,Λ, σ2) as

p(D, U | k,Λ, σ2) ∝ exp
{
−n

2
tr

[(
Λ−1 − σ−2Ik

)
UT ŜU

]}
,

which is known to be the von Mises-Fisher matrix distribution (see Khatri and Mardia,
1977). This density is maximized for U at Û , which contains the first k eigenvectors of
Ŝ. In the parameterization (22) this corresponds to the case where Ẑ = 0 and U d is equal
to the matrix of eigenvectors of Ŝ. Note, that the density has the same value if the sign of
a column of U is changed. This can happen 2k times, so the density has 2k extreme points
with the same function values and we need to multiply (21) with 2k. The determinant of
the Jacobian for the transformation (22) at Ẑ is obviously equal to 1.

Using the same argument as in (7) it follows that

tr
[(

HHT +σ2Id

)−1
(
Ŝ+

α

n
Id

)]
=

1

σ2
tr

[
Ŝ−UT ŜU

]
+ tr

[
Λ−1UT ŜU +

α

n
Λ−1

]
,

(23)
and if L = diag(l1, . . . , lk) denotes the diagonal matrix containing the first k eigenvalues
of Ŝ, we can rewrite log p

(D, Ẑ, Λ́, σ́2 | k)
as

log p
(
D, Ẑ, Λ́, σ́2 | k

)
∝

(
−N

2
+ 1

)
log |Λ|+

(
−N(d− k)

2
+ 1

)
log σ2

−n

2

(
1

σ2

(
tr

[
Ŝ

]− tr
[
L

])
+ tr

[
Λ−1L

]
+

α

n
tr

[
Λ−1

])
.

The estimate for Λ can be calculated by differentiation of the latter equation:

∂ log p
(
D, Ẑ, Λ́, σ́2 | k

)

∂λ́i

= −N

2
+ 1 +

nli

2 exp{λ́i}
+

α

2 exp{λ́i}
= −N

2
+ 1 +

nli + α

2λi

∀i = 1, . . . , k .

If we set this derivative to zero, we get that exp{λ́i} = nli+α
n−1+α

or equivalently

λ̂i =
nli + α

N − 2
∀i = 1, . . . , k .

The cross derivatives are zero and the second derivatives with respect to λ́i are

∂2 log p
(
D, Ẑ, Λ́, σ́2 | k

)

∂λ́2
i

= − nli + α

2 exp{λ́i}
= −nli + α

2λi

∀i = 1, . . . , k .
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The negative Hessian of log p
(D, Ẑ, Λ́, σ́2 | k)

at Λ = Λ̂ = diag
(
λ̂1, . . . , λ̂k

)
can now

be calculated as

|AΛ| =
(

N

2
− 1

)k

. (24)

The estimate of σ2 is obtained analogously:

∂ log p
(
D, Ẑ, Λ̂, σ́2 | k

)

∂σ́2
= −N(d− k)

2
+ 1 +

n

2σ2

(
tr

[
Ŝ

]− tr
[
L

])
,

σ̂2 =
n

(
tr

[
Ŝ

]− tr
[
L

])

N(d− k)− 2
=

n
∑d

i=k+1 li

N(d− k)− 2

∂2 log p
(
D, Ẑ, Λ̂, σ́2 | k

)

∂σ́4
= − n

2σ2

(
tr

[
Ŝ

]− tr
[
L

])
,

∂2 log p
(
D, Ẑ, Λ̂, σ́2 | k

)

∂σ́4

∣∣∣∣∣∣
σ2=σ̂2

= −N(d− k)− 2

2
= −|Aσ2| . (25)

Substituting the estimates Ẑ, Λ̂ and σ̂2 into (23) we get that

(23) | Ẑ,Λ̂,σ̂2 =
N(d− k)− 2

n
+

k∑
i=1

li(N − 2)

nli + α
+

α

n

k∑
i=1

N − 2

nli + α
=

Nd− 2k − 2

n
,

which leads to the following equation for p
(D, Ẑ, Λ̂, σ̂2 | k)

:

p
(
D, Ẑ, Λ̂, σ̂2 | k

)
= ck

∣∣Λ̂
∣∣−N

2
+1

σ̂−N(d−k)+2 exp

{
−Nd

2
+ k + 1

}
.

Next, we have to evaluate the Hessian of log p
(D,Z, Λ̂, σ̂2 | k)

at Ẑ. Using

exp{Z} =
∞∑
i=0

Zi

i!
= Id + Z +

Z2

2
+

Z3

6
+ · · ·

and certain matrix differential rules we obtain the first and second differential of U :

dU = U d

(
dZ +

1

2
(dZZ + ZdZ) + · · · )

[
Ik

0

]
,

dU |Z=0 = U ddZ

[
Ik

0

]
, (26)

d2U = U d

(
d (dZ) +

1

2
(dZdZ + dZdZ) + · · · )

[
Ik

0

]
,

d2U |Z=0 = U d (dZ)2

[
Ik

0

]
. (27)
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The differential of log p
(D, Z, Λ̂, σ̂2 | k)

can be evaluated as

d log p
(
D,Z, Λ̂, σ̂2 | k

)
= −n

2
tr

[
d

((
Λ̂
−1 − σ̂−2Ik

)
UT ŜU

)]

= −n

2
tr

[(
Λ̂
−1 − σ̂−2Ik

)(
dUT ŜU + UT ŜdU

)]

= −ntr
[(

Λ̂
−1 − σ̂−2Ik

)
UT ŜdU

]
. (28)

The second differential is obtained by taking the differential of (28):

d2 log p
(
D,Z, Λ̂, σ̂2 | k

)
= −ntr

[(
Λ̂
−1 − σ̂−2Ik

)(
dUT ŜdU + UT Ŝd2U

)]
.

(29)
Since UT

d ŜU d = L and Û
T
ŜU d =

[
Ik

0

]T
L, just containing the top k rows of L, we

can rewrite (29) evaluated at Ẑ by applying (26) and (27) as

−ntr

[[
Ik

0

] (
Λ̂
−1 − σ̂−2Ik

) [
Ik

0

]T (
dZT LdZ + LdZdZ

)
]

. (30)

If we define the diagonal matrix B =
[

Ik

0

] (
Λ̂
−1 − σ̂−2Ik

) [
Ik

0

]T
and T = BdZT +

dZB, we can simplify (30). Using the skew-symmetry of Z we get T = dZB −BdZ
and

d2 log p
(
D,Z, Λ̂, σ̂2 | k

)∣∣∣
Z=0

= −ntr [TLdZ] . (31)

If we define a diagonal matrix Λ̃ with entries λ̃i, i = 1, . . . , d, as

Λ̃ =

(
Λ̂ 0
0 σ̂2Ik

)
,

we get from the definition of B and T that the ij-th element of T can be written as
tij =

(
λ̃−1

j − λ̃−1
i

)
dzij . The next step is to show that (31) can be simplified to

d2 log p
(
D,Z, Λ̂, σ̂2 | k

)∣∣∣
Z=0

= −
k∑

i=1

d∑
j=i+1

n
(
λ̃−1

j − λ̃−1
i

)
(li − lj) dz2

ij . (32)

To prove (32) we note that the ij-th element of TL is
(
TL

)
ij

=
(
λ̃−1

j − λ̃−1
i

)
ljdzij .

This term is zero if i, j > k or i = j. Hence, the elements of TLdZ can be written as
(TLdZ)ij =

∑d
u=1(TL)iudzuj if i ≤ k and (TLdZ)ij =

∑k
u=1(TL)iudzuj if i, j > k.

Taking into account the skew-symmetry of dZ the trace of TLdZ is

tr [TLdZ] = −
k∑

i=1

d∑
j=1

(
λ̃−1

j − λ̃−1
i

)
ljdz2

ij −
d∑

i=k+1

k∑
j=1

(
λ̃−1

j − λ̃−1
i

)
ljdz2

ij

=
k∑

i=1

(
d∑

j=k+1

(
λ̃−1

j − λ̃−1
i

)
lidz2

ij −
d∑

j=1

(
λ̃−1

j − λ̃−1
i

)
ljdz2

ij

)
.
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The latter equation can be rewritten as

tr [TLdZ] =
k∑

i=1

d∑
j=i+1

(
λ̃−1

j − λ̃−1
i

)
(li − lj) dz2

ij

−
k∑

i=1

(
i−1∑
j=1

(
λ̃−1

j − λ̃−1
i

)
ljdz2

ij +
k∑

j=i+1

(
λ̃−1

j − λ̃−1
i

)
lidz2

ij

)
. (33)

It remains to show that the second term of (33) is zero and we prove it using induction.
Let B (k) denote the value of this second term in (33). It is clear that B(1) and B(2) are
both equal to zero. Let us assume that the claim holds for B(s) with a certain s ≥ 2. For
s + 1 simple calculation yields

B(s + 1) = B(s) +
s∑

j=1

(
λ̃−1

j − λ̃−1
s+1

)
ljdz2

s+1,j +
s∑

i=1

(
λ̃−1

s+1 − λ̃−1
i

)
lidz2

s+1,i ,

where the first term on the right side of the equation is zero due to the induction hypothesis
and the sum of the last two terms is clearly also equal to zero.

With this we have shown that the cross derivatives are zero and therefore the Hessian
of log p

(D,Z, Λ̂, σ̂2 | k)
is diagonal at Z = 0. Using (32), the determinant of the negative

Hessian with respect to Z, required in (21), is

|AU | = nm

k∏
i=1

d∏
j=i+1

(
λ̃−1

j − λ̃−1
i

)
(li − lj) . (34)

Since all the cross derivatives between Λ́, σ́2 and Z are also zero, the negative Hessian of
log p

(D,Z, Λ́, σ́2|k)
is block diagonal. Its determinant equals |AUΛσ2| = |AU ||AΛ||Aσ2|,

where the factors are given in (24), (25), and (34), respectively.
Now that we have all the terms and estimates which are needed in (21), Laplace ap-

proximation of the integral directly leads to

p(D | k) ≈ 2kck

∣∣Λ̂
∣∣−N

2
+1

σ̂−N(d−k)+2 exp
{−Nd

2
+k+1

}
(2π)

m+k+1
2 (|AU ||AΛ||Aσ2|)− 1

2 ,

which is our recommended criterion. In this formula a few errors of Minka (2001) have
been corrected. In the original paper the term exp{k + 1} and the Jacobians of the trans-
formations were missing.

4 Simulation Study
In this section we want to test the performance of the different criteria for selecting the
optimum number of principal components using synthetic data. In a simulation study we
compare four criteria that make use of the probabilistic PCA model: the original MIBS
criterion (15), its corrected version (18), the BIC (16) and the orthogonal variational Bayes
approximation, called OVPCA (see Smidl and Quinn, 2005). Additionally we consider
the AIC (13) and MDL (14) criteria.
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The prior parameter α for the corrected MIBS criterion is chosen to be α = 0.01 to
make the prior diffuse. The subsequently presented results for the simulation study would
not change much as long as the the value for α is kept small, say smaller than 1. Large
values for α, however, would adversely affect the results, especially for small samples
sizes when the prior information dominates the information obtained from the likelihood.

In the first experiment the data is sampled from a 10-dimensional zero-mean Gaussian
distribution with variances [10 8 6 4 2] in the first five directions. The remaining five
directions have a variance equal to 1. The results for samples sizes varying between 5 and
350 are shown in Figure 1(a). For every sample size we simulate 1000 data sets and count
how often the true dimensionality is recovered by a certain criterion. One can see that AIC
is the most accurate criterion for sample sizes smaller than 75, however, fails to increase
the recovery rate when the number of samples gets large. The AIC is an inconsistent
estimator for the true number of dimensionality which is visible in nearly all subsequent
experiments. The corrected MIBS criterion, abbreviated by corMIBS in Figures 1(a) - (h),
has excellent recovery rates for both small and large number of sampled data. Notably,
it gives far better results than the original MIBS criterion for all different sample sizes.
MDL turns out to be less accurate than the corrected and the original MIBS criterion but
outperforms the BIC. The OVPCA shows the worst performance when there are less than
100 data samples but catches up to BIC and even MDL when we further increase the
sample size.

The second experiment, displayed in Figure 1(b), is the same as the first except that the
noise dimension is changed from 5 to 10. Again, the corrected MIBS criterion performs
best and gives larger recovery rates than the original MIBS criterion. Compared to the
first experiment, the MDL criterion and BIC need much more samples to reach a high
recovery rate. This effect is far smaller for both MIBS criteria and also for the OVPCA
criterion, which leads to superior results compared to MDL and BIC in this experiment.

The third experiment differs from the second experiment only by the fact that here
we have a noise variance of 0.5 instead of 1. Compared to the second experiment, all
criteria need less data to reach high recovery rates. The corrected MIBS criterion is the
top performer for all sample sizes, however, the difference to the original MIBS criterion
is smaller than in the first two experiments. Again, OVPCA is weak when the number of
samples is small. Detailed results are shown in Figure 1(c).

In the fourth experiment the noise variance is reduced even more and set equal to 0.1.
As can be seen in Figure 1(d), all criteria yield recovery rates higher than 95% when the
sample size exceeds 25. The corrected MIBS criterion shows a far better performance
than the original MIBS criterion for the very small sample sizes of 8 and 11. Note that
this is the only experiment in which the BIC gives slightly better results than the MDL
criterion. OVPCA is as good as the MIBS criteria when the number of samples is 17.

The fifth experiment is the same as the third except that here we have 20 noise di-
mensions instead of 10. The facts already mentioned in the second experiment also apply
here. Figure 1(e) shows that the MDL criterion and BIC have a weak performance com-
pared to the third experiment due to the added noise dimensions. The MIBS criteria and
the OVPCA criterion are much less affected. Again, the corrected MIBS criterion gives
the best results, especially for small sample sizes.



H. Kazianka, J. Pilz 147

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

k=5 with Var=[10 8 6 4 2], d−k=5 with Var=1, 1000 replications

 

 

MIBS
AIC
MDL
BIC
OVPCA
corMIBS

(a)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

k=5 with Var=[10 8 6 4 2], d−k=10 with Var=1, 1000 replications

 

 

MIBS
AIC
MDL
BIC
OVPCA
corMIBS

(b)

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

k=5 with Var=[10 8 6 4 2], d−k=10 with Var=0.5, 1000 replications

 

 

MIBS
AIC
MDL
BIC
OVPCA
corMIBS

(c)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

k=5 with Var=[10 8 6 4 2], d−k=10 with Var=0.1, 1000 replications

 

 

MIBS
AIC
MDL
BIC
OVPCA
corMIBS

(d)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

k=5 with Var=[10 8 6 4 2], d−k=20 with Var=0.5, 1000 replications

 

 

MIBS
AIC
MDL
BIC
OVPCA
corMIBS

(e)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 k=5 with Var=[10 8 6 4 2], d−k=95 with Var=0.5, 1000 replications

n

 

 

MIBS
AIC
MDL
BIC
corMIBS

(f)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
k=5 with Var=[10 8 6 4 2], d−k=95 with Var=0.25, 1000 replications

n

 

 

MIBS
AIC
MDL
BIC
corMIBS

(g)

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

k=3 with Var=[10 8 6], d−k=2 with Var=3, 1000 replications

 

 

MIBS
AIC
MDL
BIC
OVPCA
corMIBS

(h)

Figure 1: Recovery rates for the different criteria in the simulation study. The results of
experiments 1-8 are displayed in (a)-(h).
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The sixth and the seventh experiment, displayed in Figure 1(f)-(g), examine the case
where the number of noise dimensions is 95 and, therefore, very large compared to the
true dimensionality of the data which is equal to 5. When the data dimension is large the
OVPCA is a very time-consuming method. This is the reason why we omit it for these
two experiments. The corrected MIBS criterion is the most accurate method, followed
by the original MIBS criterion. The AIC shows good results for sample sizes larger than
100. As we would expect, both MDL and BIC show a poor performance because of the
large data dimensionality.

The last experiment is designed to test the case in which the true dimensionality is
larger than the number of noise dimensions. The data is generated from a five-dimensional
Gaussian distribution with variances [10 8 6] in the first three directions. The remaining
two directions have a variance equal to 3. Again, the corrected MIBS criterion leads
to the best results. However, in this experiment the difference in terms of recovery rate
between the corrected MIBS criterion and all other criteria is more striking. The original
MIBS criterion and the MDL criterion perform equally well. The BIC and especially the
OVPCA give poor results.

5 Analysis of Hyper-Spectral Skin Cancer Data

If spectral measurements using hundreds of narrow contiguous wavelength intervals are
performed, the resulting image is called a hyper-spectral image and is often represented
as a hyper-spectral image cube. In contrast to RGB-images, where every pixel can be
represented as a three-dimensional vector with entries corresponding to the red, green and
blue channels, a hyper-spectral image contains pixels represented as multidimensional
vectors with elements indicating the reflectivity at a specific wavelength. Thus, these
vectors correspond to spectra in the physical meaning and are equal to spectra measured
with e.g. spectrometers.

A set of 310 hyper-spectral images (171 × 170 pixels and 270 spectral bands after
preprocessing steps) of malign and benign lesions were taken in clinical studies at the
Medical University Graz, Austria. They are classified as melanoma or mole by human
experts on the basis of a histological examination. Kazianka, Leitner, and Pilz (2008)
used this data set and reported on the classification results for unobserved skin cancer
images. In their paper they mention that as the dimensionality of the data equals the num-
ber of spectral bands, using the full spectral information in classification and clustering
approaches leads to computational complexity. Moreover, the spectral bands are highly
correlated and contain noise. To overcome the curse of dimensionality PCA is used to
reduce the dimensions of the data, and inherently also the unwanted noise. Preceding
analysis and inspection of scores and loadings showed that the optimum number of prin-
cipal components to be retained is 7 (see Kazianka, 2007).

To test the performance of the AIC, BIC, MDL, MIBS and corrected MIBS criterion
we selected 500 pixels from the training set. The prior parameter α for the corrected
MIBS criterion is again set to α = 0.01. The dimensionality picked by each method
is shown in Table 1. The original MIBS and the corrected MIBS criterion choose the
number of components that was suggested by the preceding analysis.
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Table 1: Number of components picked by the different criteria for the skin cancer data.
Estimator MIBS corMIBS MDL AIC BIC

No. Features 7 7 6 8 6

The values of the criteria for varying number of retained components are shown in
Figure (2). As can be seen in Figure 2(a), the corrected MIBS criterion gives less proba-
bility mass for larger dimensionalities than the original formulation.
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Figure 2: Values of the criteria for varying dimensionality in the skin cancer study.

6 Conclusion
The corrected version of the MIBS criterion for automatically selecting the optimum data
dimensionality in the probabilistic PCA model shows excellent results in a simulation
study. It is the constant top performer for all eight different experiments and works es-
pecially well with small sample sizes. The proposed criterion not only outperforms the
original MIBS criterion but also other well-known methods such as BIC, AIC, MDL and
OVPCA. The study also reveals that the performance of the BIC and the MDL criterion
strongly depends on the data dimension. Both criteria give poor results when the number
of dimensions is large. Besides the promising results for synthetic data the application
to the hyper-spectral skin cancer images shows that the corrected MIBS criterion is also
suitable for real world data which do not necessarily follow a Gaussian distribution.
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