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Abstract: Editing for measurement errors is always part of data processing.
In traditional editing, all data records are checked for errors and inconsis-
tencies. In a new way of editing, only the subset with the most important
erroneous responses is considered for editing. This approach is applied in se-
lective editing procedures, which have been shown to save resources consid-
erably. However, selective editing lacks a probabilistic basis and the proper-
ties of estimators cannot be established using standard methods. In particular,
bias properties of the estimator are unknown except for level estimates based
on historical data. This paper proposes combining selective editing with an
editing procedure based on the traditional probability-sampling framework.
The variance of a bias-corrected Horvitz-Thompson estimator is derived and
a variance estimator is proposed. The results of a simulation study support
the use of the combined editing procedure.

Zusammenfassung: Das Redigieren von Messfehlern ist immer Teil der
Datenverarbeitung. Beim traditionellen Redigieren werden alle Datensätze
auf Störungen und Inkonsistenzen überprüft. Bei einer neuen Art des Redigie-
rens betrachtet man dafür nur die Teilmenge mit den wichtigsten fehlerhaften
Antworten. Dieser Ansatz wird bei selektiven redigierenden Verfahren ange-
wendet, und es zeigte sich dass dadurch beträchtliche Einsparungen erzielt
werden konnten. Jedoch fehlt dem selektiven Redigieren die probabilistische
Basis und Eigenschaften der Schätzer können nicht unter Verwendung von
Standardmethoden hergeleitet werden. Insbesondere sind Bias Eigenschaften
des Schätzers unbekannt, außer für Niveau Schätzer, die auf historische Daten
basieren. In dieser Arbeit schlagen wir vor, selektives Redigieren mit einem
redigierenden Verfahren zu kombinieren, das auf dem traditionellen System
der Stichprobenauswahl beruht. Die Varianz eines bias-korrigierten Horvitz-
Thompson Schätzers wird hergeleitet und ein Varianzschätzer wird vorgeschla-
gen. Die Resultate einer Simulationsstudie sprechen für die Verwendung des
kombinierten redigierenden Verfahrens.

Keywords: Measurement Bias, Selective Editing, Two-phase Design.

1 Introduction
Accuracy is an important aspect on the quality of statistics and is included as a dimen-
sion of quality definitions used by statistical agencies.1 The accuracy dimension is in turn
divided into sampling and nonsampling errors, where measurement error is an example

1E.g. the quality definition used by EUROSTAT involves the dimensions Relevance, Accuracy, Timeli-
ness and Punctuality, Accessibility and Clarity, Comparability and Coherence.
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of the latter category. Measurement errors appear in surveys, censuses, and administra-
tive data. Regardless of questionnaire testing, interviewer training, and built-in checks,
measurement errors still occur. Data editing is a process by which possibly erroneous
measurements obtained during data collection or processing are checked and corrected.
The editing process serves three purposes: 1) to assess the data quality, 2) to improve the
survey by identifying error sources, and 3) to find errors in the data and correct them.

Traditionally, editing aims to discover all errors and inconsistencies in the data and to
correct them if necessary. This approach to editing is very laborious and costly, though
it gives the impression of achieving high data quality. However, traditional microediting
techniques are usually not justified as they can lead to overediting and biased results
(Granquist and Kovar, 1997).

Selective editing is an alternate approach the goal of which is to focus on a subset
of the erroneous responses without lowering the quality of survey estimates. Selective
editing aims to identify suspicious responses, determine their impact on the final outcome
through using a score function, and only edit responses with score values above a prede-
termined threshold.2 The potential resource savings over traditional editing depend on the
particular survey, but published results indicate that the gain can be large. For example,
Latouche and Berthelot (1992) reported that, using Canadian Annual Retail Trade Sur-
vey data, almost no loss in estimate quality was noted by recontacting only one third of
the suspicious units. Lawrence and McDavitt (1994) came to a similar conclusion when
editing half of the suspicious responses.

The most emphasized advantage of selective editing over traditional editing is de-
creased workload for data editors and respondents. The cost savings can be substantial.
Another possible advantage is improved timeliness. Due to these favorable properties,
selective editing procedures have been implemented or are being considered for imple-
mentation by several national statistical agencies, for example, the UK Office of National
Statistics (Hedlin, 2003), the Australian Bureau of Statistics (Lawrence and McDavitt,
1994), Statistics Netherlands (Hoogland, 2002), Statistics Sweden (Statistics Sweden,
2005), and Statistics Canada (Statistics Canada, 2003).

However, there are some problems and limitations in applying selective editing. The
proposed editing approach lacks a basis in probabilistic theory and there has been no sug-
gestion as to how to adjust the inference with regard to the editing procedure. Using a
probabilistic sampling procedure, model-based approaches can likely be used for infer-
ence, for example, of the bias of estimators due to measurement errors in the unedited
part of the data. Correlation between scores and errors could be used in estimating the
error distribution in the unedited part. Such a model-based method has the disadvantage
of requiring estimation based on extrapolations into the region of unedited score values.

This paper suggests that potential bias in estimates can be corrected using bias esti-
mates obtained from a probability sample of unedited observations. Thus, observations
are edited in two steps, selective editing being used in the first step, while a probability
sample of observations is edited in the second. The measurement errors observed in the
observations edited in the second step can be used in deriving a bias-corrected estima-

2Lawrence and McDavitt (1994) and Lawrence and McKenzie (2000) use the term “significance editing”
instead of selective editing to indicate that the score function directly estimates the response effect on the
survey estimates.
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tor. This two-step procedure retains all the advantages of selective editing and in addition
produces unbiased estimates.

This paper considers the Horvitz-Thompson estimator when selective editing is car-
ried out and contributes a bias-corrected estimator. The variance of the corrected estimator
is derived and a variance estimator is proposed. In an example, the bias-corrected Horvitz-
Thompson estimator, its variance, and a variance estimator are derived for the case of a
simple random sampling design with Poisson sampling of unedited units.

Selective editing, the suggested bias-corrected estimator, and the estimator properties
are presented in Section 2. The third section considers the results of a simulation study of
estimator properties. The paper ends with a discussion of the results and of proposals for
future research.

2 Statistical Inference for Edited Data

Let us consider a population, U = {1, . . . , N}, from which sample sa of size na is drawn
according to sampling design pa(·). Denote true values by zk and observed values by xk.
This section aims to derive an unbiased estimator of the population total of variable z,
i.e., tz =

∑N
k=1 zk, in the case of measurement error in the observed sample units. For

this purpose, the concept of selective editing and the theory of estimating measurement
bias are combined into a two-step editing procedure. The first step is to carry out selective
editing and the second is to edit observations randomly selected from the unedited part of
the sample.

2.1 Selective editing

Selective editing procedures are mainly applied to quantitative data, and are considered to
be most effective for highly skewed distributed variables where a small number of units
account for much of the total estimate, as is frequently the case in business surveys, for
example. Selective editing serves to correct the data and reduce the bias in the final esti-
mates. In selective editing, suspicious responses are prioritized according to their influ-
ence on the survey estimate and only the most influential responses are edited. However,
applying selective editing to a survey assumes considerable preliminary work.

First, to find out suspicious responses, comprehensive editing rules are needed. Edit-
ing rules can contain logical, consistency, and historical checks, and only responses failing
these checks are further investigated. Errors not discovered by these editing rules will not
be considered and their influence on the final estimates remains unknown. Therefore,
selective editing requires comprehensive editing rules to work effectively.

Second, to prioritize suspicious responses, a score function needs to be defined and
computed for all responses that failed the editing rules. The score function is a function of
measured value and expected amended value. The score function should enable the iden-
tification of possibly erroneous responses having great influence on the survey estimates.
The general form of the score function for unit k is

sk = wk|xk − x̂k| ,
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where xk is the observed value, x̂k is the estimate of true value zk, and wk is the survey
weight. It is possible to skip setting up editing rules by computing score values for all
responses, but this places greater demands on the ability of the score function to discrim-
inate between correct and erroneous responses.

In practice, several variables are measured in a survey, and score values, referred to as
local scores, are calculated for each variable measurement obtained from a sampled unit.
Instead of editing single variables separately, global score functions are constructed from
the local scores. Editing decisions are based on the global scores and, if editing is decided
on for a unit, all or a subset of variables are edited simultaneously. Thus, using global
scores, the selective editing decisions are not based on the influence of a specific variable
on a single total estimate.

Finally, the cutoff point between the most and least influential suspicious responses
must be determined. Responses with scores above the cutoff point are selected for editing.
It is assumed that correct responses are obtained during the editing. The cutoff point is
usually selected through simulation using historical data, where survey estimates based
on partly edited datasets are compared with estimates based on a fully edited dataset. The
choice of cutoff point also determines the extent of bias remaining in the survey estimates.
Note that bias estimates are obtained from simulations using prior data and are assumed
to hold also in studies in which the editing rules are applied to new data.

The specific score function form and cutoff point are chosen on a survey-by-survey
basis depending on available information.

In the literature, the effect of selective editing on estimates is assessed using simu-
lation results. Lawrence and McKenzie (2000) mention two measures for evaluating the
influence of selective editing on the survey estimates, absolute and relative pseudo-bias,
defined as ∣∣∣∣

ŷq − ŷ100

ŷ100

∣∣∣∣ and
∣∣∣∣
ŷq − ŷ100

se(ŷ100)

∣∣∣∣ ,

respectively. Here ŷq is the survey estimate based on the partly edited dataset, q denoting
the proportion of responses considered and ŷ100 the survey estimate based on the fully
edited dataset. The term ”pseudo-bias” is used because instead of the true quantity, tz, the
estimate ŷ100 is used.

Theoretical expression of the estimator of the population total, and of its bias and
precision under selective editing, is of interest. Because of measurement errors, true
values are not obtained for all units, for some units zk 6= xk. After selective editing is
carried out, the study variable, yk, can be viewed as a composition of true and observed
values

yk = Iedit
k zk + (1− Iedit

k )xk , k ∈ sa ,

where zk is the accurate value obtained after editing unit k, xk is the observed unedited
value, and Iedit

k is an indicator function with a value of one for edited observations and
zero otherwise. The variables zk and xk are here treated as nonrandom variables. Popu-
lation U can be divided into two parts, U1 and U2, where U1 includes units subjected to
selective editing if selected for the sample and U2 = U − U1. However, this does not
mean that the same units always respond with error or with the same amount of error;
conditioning is done on the specific survey under consideration.
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Now, the Horvitz-Thompson (HT) estimator of the total is

t̂y =
na∑

k=1

yk

πak

=
∑

k∈sa

yk

πak

, (1)

where πak is the first-order inclusion probability for unit k. Hereafter the summation index
is denoted in the form k ∈ sa to indicate that sum is taken over all units k = {1, . . . , na}
belonging to the set sa. The variance of the HT estimator is derived by using a general
formula applicable to any without-replacement sampling design

var(t̂y) =
∑∑

k,l∈U

∆akl
yk

πak

yl

πal

,

where ∆akl = πakl − πakπal and πakl being the second-order inclusion probability. The
estimator (1) is not an unbiased estimator of the quantity of interest, tz. The expected
value of the estimator is

E(t̂y) = E

[∑

k∈sa

yk

πak

]
=

∑

k∈U1

zk +
∑

k∈U2

xk ,

whereby the bias is obtained as

B(t̂y) =
∑

k∈U2

ek , (2)

where ek = xk − zk.

2.2 Bias-corrected HT estimator
For bias correction a two-step procedure is suggested here. Selective editing as described
in 2.1 is carried out in the first step. To obtain unbiased estimates, the bias is estimated
by subsampling units from the unedited part of the sample and determining the extent of
the measurement error for all selected units. This constitutes the second step in the two-
step procedure. The idea of estimating the remaining measurement bias through double
sampling or two-phase sampling is described in the traditional editing context by Madow
(1965), Lessler and Kalsbeek (1992), and Rao and Sitter (1997). However, in the present
paper, bias correction is applied after selective editing and only to the set containing
unedited units.

The editing process is interpreted as a two-phase sampling procedure in which the
original sample is obtained in the first phase and the observations for editing are proba-
bility selected in the second. Using an estimator for two-phase sampling, the bias (2) can
be estimated by

B̂(t̂y) =
∑

k∈U2

IakIk|sa2ek

πakπk|sa2

=
∑

k∈s2

ek

πakπk|sa2

, (3)

where Iak and Ik|sa2 denote first- and second-phase sampling indicators, respectively. Sim-
ilarly, πak and πk|sa2 denote the first- and second-phase first-order inclusion probabilities,
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respectively. Estimator (3) is also called the π?-estimator (Särndal et al., 1992). Note that
the second-phase sample contains units from U2 only, i.e., units not selected in the first
step of the procedure.

An unbiased estimator of tz is now obtained by subtracting the estimated bias from
the biased total estimate

t̂z =
∑

k∈sa

yk

πak

−
∑

k∈s2

ek

πakπk|sa

, (4)

where ∑

k∈sa

yk

πak

=
∑

k∈sa1

zk

πak

+
∑

k∈sa2

xk

πak

with sa = sa1 ∪ sa2 and sa1 ⊂ U1, sa2 ⊂ U2.
Since (4) is an unbiased estimator, its MSE can be written as

MSE(t̂z) = var(t̂y) + var(B̂(t̂y))− 2cov(t̂y, B̂(t̂y)) , (5)

where

var(t̂y) =
∑∑

k,l∈U

∆akl
yk

πak

yl

πal

, (6)

var(B̂(t̂y)) =
∑∑

k,l∈U2

∆akl
ek

πak

el

πal

+ Ea

[∑∑

k,l∈U2

∆kl|sa2IakIal
ek

πakπk|sa2

el

πalπl|sa2

]
,(7)

cov(t̂y, B̂(t̂y)) =
∑

k∈U

∑

l∈U2

∆akl
yk

πak

el

πal

, (8)

and ∆kl|sa2 = πkl|sa2−πk|sa2πl|sa2 with πkl|sa2 being the second-order inclusion probability
in the second phase.

Here (6) is a general variance expression for an estimator under any without-replacement
sampling design, (7) is the variance of the total estimator under any without-replacement
two-phase sampling design, and (8) is the covariance of two estimators (Särndal et al.,
1992). Note that since ek = zk − zk = 0, k ∈ U1, summation over strata disappears in (7)
and (8).

An unbiased estimator of (5) is

ˆMSE(t̂z) = V̂ (t̂y) + V̂ (B̂(t̂y))− 2Ĉ(t̂y, B̂(t̂y)) , (9)

where

V̂ (t̂y) =
∑∑

k,l∈sa

∆akl

πakl

yk

πak

yl

πal

, (10)

V̂ (B̂(t̂y)) =
∑∑

k,l∈s2

∆akl

πaklπkl|sa2

ek

πak

el

πal

+
∑∑

k,l∈s2

∆kl|sa2

πkl|sa2

ek

πakπk|sa2

el

πalπl|sa2

,

Ĉ(t̂y, B̂(t̂y)) =
∑

k∈sa

∑

l∈s2

∆akl

πakl

yk

πak

el

πalπl|sa2

. (11)

Each term in (9) is an unbiased estimate of the corresponding term in (5).
Probability sampling of units for editing and estimating the bias completes the second

step of the procedure.
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3 One Example
In this example, a specific two-phase sampling design with simple random sampling in
the first phase and Poisson sampling in the second is considered. The use of Poisson
design in the second phase is advantageous in many ways. It allows units to be sampled
simultaneously with data collection, and different inclusion probabilities can be assigned
to the units to reflect the likelihood and influence of errors. In addition, the independent
sampling of units simplifies the derivation of variance formulae.

For this example, the first-order inclusion probabilities and covariances are

πak =
na

N
= fa ,

∆akl = −fa
1− fa

N − 1
, k 6= l

∆akk = fa(1− fa) ,

πk|sa2 ,

∆kl|sa2 = 0 , k 6= l

∆kk|sa2 = πk|sa2(1− πk|sa2) .

Now, the unbiased estimator of the total is

t̂z =
N

na

[∑

k∈sa

yk −
∑

k∈s2

ek

πk|sa

]

and its MSE is given by (5), where

var(t̂y) =
(1− fa)N

2

na

S2
yU , (12)

var(B̂(t̂y)) =
(1− fa)N

2

na(N − 1)

[
(N2 − 1)S2

eU2
+

(
1

N2

− 1

N

)
B2(t̂y)

]

+
N

na

∑

k∈U2

1− πk|sa2

πk|sa2

ek
2 ,

cov(t̂y, B̂(t̂y)) =
(1− fa)N

2

na(N − 1)

[
(N2 − 1)(S2

xU2
− SxzU2)

]

+
(1− fa)N

2

na(N − 1)

[
B(t̂y)

(
1

N2

− 1

N

) ∑

k∈U2

xk − 1

N

∑

k∈U1

zk

]
.

Here

S2
yU =

1

N − 1

(∑

k∈U

yk − 1

N

∑

k∈U

yk

)2

is the variance of the variable y in the population U , S2
eU2

and S2
xU2

is the variance of the
measurement error e and the variable x, respectively, in the population U2 and SxzU2 is
the covariance between x and z in U2.
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The unbiased estimator of MSE is given by (9), where

v̂ar(t̂y) =
(1− fa)N

2

na

S2
ysa

, (13)

v̂ar(B̂(t̂y)) =
(1− fa)N

2

na(na − 1)


(n2 − 1)S2

ĕs2
+

(
1

n2

− 1

na

) (∑

k∈s2

ĕk

)2



+
(1− fa)N

2

na(N − na)

∑

k∈s2

(1− πk|sa2)ĕ
2
k ,

ˆcov(t̂y, B̂(t̂y)) =
(1− fa)N

2

na
2

[∑

k∈s2

xkĕk − 1

na − 1

∑

k∈sa

yk

∑
s2

ĕk

]
,

where

ĕk =
ek

πk|sa2

and S2
ĕs2

=
1

n2 − 1

(∑

k∈s2

ĕk − 1

n2

∑

k∈s2

ĕk

)2

.

3.1 Simulation study
A simulation study is performed to compare the selective editing approach with the de-
scribed two-step procedure. These two editing procedures can be compared by examining
the performance of two estimators, t̂y (selective editing) and t̂z (the two-step procedure).

A population of size 10000 consisting of true values z and observed values x is gen-
erated as follows:

z ∼ Poisson(5) ,

x =





z with probability p1 = 0.6
Poisson(2) with probability p2

Poisson(10) with probability p3 .
(14)

Three different cases of values p2 and p3 are considered. In case 1, p2 = p3 = 0.2, in
case 2, p2 = 0.4, p3 = 0, and in case 3, p2 = 0, p3 = 0.4. Cases 2 and 3 correspond to
the situations in which observed values are systematically smaller or larger, respectively,
than true values.

For selective editing (SE), the following setup is used.

1. A global score sk is computed for all units in the sample and the score values are
used to distinguish possibly erroneous and influential responses. To simulate the
use of global scores, the score function, sk(w) = wk − µw, is constructed based
on variable w correlated with the study variable, x. Variable w is generated as
w = x + v, where v ∼ Poisson(θ). It can be expected that the properties of
selective editing with reference to the estimates of a single population total depend
on the strength of the relationship between the local scores of the variable and the
global scores. The correlation between the global score and the study variable is
ρ = cor(w, x) = (1 + θ/σ2

X)−1/2, where θ is the mean value of w and σ2
X denotes

the variance of x. The mean, θ, describes the desired level of correlation between
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the global score function and the variable x. Selective editing based on local score
corresponds to the case of θ = 0.

2. All responses not satisfying condition |sk(x)| ≤ C, where C is cutoff value, will be
checked and, if necessary, corrected. The constant, C, is fixed before sampling and
chosen so that the desired number of responses for editing is obtained.

The setup of two-step procedure (TSP) is following:

1. Selective editing as described above is carried out in the first step, except the larger
cutoff value C is used in order to reduce the amount of responses to be checked.

2. For the second step, a random sample according to a Bernoulli sampling design is
drawn and all selected units are examined for errors. The inclusion probability in
the second phase corresponds to the proportion of units to be edited.

In two-step procedure, the value of C is varied to examine how the amount of editing in
the second step effects the properties of the final estimates. Three different C values are
considered and results are reported in Table 1.

Simulation results are obtained for a sample size of n = 1000 and for 1000 repli-
cations. Also, the population generated from model (14) is kept fixed over replications.
To compare the two editing procedures, approximately the same number of responses is
examined under both selective editing and the two-step procedure.

Table 1 gives the empirical bias and precision measures of the estimators t̂y (SE) and
t̂z (TSP) in case 1 of model (14). Results are presented for different levels of correlation
(ρ) between the global score and the study variable, and for different levels of selective
and probability-based editing.

Table 1 shows unbiased estimates for the TSP estimator, as expected. The bias of the
SE estimator is small but increases as the correlation ρ decreases. In terms of RMSE, the
SE estimator is more efficient than the TSP estimator, with exception for only one case,
ρ = 0.33 and all units chosen for editing are selected randomly. There is a general pattern
that the TSP estimator has smallest RMSE when all edited units are selected at random.
This estimator works, in terms of RMSE, equally well as the SE estimator for the two
smallest correlation levels, ρ = 0.5 and ρ = 0.33.

The bias problem obtained by a pure selective editing procedure is underscored by the
prediction intervals reported in Table 1. The prediction intervals represent the sampling
distributions of the estimators. The intervals reported indicate sampling distributions with
almost all probability masses located to the right (left) of the true population total (tz =
50032) when ρ < 1 (ρ = 1).

The results of the simulations of cases 2 and 3 of model (14) are reported in Table 2.
Here the results are quite different. The TSP estimator is still indicated to be unbiased,
as expected, and the efficiency of the estimator in terms of RMSE is of the same level as
observed in Table 1. However, the SE estimator is associated with very large biases and
RMSE values. Biases are between 18% and 32% and the RMSE values are between 3
and 4 times larger then those of the TSP estimator. There is no clear pattern of the effect
of the correlation ρ in cases 2 and 3.
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Table 1: Empirical bias, precision measure (RMSE = Root Mean Square Error) and 95%
prediction interval (PI) for estimators t̂y (SE) and t̂z (TSP) in case 1 (p2 = p3 =
0.2) for different levels of ρ. Three cases of probability editing are considered in
the two-step procedure: C1, C2, C3.a

SE TSP
C1 C2 C3

ρ = 1.0
Editedb 12%+0% 7%+5% 4%+8% 0%+12%
B(t̂) 2% 0% 0% 0%
RMSE 1406 2964 2858 2852
95% PI 48615±1480 49977±5808 49724±5603 49791±5589

ρ = 0.7
Editedb 16%+0% 11%+5% 4%+12% 0%+16%
B(t̂) 2% 0% 0% 0%
RMSE 1485 3791 2798 2525
95% PI 51018±1669 49854±7430 49823±5485 49718±4948

ρ = 0.5
Editedb 14%+0% 11%+3% 6%+8% 0%+14%
B(t̂) 4% 0% 0% 0%
RMSE 2256 4740 3075 2509
95% PI 51859±1813 49659±9291 49903±6027 49996±4919

ρ = 0.3
Editedb 17%+0% 12%+5% 7%+10% 0%+17%
B(t̂) 6% 0% 0% 0%
RMSE 2967 4416 3038 2345
95% PI 52619±1825 50041±8655 49881±5955 49732±4596

a C1, C2, and C3 were chosen to yield approximately 10%, 5%, and 0% of observations, respectively, to be
edited in the first step.
b The first percentage in bold in the ”Edited” row gives the proportion of observations examined in the first
step and the second percentage in non-bold is the proportion examined in the second step of the procedure.

4 Discussion
This paper proposes that selective editing be replaced by a two-step procedure in which
selective editing is carried out in the first step and a randomly selected set of observations
is edited in the second. The purpose is to obtain an editing procedure based on statistical
inference principles, which provide a means to control the properties of the estimator. The
procedure is treated as a two-phase sampling design and a bias-corrected HT estimator is
suggested. Its variance and a variance estimator are derived. In an example, expressions of
estimators and variance are derived under an SI design for sample selection and a Poisson
sampling of unedited sample units. The special case of Bernoulli sampling of unedited
units is considered in the simulation study.

The results of the simulation study often favor the two-step procedure over selective
editing. The results indicate that the bias-corrected estimator is more precise than the
corresponding biased estimator based on pure selective editing. In fact, some results
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Table 2: Empirical bias and RMSE for estimators t̂y (SE) and t̂z (TSP) in case 2 (p2 = 0.4,
p3 = 0), and in case 3 (p2 = 0, p3 = 0.4) for different levels of ρb

Case 2 Case 3
SE TSP SE TSP

ρ = 1.0
Editedb 14%+0% 4%+10% 11%+0% 3%+8%
B(t̂) −18% 0% 24% 0%
RMSE 9117 2380 12035 3801

ρ = 0.7
Editedb 14%+0% 4%+10% 15%+0% 4%+11%
B(t̂) −21% 0% 28% 0%
RMSE 10301 2374 14061 3515

ρ = 0.5
Editedb 15%+0% 4%+11% 19%+0% 4%+15%
B(t̂) −20% 0% 29% 0%
RMSE 10209 2399 14695 2951

ρ = 0.3
Editedb 17%+0% 5%+12% 17%+0% 5%+12%
B(t̂) −20% 0% 32% 0%
RMSE 9948 2171 16057 3478

b See the footnote in Table 1.

favor the using probability sampling only when selecting observations for editing. That
is, better estimator precision in terms of MSE is obtained when the selective editing stage
is excluded from the two step procedure.

Implementing a two-step editing procedure does not call for more resources than pure
selective editing does, because the same number of responses can be edited. Timeliness
can also be preserved, as the random selection of observations in the second step can
be made at the same time as the selective editing is being done. This is one advantage
of using Poisson sampling in the second phase. Another advantage is that the two-phase
approach provides a means for valid inference when data are used for secondary purposes.
Without a random complement of observations, the effect of selective editing has to be
judged based on the analysis of historical data. Finally, without historical data, the two-
step procedure provides a way to reduce the editing of surveys.

Our paper is only a first study of the properties of a combined selective editing–
probabilistic editing approach. The results presented are promising, but the two-step
procedure needs further exploration. One problem is considering alternate estimators
to the HT estimator, for example, bias correction of the generalized regression estima-
tor. Another problem is the sampling design used for selecting observations for editing.
A Bernoulli sampling scheme was used in the simulations in this paper, but we would
expect even better properties if Poisson sampling were considered with inclusion proba-
bilities proportional to the scores for selective editing.
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