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Abstract: For square contingency tables with the same row and column or-
dinal classifications, this paper proposes the quasi-symmetry model based on
the marginal ridits. The model indicates that the log-odds that an observation
will fall in the (i, j) cell instead of in the (j, i) cell, i < j, is proportional to
the difference between the average ridit score of row and column marginal
distributions for category j and that for category i. This paper also gives a
theorem such that the symmetry model holds if and only if both the proposed
model and the marginal mean equality model hold. Examples are given.

Zusammenfassung: Für quadratische Kontingenztafeln mit gleicher ordi-
naler Zeilen- und Spalten-Klassifikation empfiehlt dieser Aufsatz das Quasi-
Symmetrie-Modell basierend auf den marginalen Ridits. Das Modell gibt an,
dass die Log-Odds dafür, dass eine Beobachtung in Zelle (i, j) statt in Zelle
(j, i), i < j, fällt, ist proportional der Differenz zwischen dem durchschnit-
tlichen Ridit Score der marginalen Zeilen- und Spalten-Verteilungen für Kat-
egorie j und und jener für Kategorie i. Dieser Aufsatz enthält auch einen
Satz darüber, dass das Symmetrie-Modell genau dann hält wenn sowohl das
vorgeschlagene Modell als auch das marginale Mittelgleichheitsmodell hal-
ten. Beispiele sind gegeben.

Keywords: Quasi-Symmetry, Rank Score, Ridit, Square Contingency Table,
Symmetry.

1 Introduction
Consider an R×R square contingency table with the same row and column classifications.
Let pij denote the probability that an observation will fall in the ith row and jth column of
the table (i, j = 1, . . . , R). Caussinus (1965) considered the quasi-symmetry (QS) model,
defined by

pij = µαiβjψij , i, j = 1, . . . , R ,

where ψij = ψji. A special case of this model with {αi = βi} is the symmetry (S) model
(see, Bowker, 1948; Bishop, Fienberg, and Holland, 1975, p. 282; Tomizawa and Tahata,
2007). The marginal homogeneity (MH) model is defined by

pi· = p·i , i = 1, . . . , R ,

where pi· =
∑R

t=1 pit and p·i =
∑R

s=1 psi (Stuart, 1955; Bishop et al., 1975, p. 293). Also,
Caussinus (1965) gave the theorem that the S model holds if and only if both the QS and
MH models hold.
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For square tables with ordered categories, Agresti (1983) proposed the linear diagonals-
parameter symmetry (LDPS) model, defined by

pij =

{
δj−iψij, if i < j ,
ψij, if i ≥ j ,

where ψij = ψji. A special case of this model obtained by putting δ = 1 is the S model.
Note that the LDPS model implies the QS model.

Let u1 < · · · < uR denote the ordered known scores assigned for both the rows and
columns of same classifications. The generalized LDPS model with ui instead of i is the
ordinal quasi-symmetry (OQS) model (Agresti, 2002, p. 429).

Let X and Y denote the row and column variables, respectively. Refer to model of
equality of marginal means, i.e., E(X) = E(Y ), as the ME model. Yamamoto, Iwashita,
and Tomizawa (2007) gave the theorem that the S model holds if and only if both the
LDPS and ME models hold (see also Tahata, Yamamoto, and Tomizawa, 2008).

Let

rX
i =

i−1∑

k=1

pk· +
pi·
2

, and rY
i =

i−1∑

l=1

p·l +
p·i
2

,

for i = 1, . . . , R. The {rX
i } and {rY

i } are the marginal ridits; see Bross (1958), Fleiss,
Levin, and Paik (2003, pp. 198-205), and Tahata, Miyamoto, and Tomizawa (2008). The
ith ridit for row (column) variable is the probability that an observation falls in the row
(column) category i− 1 or below plus half the probability that it falls in the row (column)
category i. The ridits also may be expressed as

rX
i =

FX
i−1 + FX

i

2
, and rY

i =
F Y

i−1 + F Y
i

2
,

where FX
i =

∑i
k=1 pk· and F Y

i =
∑i

l=1 p·l, i = 1, . . . , R, are the distribution functions
of X and Y , respectively. Suppose that the categories of the ordinal row and column
variables represent intervals of an underlying continuous distribution. If the underlying
distribution is uniform over each interval, then rX

i (rY
i ) would equal the probability that

the row (column) value for a randomly selected individual falls below the midpoint of
row (column) category i (Agresti, 1984, p. 168). Therefore, for the analysis of square
contingency tables with the same row and column ordinal classifications, we are now
interested in proposing a quasi-symmetry model with the ridit scores rX

i and rY
i , instead

of scores ui. We are also interested in considering a decomposition of the S model using
the ridit score type quasi-symmetry model.

The purpose of this paper is (1) to propose the ridit score type quasi-symmetry model,
and (2) to give a decomposition of the S model using the proposed model.

2 Ridit Score Type Quasi-Symmetry Model
Consider a square contingency table with the same row and column ordinal classifications.
Let

vi =
rX
i + rY

i

2
, i = 1, . . . , R .
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Thus, vi is the average of row and column ridits for category i. Note that rX
1 < · · · < rX

R

and rY
1 < · · · < rY

R , thus, v1 < · · · < vR, and these are unknown.
Consider a model defined by

pij =

{
θvj−viψij , if i < j ,
ψij , if i ≥ j ,

where ψij = ψji. We shall refer to this model as the ridit score type quasi-symmetry
(RQS) model. The RQS model may be expressed as

pij

pji

= θvj−vi , i < j .

This indicates that the log-odds that an observation will fall in the (i, j) cell instead of in
the (j, i) cell, i < j, is proportional to the difference between vj and vi.

A special case of the RQS model obtained by putting θ = 1 is the S model. Also, the
RQS model implies the QS model. Under the RQS model, θ > 1 is equivalent to pij > pji

for all i < j, thus, θ > 1 is equivalent to FX
i > F Y

i for all i = 1, . . . , R − 1. Therefore
the parameter θ in the RQS model would be useful for making inferences such as that X
is stochastically less than Y or vice versa.

Let nij denote the observed frequency in the ith row and jth column of the table
(i, j = 1, . . . , R), with n =

∑ ∑
nij . Assume that a multinomial distribution applies

to the R × R table. Denote the row and column marginal counts by ni· =
∑R

t=1 nit and
n·i =

∑R
s=1 nsi, i = 1, . . . , R, respectively.

The average ranks in category i are

aX
i =

1

2

(
i−1∑

k=1

nk· + 1

)
+

1

2

i∑

k=1

nk· and aY
i =

1

2

(
i−1∑

l=1

n·l + 1

)
+

1

2

i∑

l=1

n·l

for i = 1, . . . , R (Stuart, 1963; Agresti, 1984, p. 178). These are referred to the ith
midrank. The ith midranks are related to the ith empirical ridits r̃X

i and r̃Y
i by

aX
i = nr̃X

i + 1/2 and aY
i = nr̃Y

i + 1/2 ,

where r̃X
i and r̃Y

i denote rX
i and rY

i , respectively, with pst replaced by p̂st = nst/n.
Dividing these midranks by the sample size n, yields the rank scores:

sX
i =

1

n

(
i−1∑

k=1

nk· +
ni· + 1

2

)
=

aX
i

n
and sY

i =
1

n

(
i−1∑

l=1

n·l +
n·i + 1

2

)
=

aY
i

n

for i = 1, . . . , R. Thus the empirical ridits r̃X
i (r̃Y

i ) and the rank scores sX
i (sY

i ) are
essentially the same for large n (Agresti, 1984, p. 178; Freeman, 1987, p. 120).

Therefore, the average of row and column empirical ridits for category i,

ṽi =
r̃X
i + r̃Y

i

2
, i = 1, . . . , R ,
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is essentially the average of rank scores sX
i and sY

i for category i for large n. Also, we
see that

ṽj − ṽi =
r̃X
j + r̃Y

j

2
− r̃X

i + r̃Y
i

2
=

sX
j + sY

j

2
− sX

i + sY
i

2
, i < j .

Thus, under the RQS model with {pst} replaced by {p̂st}, we see that the estimated log-
odds that an observation will fall in the (i, j) cell instead of in the (j, i) cell, i < j, would
be proportional to the difference between the average rank score for category j and that
for category i.

Further, the RQS model may be expressed as

pij

pji

= θ
1
2

[
rX
j − rX

i + rY
j − rY

i

]
, i < j .

Therefore, this model applied to the data indicates that the log-odds that an observation
will fall in the (i, j) cell instead of in the (j, i) cell, i < j, is proportional to the sum
of difference between the ridit scores for categories j and i for row variable X and the
difference between the ridit scores for categories j and i for column variable Y .

The maximum likelihood estimates of expected frequencies under the RQS model
could be obtained using the Newton-Raphson method in the log-likelihood equation (see
Appendix). For the RQS model, {pij} are determined by R(R − 1)/2 of {ψij , i < j},
(R− 1) of {ψii} (since

∑∑
pij = 1), and 1 of θ, thus a total of R(R + 1)/2. Therefore,

the number of degrees of freedom for the RQS model is (R2 − 1) − R(R + 1)/2 =
(R + 1)(R − 2)/2, which is one less than that for the S model, and equal to that for the
LDPS model.

3 Decomposition of the Symmetry Model
We obtain the decomposition of the S model as follows:

Theorem 1: The S model holds if and only if both the RQS and ME models hold.

Proof: If the S model holds, then the RQS and ME models hold. Assuming that both the
RQS and ME models hold, then we shall show that the S model holds.

For i = 1, . . . , R− 1, let

G1(i) =
i∑

s=1

R∑
t=i+1

pst and G2(i) =
i∑

s=1

R∑
t=i+1

pts .

Then we have
FX

i − F Y
i = G1(i) −G2(i) , i = 1, . . . , R− 1 ,

and

E(X) = R−
R−1∑
i=1

FX
i , E(Y ) = R−

R−1∑
i=1

F Y
i .
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Thus we see

E(Y )− E(X) =
R−1∑
i=1

G1(i) −
R−1∑
i=1

G2(i) .

If θ = 1 in the RQS model, we see that the S model holds. If θ > 1, we see

R−1∑
i=1

G1(i) =
R−1∑
i=1

i∑
s=1

R∑
t=i+1

pst >

R−1∑
i=1

i∑
s=1

R∑
t=i+1

pts =
R−1∑
i=1

G2(i) .

If θ < 1, we see

R−1∑
i=1

G1(i) =
R−1∑
i=1

i∑
s=1

R∑
t=i+1

pst <

R−1∑
i=1

i∑
s=1

R∑
t=i+1

pts =
R−1∑
i=1

G2(i) .

Since the ME model holds, i.e.,
∑R−1

i=1 G1(i) =
∑R−1

i=1 G2(i), we obtain θ = 1. Namely,
the S model holds. The proof is completed.

4 Examples
Example 1: The data in Table 1, taken from Stuart (1955), are constructed from unaided
distance vision of 7477 women aged 30–39 employed in Royal Ordnance factories in
Britain from 1943 to 1946. These data have been analyzed by many statisticians, e.g., in-
cluding Stuart (1955), Caussinus (1965), Bishop et al. (1975, p. 284), McCullagh (1978),
Goodman (1979), Tomizawa (1993), and Tomizawa and Tahata (2007), etc.

Table 1: Unaided distance vision of women from Stuart (1955). The upper and lower
parenthesized values are the maximum likelihood estimates of expected frequencies under
the LDPS and RQS models, respectively.

Right eye Left eye grade
grade Best (1) Second (2) Third (3) Worst (4) Total

Best (1) 1520 266 124 66 1976
(1520.00) (263.37) (133.35) (59.12)
(1520.00) (263.18) (133.99) (58.80)

Second (2) 234 1512 432 78 2256
(236.63) (1512.00) (418.23) (88.53)
(236.81) (1511.95) (420.64) (88.07)

Third (3) 117 362 1772 205 2456
(107.65) (375.77) (1772.00) (202.27)
(107.01) (373.35) (1772.03) (200.00)

Worst (4) 36 82 179 492 789
(42.88) (71.47) (181.73) (492.00)
(43.20) (71.93) (184.01) (492.03)

Total 1907 2222 2507 841 7477
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Table 3 gives the values of likelihood ratio statistic G2 for testing the goodness-of-fit
of each model. The S, MH and ME models fit these data poorly, however, the QS, LDPS,
and RQS models fit these data well. Namely, we see that the QS model with the ridit
scores, i.e., the RQS model, and the QS model with the integer scores, i.e., the LDPS
model, both fit these data well.

From Theorem 1, we see that the poor fit of the S model is caused by the influence of
the lack of structure of the ME model rather than the RQS model.

Also, we see from Table 4a that under the RQS model, the differences between the
maximum likelihood estimates of ridits are r̂X

2 −r̂X
1 = 0.283, r̂X

3 −r̂X
2 = 0.315, r̂X

4 −r̂X
3 =

0.217, and r̂Y
2 − r̂Y

1 = 0.276, r̂Y
3 − r̂Y

2 = 0.316, r̂Y
4 − r̂Y

3 = 0.224. These seems to be close
to a constant. Namely, v̂i+1 − v̂i for i = 1, 2, 3, seems to be close to an equal-interval
(Table 4). Thus, the RQS model applied to these unaided vision data would have a similar
structure to the LDPS model. Indeed, for these data, the G2 value for the RQS model
is close to that for the LDPS model, and the maximum likelihood estimates of expected
frequencies under the RQS model are close to the corresponding those under the LDPS
model (see Table 1).

Under the RQS model, the maximum likelihood estimate of θ is θ̂ = 1.459, which is
greater than 1. Noting that v̂j − v̂i are positive for all i < j, we see that θ̂v̂j−v̂i for i < j
are greater than 1. Therefore, under the RQS model, the probability that a woman’s right
eye grade is i and her left eye grade is j (> i) is estimated to be θ̂v̂j−v̂i (> 1) times higher
than the probability that the woman’s right eye grade is j and her left eye grade is i. In
addition, since θ̂ > 1, the marginal probability that a woman’s right eye is i or below
(i = 1, 2, 3) is estimated to be greater than the marginal probability that the woman’s left
eye is i or below. Thus, under the RQS model, a woman’s right eye is estimated to be
better than her left eye.

Example 2: Table 2 taken directly from Agresti (1984, p. 206) is the father’s and son’s oc-
cupational mobility data in Britain. These data have been analyzed by some statisticians,
e.g., including Bishop et al. (1975, p. 100), Agresti (1984, pp. 205-206) and Yamamoto
et al. (2007).

We see from Table 3 that the S, LDPS, MH and ME models fit these data poorly,
however, the QS and RQS models fit these data well. Thus, we see that the QS model
with the ridit scores, i.e., the RQS model, fits these data well, although the QS model with
the integer scores, i.e., the LDPS model, fits these data poorly.

We see from Theorem 1 that the poor fit of the S model is caused by the influence of
the lack of structure of the ME model rather than the RQS model.

We see from Table 4b that under the RQS model, the differences between the maxi-
mum likelihood estimates of ridits are r̂X

2 − r̂X
1 = 0.092, r̂X

3 − r̂X
2 = 0.148, r̂X

4 − r̂X
3 =

0.283, r̂X
5 − r̂X

4 = 0.335, and r̂Y
2 − r̂Y

1 = 0.082, r̂Y
3 − r̂Y

2 = 0.132, r̂Y
4 − r̂Y

3 = 0.275,
r̂Y
5 − r̂Y

4 = 0.353. Thus, the differences between the ridits and v̂i+1 − v̂i for i = 1, . . . , 4
are unlikely to be constant (Table 4). Therefore, the RQS model applied to the father-son
pair data in Table 2 would not have a similar structure to the LDPS model. Indeed, for
these data, the G2 value for the RQS model is not close to that for the LDPS model, and
the RQS model fits these data well, however, the LDPS model fits these data poorly.

Under the RQS model, the maximum likelihood estimate of θ is θ̂ = 1.753, which is
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Table 2: Occupational status for father/son pairs; from Agresti (1984, p. 206). The paren-
thesized values are the maximum likelihood estimates of expected frequencies under the
RQS model.

Father’s Son’s status
status (1) (2) (3) (4) (5) Total

(1) 50 45 8 18 8 129
(50.03) (37.38) (10.09) (18.27) (6.79)

(2) 28 174 84 154 55 495
(35.60) (173.80) (84.00) (169.74) (58.74)

(3) 11 78 110 223 96 518
(8.88) (77.66) (109.66) (219.66) (98.47)

(4) 14 150 185 714 447 1510
(13.75) (134.13) (187.76) (714.20) (420.76)

(5) 3 42 72 320 411 848
(4.22) (38.28) (69.41) (347.01) (411.71)

Total 106 489 459 1429 1017 3500

Table 3: Likelihood ratio values G2 for models applied to the data in Tables 1 and 2.

Applied Table 1 Table 2
models Degree of freedom G2 Degree of freedom G2

S 6 19.25∗ 10 37.46∗

QS 3 7.27 6 4.66
LDPS 5 7.28 9 17.13∗

RQS 5 7.32 9 12.67
MH 3 11.99∗ 4 32.80∗

ME 1 11.98∗ 1 20.28∗

* means significant at 5% level.

greater than 1. We see that θ̂v̂j−v̂i for i < j are greater than 1. Therefore, under the RQS
model, the probability that the status category for the father in a pair is i and that for his
son is j (> i), is estimated to be θ̂v̂j−v̂i (> 1) times higher than the probability that the
status category for the father is j and that for his son is i. In addition, since θ̂ > 1, the
marginal probability that the status category for the father is i or below (i = 1, . . . , 4) is
estimated to be greater than the marginal probability that the status category for his son is
i or below. Namely, the status category for the father rather than that for his son tends to
be i or below (i = 1, . . . , 4).

5 Concluding Remarks
The RQS model applied to the data is based on the marginal ridits. The RQS model may
be appropriate if it is supposed that the categories of the ordinal row and column variables
represent intervals of an underlying continuous distribution.
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Table 4: Maximum likelihood estimates of ridits {rX
i }, {rY

i } and {vi} under the RQS
model applied to the data in Tables 1 and 2.

(a) For Table 1

r̂X
i r̂Y

i v̂i v̂i+1 − v̂i

i = 1 0.132 0.128 0.130 0.279
2 0.415 0.404 0.409 0.316
3 0.730 0.720 0.725 0.221
4 0.947 0.944 0.946 —

(b) For Table 2

r̂X
i r̂Y

i v̂i v̂i+1 − v̂i

i = 1 0.018 0.016 0.017 0.087
2 0.110 0.098 0.104 0.140
3 0.258 0.230 0.244 0.279
4 0.541 0.505 0.523 0.344
5 0.876 0.858 0.867 —

The readers may be interested in why one should use the RQS model instead of the
QS model. The QS model indicates the structure that the odds-ratios are symmetric with
respect to the main diagonal of the table. However, under the QS model we cannot infer
that X is stochastically less than Y or vice versa. On the other hand, the RQS model
implies the QS model and the parameter θ in the RQS model would be useful for making
inferences such as that X is stochastically less than Y or vice versa (see Sections 2 and
4). Also, the QS model is considered for nominal categorical data, and the RQS model
should be considered for ordinal categorical data, because the RQS model is not invariant
under the same arbitrary permutations of the row and column categories.

Moreover, the RQS model rather than the LDPS (OQS) model may be appropriate
when we cannot assign the integer scores (or known scores u1 < · · · < uR) to the cate-
gories for both row and column of same classifications.

Each of S, QS, LDPS (OQS), MH and ME models is saturated on the main diagonal
cells of the table, but the RQS model is unsaturated on them. Thus, under the RQS
model, the estimated expected frequencies on the main diagonal are always not equal to
the observed frequencies on the main diagonal (see Tables 1 and 2). The RQS model may
be useful when we want to utilize the information on the main diagonal.

The decomposition of the S model into the RQS and ME models, given by Theorem
1, would be useful for seeing the reason for its poor fit when the S model fits the data
poorly. Indeed, for the data in Table 1, the poor fit of the S model is caused by the poor
fit of the ME model rather than the RQS model, i.e., by the reason that the mean of grade
of the right eye is different from the mean of grade of the left eye (see Example 1).
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Appendix
We consider the maximum likelihood estimates of expected frequencies {mij} under the
RQS model. We must maximize the Lagrangian

L =
R∑

i=1

R∑
j=1

nij log pij − λ(
R∑

i=1

R∑
j=1

pij − 1)−
∑ ∑

i<j

φij(pij − θvj−vipji)

with respect to {pij}, λ, {φij}, and θ. Setting the partial derivations of L equal to zero,
we obtain the equations: for s < t,

mst = nst − φst
mst

n
+

∑∑
i<j

φij
mji

n
(log θ)

[
∂(vj − vi)

∂pst

]
θvj−vi

mst

n
,

mts = nts + φstθ
vt−vs

mts

n
+

∑∑
i<j

φij
mji

n
(log θ)

[
∂(vj − vi)

∂pts

]
θvj−vi

mts

n
,

mss = nss +
∑ ∑

i<j

φij
mji

n
(log θ)

[
∂(vj − vi)

∂pss

]
θvj−vi

mss

n
,

mst = θvt−vsmts ,∑∑
i<j

φijmji(vj − vi)θ
vj−vi−1 = 0 ,

where
[
∂(vj − vi)

∂pkl

]
=

1

2
{I(j, k) + I(j, l)− I(i, k)− I(i, l)} ,

I(a, b) =





1 if a > b,

1/2 if a = b,

0 if a < b,

mkl = npkl .

Using the Newton-Raphson method, we can solve the above equations with respect to
{mst}, {φij} and θ. Thus we obtain the maximum likelihood estimates of {mij} and the
parameter θ under the RQS model.
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