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Abstract: In the clinical trial randomized play-the-winner rule is used with
a goal to allocate more patients to the better treatment in course of sampling.
Here we provide an application of this sampling scheme in repeated measure-
ment design. We concentrate on the simplest set up, i.e., on two treatments
and two periods. We study, both numerically and theoretically, several exact
and limiting properties of this design. We consider some related inferential
problems. Finally we use a real data set to illustrate the applicability of our
proposed design.

Zusammenfassung: In einer klinischen Studie wird die randomisierte play-
the-winner Regel mit dem Ziel verwendet, im Zuge der Stichprobenerhebung
mehr Patienten der besseren Behandlungsgruppe zuzuweisen. Hier bieten
wir eine Anwendung dieses Stichprobenschemas in einem Versuchsplan mit
Messwiederholung. Wir konzentrieren uns dabei auf das einfachste Setup,
d.h. auf zwei Behandlungen und zwei Perioden. Wir untersuchen sowohl
numerisch als auch exakt diverse exakte und asymptotische Eigenschaften
dieses Versuchsplans. Weiters betrachten wir einige zugehörige Inferenzpro-
bleme. Schließlich verwenden wir eine realen Datensatz, um die Anwend-
barkeit unseres vorgeschlagenen Plans zu illustrieren.

Keywords: Carry-over Effect, Limiting Proportion of Allocation, Maximum
Likelihood Estimates, Response-Adaptive Designs, Urn Model.

1 Introduction
A response-adaptive treatment allocation design for a clinical trial attempts to place the
majority of patients on the treatment that appears more successful, depending on the his-
tory of allocations and responses of patients already treated. In case of dichotomous
responses, one of the most popular response-adaptive design is Randomized Play-the-
Winner (RPW) rule introduced by Wei and Durham (1978), which is a modification of
Zelen’s PW rule (see Zelen, 1969). This rule can be illustrated by an urn model as fol-
lows. We start with an urn having 2α balls, α balls of type A and α balls of type B. We
treat any entering patient by drawing a ball from the urn and replace the ball immediately
to the urn. If the patient has a successful response, we add an additional β balls of the
same type to the urn. On the other hand, if the treatment fails, we add an additional β
balls of the opposite type to the urn. The idea here is to skew the allocation proportion
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in favor of the treatment that has better performance in course of the trial. Some further
works in this direction are, for example, due to Wei (1979, 1988), Wei, Smythe, Lin, and
Park (1990), Rosenberger (1993, 1996), Bandyopadhyay and Biswas (1996, 1997, 1999,
2001), Ivanova, Rosenberger, Durham, and Flournoy (2000), Hu and Rosenberger (2006),
Liang and Carriere (2008). Real life applications of RPW rule are discussed by Bartlett et
al. (1985), Reiertsen et al. (1993, 1996); Reiertsen, Larsen, and Solhaug (1998), Tamura,
Faries, Andersen, and Heiligenstein (1994), Biswas and Dewanji (2004).

In all the above works and in almost all the works available on the response-adaptive
design are concerned with the single period trial. But in case of chronic disease (e.g.
asthma, hypertension, rheumatoid arthritis), where one’s first evaluation of treatment effi-
cacy is concerned with measuring short-term relief of signs or symptoms, there is a possi-
bility of giving each patient a series of two or more treatments over separate equal periods
of time. These repeated measurement designs, better known as crossover or changeover
designs, are discussed by many authors, including Grizzle (1965), Brown (1980), Kunert
(1991), Senn (1993), Vonesh and Chinchilli (1996, ch.4), Kushner (1997), Carriere and
Huang (2000), Jones and Kenward (2003). The main advantage of a crossover trial is
that the treatments are compared within-subjects and such within-subject studies allow
a more precise comparison of treatments. Real life applications of crossover trial are
discussed by, among others, Taka and Armitage (1983), Matthews (1989). In case of
continuous response Liang and Carriere (2009) develop a response-adaptive crossover
design for clinical trials. But there is hardly any literature related to crossover design us-
ing adaptation when the response variable is binary or discrete. An attempt towards this
direction on two treatments and on two periods is made by Bandyopadhyay, Biswas, and
Mukherjee (2007, 2009) for correlated binary responses using a combination of random-
ized play-the-winner (RPW) and play-the-winner (PW) rules. Such a design, by using an
RPW rule, allocates an incoming patient to the first dose of a treatment depending only on
the history of the first dose allocations and responses of the treatments. But the allocation
of the second dose of a treatment to a patient depends only on his history of allocation
and response from the first dose. That is, PW rule is used for each second dose. Thus
this rule is a combination of probabilistic and deterministic rules. In the present work we
modify Bandyopadhyay et al. (2007, 2009) by incorporating all the available data history
(corresponding to both first and second doses of the treatments) to get any future first
dose allocation. Here we consider a general model for possible carry-over effects where
a carry-over effect is defined as the effect of the treatment from the previous time period
on the response at the current time period.

In the present work we develop a response-adaptive design for a crossover trial based
on randomized play-the-winner principle. The layout of the paper is as follows. Section 2
contains notations and preliminaries. The proposed methodology along with some related
exact and asymptotic results are given in Section 3. As a follow up of the rule, we carry
out separate tests for treatment effects and carry-over effects. We discuss this in Section
4. Some performance characteristics of the proposed design are discussed in Section
5. Section 6 provides an example of application of our approach. Finally Section 7
concludes.
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2 Notations and Preliminaries
We consider two treatments denoted by A and B. The number of patients (experimental
units) to be examined is n, a pre-fixed positive integer. Patients arrive in a clinic sequen-
tially and treated by A or B. Each patient is treated twice according to some nature of
crossover trial with adaptation. In order to formalize our proposed design, we first intro-
duce the following. For the i-th patient, we define the indicator variables {δi, Zi, τi, Ui},
where δi(τi) = 1 or 0 as the i-th patient receives the first (second) dose of A or B,
Zi(Ui) = 1 or 0 as a success or a failure results from the i-th patient receiving the first
(second) dose of a treatment.

We now consider the following notations and probability models:
• δi = 1− δi, τ i = 1− τi, Zi = 1− Zi, U i = 1− Ui.

• P (Zi = 1|δi = 1) = pA, P (Zi = 1|δi = 0) = pB.

• P (Ui = 1|τi = 1) = φA, P (Ui = 1|τi = 0) = φB.

• qj = 1− pj , ψj = 1− φj , j = A,B.

• First dose indicators and responses upto the k-th patient are represented by

δ(k) = (δ1, . . . δk) , Z(k) = (Z1, . . . , Zk) .

• Second dose indicators and responses upto the k-th patient are similarly represented
by τ(k) and U(k), respectively.

• Sums of the allocations corresponding to the treatments A and B for the first and
second dose, upto the k-th patient, are defined by N1A(k) =

∑k
i=1 δi, N1B(k) =∑k

i=1 δi, N2A(k) =
∑k

i=1 τi, and N2B(k) =
∑k

i=1 τ i, respectively.

• Sums of responses upto the k-th patient for the first dose are defined by SAk =∑k
i=1 δiZi, SAk =

∑k
i=1 δiZi, SBk =

∑k
i=1 δiZi, SBk =

∑k
i=1 δiZi. Replacing S

by T , δi by τi and Zi by Ui, we get the corresponding sums for the second dose.
Here we see that the response probabilities in the second time point differ from pA

and pB, which indicate the presence of some effects other than that of the treatment. The
success probabilities of the treatments as measured in one period may differ from those
measured in a later period because of a treatment-by-period interaction effect or a carry-
over effect. In our case of two-period two-treatment crossover design the carry-over and
treatment-by-period interaction are aliased with each other and can not be estimated sep-
arately. Hence the difference between pA and φA and that of pB and φB can be attributed
to either a carry-over effect or an interaction effect between the treatment and the period.

3 Proposed Allocation Design
The proposed rule can be described by an urn model as follows: Consider an urn having
balls of two different types marked by A and B. We start with γ balls of each type. When
the first patient enters the system, he is treated twice. At each time we draw a ball at
random from the urn and replaced it immediately and the treatment assignment is done
according to the type of the ball drawn. That is, as in two-treatment single period RPW
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rule, we assign the first patient to a treatment with probability 0.5 at each period. Based on
his allocations and responses at two periods, the urn is updated by using RPW principle as
described earlier. Then the second patient enters the study and is treated by drawing a ball
at random from the urn with replacements. After getting his response at the first dose of
the treatment we update the urn again by RPW principle and he is allotted to a treatment
for the second time. Then the 3rd patient enters the study and he is treated twice by the
aforesaid procedure and so on. All that we here need is the availability of the responses
from the i-th patient at both the doses before the entry of the (i + 1)-st patient. With the
notations, as described in Section 2, we get

P [δ1 = 1] =
1

2
, P [τ1 = 1] =

1

2
,

and for k ≥ 1,

P [δk+1 = 1|δ(k), Z(k), τ(k), U(k)] =
γ + β

(
SAk + SBk + TAk + TBk

)

2γ + 2kβ)
, (1)

P [τk+1 = 1|δ(k+1), Z(k+1), τ(k), U(k)] =
γ + β

(
SAk+1 + SBk+1 + TAk + TBk

)

2γ + (2k + 1)β
. (2)

From (1) and (2), after some algebraic manipulations, we successively get d1, d2, . . . and
t1, t2, . . . as

P (δk+1 = 1) =
1

2
+ dk+1 , k ≥ 0 ,

P (τk+1 = 1) =
1

2
+ tk+1, k ≥ 0 ,

where d1 = 0, t1 = 0 and, more generally, dk’s and tk’s are successively related by

dk+1 =
β

2γ+2kβ

{
k

2
(pA+φA−pB−φB)+(pA+pB−1)

k∑
i=1

di+(φA+φB−1)
k∑

i=1

ti

}

(3)
and

tk+1 =
β(pA − pB)

2γ + (2k + 1)β
+

2γ + β(2k − 1 + pA + pB)

2γ + (2k + 1)β
dk+1 . (4)

The limiting allocation proportions corresponding to the treatment A in two periods can
be obtained by the following result:

Result 3.1 As n →∞, almost surely,

N1A(n)

n
→ ξ ,

N2A(n)

n
→ ξ ,

where
ξ =

qB + ψB

qA + ψA + qB + ψB

.

Proof: See Appendix A.
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The following result provides the limiting allocation proportions corresponding to the
treatment combinations AA, AB, BA and BB:

Result 3.2 As n →∞, almost surely,

(i)
1

n

n∑
j=1

δjτj → ξ2 ,

(ii)
1

n

n∑
j=1

δj(1− τj) → ξ(1− ξ) ,

(iii)
1

n

n∑
j=1

(1− δj)τj → ξ(1− ξ) ,

(iv)
1

n

n∑
j=1

(1− δj)(1− τj) → (1− ξ)2 .

Proof: See Appendix B.

Under the proposed design, the loglikelihood function, except for the numerical con-
stant, based on n observations is

L?
A =

n∑
i=1

δiZi log pA +
n∑

i=1

δiZi log qA +
n∑

i=1

δiZi log pB +
n∑

i=1

δiZi log qB

+
n∑

i=1

τiUi log φA +
n∑

i=1

τiU i log ψA +
n∑

i=1

τ iUi log φB +
n∑

i=1

τ iU i log ψB .

Consequently, the maximum likelihood (ML) estimates of pA, pB, φA and φB are given
by

p̂A =

∑n
i=1 δiZi∑n

i=1 δi

, p̂B =

∑n
i=1 δiZi∑n

i=1 δi

, φ̂A =

∑n
i=1 τiUi∑n

i=1 τi

, φ̂B =

∑n
i=1 τ iUi∑n

i=1 τ i

.

These estimates are consistent for the respective parameters. The problem of getting a
zero divisor can easily be overcome by using the same technique as in Cox and Snell
(1989, p.32). See also Geraldes, Melfi, Page, and Zhang (2006) in this connection. Then
the following result gives the asymptotic joint distribution of p̂A, p̂B, φ̂A and φ̂B.

Result 3.3 Let T be a 4-component vector with elements

T1 =
n∑

i=1

δi(Zi − pA) , T2 =
n∑

i=1

δi(Zi − pB) ,

T3 =
n∑

i=1

τi(Ui − φA) , T4 =
n∑

i=1

τ i(Ui − φB) .

Then as n →∞,
1√
n
T

D−→ N4(0,Σ) , (5)
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where the elements σii′ of Σ are given by

σ11 = ξpA(1− pA) , σ12 = 0 , σ13 = −ξ2pAφA , σ14 = −ξ(1− ξ)pAφB ,

σ22 = (1− ξ)pB(1− pB) , σ23 = −ξ(1− ξ)pBφA , σ24 = −(1− ξ)2pBφB ,

σ33 = ξφA(1− φA) , σ34 = 0 , σ44 = (1− ξ)φB(1− φB) .

Proof: See Appendix C.

4 Some Related Tests
As a natural follow up of the proposed rule is to consider some testing problems. For
these, we first set our null hypothesis as

H01 : Treatments A and B are equivalent

and the alternative hypothesis as

H11 : Treatment A is better than B.

Unlike a single period two treatment design, we here set the equivalence of A and B by

pA = pB and φA = φB

and that A is better than B by

pA > pB , φA > φB .

Then a test for H01 against H11 can be carried out by using the vector

∆̂n =
(
p̂A − p̂B, φ̂A − φ̂B

)′
,

which, under H01 can be expressed as
(

1
N1A(n)

−1
N1B(n)

0 0

0 0 1
N2A(n)

−1
N2B(n)

)
T =

1

n
ĈT ,

say. Hence, by using Result 3.3,
√

n∆̂n converges to N2(0,CΣC′) in distribution as
n →∞, where

C =

( 1
ξ

−1
1−ξ

0 0

0 0 1
ξ

−1
1−ξ

)
.

under H01, ξ = 1/2. In general ξ can be estimated by replacing the unknown parameters
pA, pB, φA, and φB by their respective ML estimates. Here Σ involves the unknown
parameters p and φ, which are, respectively, the common values of (pA, pB) and (φA, φB)
under H01. Estimates (here the ML estimates) of p and φ are, respectively, given by

p̂ =
1

n

n∑
i=1

Zi , φ̂ =
1

n

n∑
i=1

Ui .
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Then the statistic defined by

Q1 = n∆̂
′
n

(
ĈΣ̂Ĉ′

)−1

∆̂n

has asymptotically χ2-distribution with 2 d.f. under H01, where Σ̂ is the estimate of Σ
with p and φ replaced by p̂ and φ̂, respectively. This leads us to suggest the following test.
Reject H01 asymptotically at the level α iff

Q1 > χ2
2,α ,

where χ2
2,α is the upper 100α% point of a χ2 distribution with 2 d.f.

To examine the empirical size (ES) for the above test of size α, we conduct a simula-
tion study based on 10000 simulations for various values of p and φ, taking sample sizes
30 and 40 and a nominal α = 0.05. Results of the simulation study are shown in Table 1.
The simulation study shows that the empirical size of the test is satisfactorily close to the
nominal one, and it tends to be conservative.

Table 1: Empirical size (ES) of the test for the treatment effect
p φ ES for n = 30 ES for n = 40

0.1 0.9 0.0474 0.0483
0.2 0.8 0.0415 0.0457
0.3 0.7 0.0434 0.0454
0.4 0.6 0.0397 0.0435
0.5 0.5 0.0418 0.0441
0.6 0.4 0.0373 0.0409
0.7 0.3 0.0428 0.0453
0.8 0.2 0.0448 0.0456
0.9 0.1 0.0457 0.0497

To calculate the asymptotic local power of this test procedure we consider the se-
quence of local alternatives defined by

pA = p +
b1√
n

, pB = p , b1 ≥ 0 , (6)

φA = φ +
b2√
n

, φB = φ , b2 ≥ 0 (7)

with (b1, b2)
′ 6= 0. Then, writing

µn = (pA − pB, φA − φB)′ ,

we get as n →∞,
√

nµn → (b1, b2)
′ = h1, say. Hence, we get

√
n∆̂n

D−→ N2(h1,CΣC′)
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as n → ∞, which implies that Q1 converges in distribution to a non-central chi-square
distribution with 2 d.f. and with the non-centrally parameter δ1 given by

δ1 = h′1(CΣC′)−1h1 .

Writing χ2
2,δ1

as the corresponding non-central random variable, the local asymptotic
power of the test procedure is given by

P1 = P (χ2
2,δ1

> χ2
2,α) .

Table 2 shows the asymptotic power (AP) of the above test only at the level 0.05 corre-
sponding to different values of local alternatives. We have obtained, not shown here, the
Q-Q plots for the distributions of the test statistic under the sequence of local alternatives
taking some selected parametric points. It is seen that the distributions are close to χ2

2,δ1

when n ≥ 30. So the limiting power can be achieved by taking a sample of size 30 or
more. We see that the AP is invariant with respect to p and φ.

Table 2: AP of the test for treatment effect. Figures within the cells give the values of AP
corresponding to (b1, b2) = (1, 1) or (1.5, 1.5) or (2, 2), respectively.

φ
p 0.3 0.5 0.8

0.2621 0.2438 0.2978
0.3 0.5334 0.4976 0.5986

0.7951 0.7588 0.8530
0.2438 0.2255 0.2795

0.5 0.4976 0.4604 0.5659
0.7588 0.7175 0.8254
0.2978 0.2795 0.3335

0.8 0.5986 0.5659 0.6575
0.8530 0.8254 0.8962

Next we consider a test for carry-over effect by setting the hypothesis H02 : pA = φA

and pB = φB against the general alternative. As in the case of H01, this test can performed
by using the vector

Υ̂n =
(
p̂A − φ̂A, p̂B − φ̂B

)′

Such a vector can be expressed as
( 1

N1A
0 −1

N2A
0

0 1
N1B

0 −1
N2B

)
T .

Hence, by using Result 3.3,
√

nΥ̂n converges to N2(0,DΣD′) in distribution as n →∞,
where

D =

( 1
ξ

0 −1
ξ

0

0 1
1−ξ

0 −1
1−ξ

)
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with ξ = (1−πB)/(2−πA−πB), where πA and πB are, respectively, the values of pA and
pB under H02. Here both Σ and D involve the unknown parameters πA and πB. Estimates
(here the ML estimates) of πA and πB are, respectively, given by

π̂A =

∑n
i=1 δiZi +

∑n
i=1 τiUi∑n

i=1 δi +
∑n

i=1 τi

and

π̂B =

∑n
i=1 δiZi +

∑n
i=1 τ iUi∑n

i=1 δi +
∑n

i=1 τ i

.

Then the statistic defined by

Q2 = nΥ̂
′
n

(
D̂Σ̂D̂′

)−1

Υ̂n

has asymptotically χ2-distribution with 2 d.f. under H02, where D̂ and Σ̂ are the estimates
of D and Σ with πA and πB replaced by π̂A and π̂B, respectively. This leads us to suggest
the following test. Reject H02 asymptotically at the level α iff

Q2 > χ2
2,α ,

where χ2
2,α is the upper 100α% point of a χ2 distribution with 2 d.f.

Table 3: AP of the test for carryover effect. Figures within the cells gives the values of
AP corresponding to (c1, c2) = (1, 1) or (1.5, 1.5) or (2, 2) respectively.

πB

πA 0.3 0.5 0.7
0.1939 0.1578 0.3335

0.3 0.3923 0.3095 0.6575
0.6327 0.5131 0.8962
0.1578 0.1327 0.2667

0.5 0.3095 0.2495 0.5420
0.5131 0.4154 0.8034
0.3335 0.2667 0.5036

0.7 0.6575 0.5420 0.8608
0.8962 0.8034 0.9852

To calculate the asymptotic local power of this test procedure we consider the se-
quence of local alternatives defined by

pA = πA +
c1√
n

, φA = πA , c1 ≥ 0 ,

pB = πB +
c2√
n

, φB = πB , c2 ≥ 0

with (c1, c2)
′ 6= 0. Then, writing

νn = (pA − φA, pB − φB)′ ,
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we get, as n →∞,
√

nνn → (c1, c2)
′ = h2, say. Hence, we get

√
nΥn

D−→ N2(h,DΣD′)

as n → ∞, which implies that Q2 converges in distribution to a non-central chi-square
distribution with 2 d.f. and with the non-centrally parameter δ2 given by

δ2 = h2DΣD′)−1h2 .

Writing χ2
2,δ2

as the corresponding non-central random variable, the local asymptotic
power of the test procedure is given by

P2 = P (χ2
2,δ2

> χ2
2,α) .

Table 3 shows the asymptotic power (AP) of the test procedure only at the level 0.05
corresponding to different choices of local alternatives. By a similar argument as in the
case of H01, this power can be achieved by taking a sample of size 30 or more. We see
that the AP is invariant with respect to πA and πB.

5 Performance Characteristics
In this section we report the results of an extensive simulation study to find the proportions
of patients receiving treatment combinations AA, AB, BA and BB (with the correspond-
ing standard errors (s.e.’s).

The proportions of cases of AA, AB, BA, and BB (with their s.e.’s in parentheses)
are simulated for various choices of (pA, pB, φA, φB) and n with γ = β = 1. But, in Table
4, we report a few of these simulated results based on 10000 simulations with n = 100
for the sake of brevity. It is observed that a considerably larger proportion of AA occurs
when pA > pB, φA > φB. This justifies the proposed design from the ethical point of
view.

From Result 3.2, the limiting allocation proportions to the four treatment sequences
AA, AB, BA, and BB are as follows:

ξ2 , ξ(1− ξ) , ξ(1− ξ) , (1− ξ)2 .

From the above limiting proportions we see that, whenever A is better than B (that is,
under pA > pB and φA > φB),

ξ2 > (1− ξ)2 ,

which indicates that the proposed design, even asymptotically, is skewed in favor of the
better treatment.

Note that, when treatments A and B are equivalent, the limiting allocation proportions
to the four sequences AA, AB, BA, and BB are all equal to 0.25. This in turn implies
that the proposed design is asymptotically balanced which is the same as in the case of a
single period RPW rule.

Another important point is that, in case of no carry-over or treatment-period interac-
tion effect (that is, under pA = φA and pB = φB), the limiting allocation proportions
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Table 4: Proportions of allocations (with s.e. in parentheses).
Proportions (s.e.) of

pA pB φA φB AA AB BA BB

0.5 0.5 0.5 0.5 0.2561 0.2454 0.2462 0.2523
(0.0628) (0.0426) (0.0427) (0.0631)

0.5 0.3 0.5 0.3 0.3391 0.2412 0.2413 0.1784
(0.0587) (0.0431) (0.0428) (0.0454)

0.8 0.3 0.8 0.3 0.5830 0.1769 0.1776 0.0625
(0.0844) (0.0444) (0.0446) (0.0334)

0.7 0.4 0.7 0.4 0.4363 0.2198 0.2202 0.1237
(0.0829) (0.0442) (0.0443) (0.0486)

0.8 0.4 0.8 0.4 0.5371 0.1909 0.1921 0.0799
(0.0935) (0.0458) (0.0462) (0.0421)

0.3 0.3 0.3 0.3 0.2513 0.2492 0.2488 0.2507
(0.0461) (0.0435) (0.0433) (0.0458)

0.7 0.5 0.7 0.5 0.3837 0.2295 0.2305 0.1563
(0.0896) (0.0441) (0.0448) (0.0611)

0.9 0.5 0.9 0.5 0.6234 0.1594 0.1606 0.0566
(0.1201) (0.0526) (0.0526) (0.435)

0.7 0.6 0.7 0.6 0.3249 0.2377 0.2378 0.1996
(0.0949) (0.0443) (0.0442) (0.0768)

0.8 0.6 0.8 0.6 0.4212 0.2198 0.2191 0.1399
(0.1169) (0.0472) (0.0476) (0.0725)

0.7 0.7 0.7 0.7 0.2597 0.2389 0.2395 0.2619
(0.0976) (0.0438) (0.0441) (0.0982)

corresponding to each treatment will remain same for both the periods. For treatment A,
such proportion is

ξ =
qB

qA + qB

,

which is analogous to the case of a single period RPW rule studied by Wei and Durham
(1978). In case of no carry-over effect, although the limiting proportions of allocations
corresponding to the treatment combinations AB and BA are same, the design is still
ethical in favor of the better treatment.

In Section 4 we see that the statistic Q1 for testing H01 has asymptotically χ2-distribution
with 2 d.f. under H01. Quite naturally, the small sample distribution of Q1 will be different
from χ2. Here we carry out a simulation study to investigate the small sample distribution
of Q1. It is customary to investigate the null distribution of such test statistic. This is
however of limited interest with adaptive designs, where we require design for skewed
allocation. Accordingly we investigate the “pseudo-null” distribution by subtracting a
known value of ∆ = (pA − pB, φA − φB)′ from ∆̂n and consider the statistic

Q∗
1 = n(∆̂n −∆)′

(
ĈΣ̂Ĉ′

)−1

(∆̂n −∆) .

We use a chi-square Q-Q (quantile-quantile) plot to check whether the asymptotic distri-
bution of T ∗

n is chi-square with 2 degrees of freedom. The Q-Q plot plots the empirical
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Figure 1: χ2 Q-Q plots for n = 30 (left) and n = 40 (right)

quantiles against the theoretical quantiles for the χ2-distribution. When the distribution of
the variable under examination has the same shape as the reference distribution, the χ2-
distribution in this case, the Q-Q plot is linear. In Figure 1, along the x-axis we plot the
sample quantiles of the distribution of Q∗

1 and along the y-axis the corresponding quan-
tiles of the χ2-distribution with 2 d.f. taking pA = φA = 0.6 and pB = φB = 0.4 with
n = 30 and 40. From the plot, we see that there is no evidence of any strong departure
from the χ2-distribution with 2 d.f. Hence, for small sample size a standard χ2 test could
be used straightforwardly for inference. The adaptive nature of the design does not affect
our inference.

6 An Example

In this section, we describe the applicability of the proposed adaptive crossover design in
practice. Matthews (1989) provided some data on a three-period crossover trial of two
anti-hypertensive agents. This data set was also analyzed earlier by Ebbutt (1984). The
design allocated m = 17 patients to each of the sequences ABB, BAA, ABA, BAB,
where A and B denote treatment with metroprolol and metroprolol with chlorthalidone,
respectively. Thus the total number of patients is n = 68. The response is the systolic
blood pressure at the end of each of the treatment periods. Our design is a two-period
design with a possibility of each of AA, AB, BA, and BB. Hence we consider the data
for the last two time periods of the three-period data provided by Matthews (1989). As
the original data is continuous, we dichotomize it by setting a threshold of 135, i.e., a
response ≤ 135 is treated as a success, and otherwise it is a failure. From the data, we
have p̂A = 0.2353, p̂B = 0.2353, φ̂A = 0.2353, and φ̂B = 0.3529. Treating these as
the true values of pA, pB, φA, and φB, we carry out a simulation of 10000 repetitions.
The simulated expectation (s.d.) of SAA is 15.7468 (0.0352), that of SAB is 16.9247
(0.0357), that of SBA is 17.0099 (0.0359), and that of SBB is 18.3186 (0.0368). Here
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Sxy denotes the number of patients assigned to the treatment sequence (xy). If we set the
threshold as 140, the estimates become p̂A = 0.3529, p̂B = 0.5, φ̂A = 0.3529 and φ̂B =
0.5294. Consequently,our simulation provides the expectations (s.d.’s) as SAA: 12.9984
(0.0403), SAB: 16.4244 (0.0353), SBA: 16.4614 (0.0356), SBB: 22.1158 (0.0502). Thus,
we observe that our proposed design could allocate ethically for the present data set, as
the proportion of patients receiving BB is much larger than the proportion of patients
receiving AA (here B is the better treatment as it clear from the estimates of pA, pB, φA,
and φB). Note that the proportion of patients receiving AB or BA has one allocation to
A and one allocation to B. Thus, in total, a considerably larger allocation could be to
treatment B. Thus, such an ethically appropriate adaptive crossover design can easily be
used in practice.

7 Discussion

If we look at the s.e.’s of the allocation proportions in Table 3 we observe that these
s.e.’s are quite high for large values of the success probabilities. This is due to the fact
that RPW rule is quite variable for large values of pA and pB and the present design
is concerned with the repeated applications of the RPW rule. In the classical adaptive
design the variability is reduced by application of the drop-the-loser rule, as introduced by
Ivanova (2003), which at the same time has the same limiting allocations as the RPW rule.
So it is expected that, for the adaptive crossover trial, the variability can be reduced by
employing the drop-the-loser rule repeatedly. If we did this, we might face considerable
additional difficulty to implement the rule along with various mathematical developments
associated with the rule. The details are under study.

As a possible competitor of the proposed design, we may consider a non-adaptive
design where each of the entering units is to receive one of the sequences AA, AB, BA,
and BB, each with probability 1/4. Then all the asymptotic results are also valid here
with a modification that ξ = 1/2. The present design has the same AP as the equal
allocation design. This is due to the fact that the asymptotic distribution of Q1 is same
for both the allocations under H0 and a sequence of local alternatives as described by
(4.6)-(4.7).

The proposed procedure can easily be generalized for more than two periods but its
practical usefulness is much less than two period design. So at present we do not discuss
it in detail.

Appendix A

Proof of Result 3.1 : As in Melfi, Page, and Geraldes (2001), it can be seen that, almost
surely, as n →∞

1

n

n∑

k=1

δk − 1

n

n∑

k=1

E(δk|δ(k−1), Z(k−1), τ(k−1), U(k−1)) → 0 (A.1)
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which, using (3.1) and by martingale convergence theorem together with Kronecker’s
lemma, gives

N1A(n)

n
− 1

2

[
pA

1

n

n∑

k=1

N1A(k)

k
+ qB

1

n

n∑

k=1

N1B(k)

k

+φA
1

n

n∑

k=1

N2A(k)

k
+ ψB

1

n

n∑

k=1

N2B(k)

k

]
→ 0 (A.2)

almost surely as n →∞. Similarly, interchanging the roles of A and B, almost surely, as
n →∞,

N1B(n)

n
− 1

2

[
pB

1

n

n∑

k=1

N1B(k)

k
+ qA

1

n

n∑

k=1

N1A(k)

k

+φB
1

n

n∑

k=1

N2B(k)

k
+ ψA

1

n

n∑

k=1

N2A(k)

k

]
→ 0 . (A.3)

As, for i = 1, 2,

0 ≤ NiA(n)

n
≤ 1 and 0 ≤ NiB(n)

n
≤ 1 ,

there exist θi and φi on [0, 1] such that, with probability one,

lim
n→∞

sup
NiA(n)

n
= θi , and lim

n→∞
inf

NiA(n)

n
= µi .

From (A.2) we have after some routine steps

µ1 ≥ 1

2

[
pAµ1 + φAµ2 + qB(1− θ1) + ψB(1− θ2)

]
(A.4)

and
θ1 ≤ 1

2

[
pAθ1 + φAθ2 + qB(1− µ1) + ψB(1− µ2)

]
(A.5)

almost surely. Hence, combining (A.4) and (A.5), we get

1

2

[
pAµ1 + φAµ2 + qB(1− θ1) + ψB(1− θ2)

] ≤ µ1 ≤ θ1

≤ 1

2

[
pAθ1 + φAθ2 + qB(1− µ1) + ψB(1− µ2)

]
,

and hence
(θ1 − µ1) ≤ φA + ψB

qA + pB

(θ2 − µ2) . (A.6)

Similarly, (A.3) gives

(θ1 − µ1) ≤ φB + ψA

qB + pA

(θ2 − µ2) . (A.7)

Interchanging the roles of first period and the second period for the two treatments in
(A.2) and (A.3), we get

(θ2 − µ2) ≤ φA + ψB

pB + qA

(θ1 − µ1) (A.8)
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and
(θ2 − µ2) ≤ φB + ψA

pA + qB

(θ1 − µ1) (A.9) .

(A.6) and (A.8) yield

(θ1 − µ1)

[
1−

(
φA + ψB

pB + qA

)2
]
≤ 0 . (A.10)

Similarly, (A.7) and (A.9) imply

(θ1 − µ1)

[
1−

(
φB + ψA

pA + qB

)2
]
≤ 0 . (A.11)

It can be seen that
φA + ψB

pB + qA

≶ 1

implies
φB + ψA

pA + qB

≶ 1

and vice versa. Then, whenever
φA + ψB

pB + qA

≶ 1 ,

(A.10) and (A.11) imply θ1 = µ1, and hence θ2 = µ2.
If φA + ψB = pB + qA, then the treatments A and B must be equivalent. Because, if

A is better than B, pA > pB and φA > φB and the inequality signs are reversed when B is
better than A. So we have pA = pB and φA = φB. Then writing, pA = pB = p(= 1− q),
φA = φB = φ(= 1− ψ), (A.2) yields

µ1 ≥ 1

2

[
(p− q)µ1 + (φ− ψ)µ2 + q + ψ

]
, (A.12)

whenever p > q and φ > ψ. Similarly, for the second time period

µ2 ≥ 1

2

[
(p− q)µ1 + (φ− ψ)µ2 + q + ψ

]
. (A.13)

Comparing (A.12) and (A.13), we get

µ1 ≥ 1

2
. (A.14)

By a similar derivation, from (A.3) and a similar equation for the second period, we get

1− θ1 ≥ 1

2
⇐⇒ θ1 ≤ 1

2
. (A.15)

Thus (A.14) and (A.15) give

θ1 = µ1 =
1

2
and θ2 = µ2 =

1

2
.
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The above equality holds also for p < q and φ < ψ, and hence we conclude that

θ1 = µ1 and θ2 = µ2 .

Thus, using (A.2) and by a similar argument on the second period, we get

θ1 =
1

2

[
θ1pA + (1− θ1)qB + θ2φA + (1− θ2)ψB

]
,

θ2 =
1

2

[
θ1pA + (1− θ1)qB + θ2φA + (1− θ2)ψB

]
.

Combining, we conclude

θ1 = θ2 =
qB + ψB

qA + ψA + qB + ψB

.

Hence the result follows.

Appendix B
Proof of Result 3.2: Proofs of (i) - (iv) follow by a similar technique. Here, for illustration,
we prove (ii) only. For this we write

NAB(n) =
n∑

j=1

δj(1− τj) ,

and use (3.1) and (3.2) to get the expression for the conditional probability of [δk+1 =
1, τk+1 = 0] given {δ(k), Z(k), τ(k), U(k)}. Then applying the same technique as in the
proof of Result 3.1, we see that

NAB(n)

n
−1

2

[
pA

1

n

n∑

k=1

N1A(k)

k
+φA

1

n

n∑

k=1

N2A(k)

k
+qB

1

n

n∑

k=1

N1B(k)

k
+ψB

1

n

n∑

k=1

N2B(k)

k

]

1

2

[
pB

1

n

n∑

k=1

N1B(k)

k
+φB

1

n

n∑

k=1

N2B(k)

k
+qA

1

n

n∑

k=1

N1A(k)

k
+ψA

1

n

n∑

k=1

N2A(k)

k

]
→ 0

almost surely, as n →∞. Hence, by using Result 3.1, the required result follows.

Appendix C
Proof of Result 3.3: Here we sketch the outline of the proof. For fixed constants C1, . . . , C4,
define

Wnj =
1√
n

[
C1δj(Zj − pA) + C2δj(Zj − pB) + C3τj(Uj − φA) + C4τ j(Uj − φB)

]
,

and hence
n∑

j=1

Wnj =
1√
n

4∑
j=1

CjTj .
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The sequence {Wnj, 1 ≤ j ≤ n, n ≥ 1} forms a martingale difference array and, by
Results (3.1) and (3.2), in probability as n →∞, where

η2 = C2
1ξpA(1−pA)+C2

2(1−ξ)2pB(1−pB)+C2
3ξφA(1−φA)+C2

4(1−ξ)φB(1−φB)

+ 2C1C3ξ
2pAφA+2C1C4ξ(1−ξ)pAφB+2C2C3ξ(1−ξ)pBφA+2C2C4(1−ξ)2pBφB .

Hence, using the martingale central limit theorem (See Theorem 3.2 in Hall and Heyde
(1980), it follows that

n∑
j=1

Wnj
D→ N(0, η2) .

The result then follows by using the Cramér-Wold device.
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