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Abstract: This paper describes the modified maximum likelihood estima-
tor (MMLE) of location and scale parameters based on selected ranked set
sampling (SRSS) for normal, uniform and two-parameter exponential distri-
butions. For these distributions, the MMLE of location and scale parameters
for SRSS data were compared with the estimators of location and scale pa-
rameters for simple random sample (SRS) and ranked set sample (RSS). The
MMLE based on SRSS data were found to be advantageous as compared to
SRS and RSS estimators for the same number of measurements. The SRSS
method with errors in ranking was also described. The minimum correlation
between the actual and erroneous ranking was required for MMLE of SRSS
to achieve better precision than usual SRS and RSS estimators. When the
wrong assumption about the underlying distribution was present, the MMLE
of the population mean based on SRSS was better than the RSS estimator of
the population mean for all the cases considered.

Zusammenfassung: Diese Arbeit beschreibt die modifizierten Maximum
Likelihood Schätzer (MMLE) des Lokation- und Skalenparameters basierend
auf selektioniertes ranked set sampling (SRSS) für die Normal-, die Gleich-
und die zweiparametrige Exponentialverteilung. Für diese Verteilungen wer-
den die MMLE des Lokations- und Skalenparameters für SRSS Daten ver-
glichen mit Schätzern für einfache Zufallsstichproben (SRS) und ranked set
samples (RSS). Die MMLE basierend auf SRSS Daten scheinen verglichen
mit den SRS und RSS Schätzern für dieselbe Anzahl von Beobachtungen
Vorteile zu haben. Die SRSS Methode mit Fehlern im Ranking wird auch
beschrieben. Die geringste Korrelation zwischen dem tatsächlichen und dem
fehlerhaften Ranking wurde für den MMLE bei SRSS benötigt, um bessere
Genauigkeit als die gewöhnlichen SRS und RSS Schätzer zu haben. Falls die
falsche Annahme über die zugrunde liegende Verteilung gemacht wurde, war
in allen betrachteten Fällen der MMLE des Populationsmittels basierend auf
SRSS besser als der RSS Schätzer.

Keywords: Location and Scale Parameters, Errors in Ranking, Ranked Set
Sampling.

1 Introduction
Sampling is the process of selecting some representative part of a population to estimate
unknown characteristics by observing the selected part of the population. The assump-
tions to use the conventional sampling design are that the population of interest is finite
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and the sample size is also pre-determined. But there are some other situations where a
population of interest may be difficult to measure and collection of information are ex-
pensive. For these situations, particularly in relation to environmental inquiries, different
non-conventional sampling methods can be used. Ranked set sampling (RSS) is one of
the sampling methods intended for use in environmental studies.

The RSS is used to increase the precision of estimated yield of a representative sam-
ples without the bias of researcher choice (McIntyre, 1952), but this proposal is not being
used for a long time. Subsequently some properties (such as unbiasedness, variance and
relative precision with respect to SRS) of RSS estimator of population mean (Zheng and
Al-Saleh, 2002) and the necessary statistical theory (Takahasi and Wakimoto, 1968) have
been established. Of late considerable development has been done in the field of RSS such
as RSS has the MMLE for general parameters (Zheng and Al-Saleh, 2002) which has the
same expression as the MLE for SRS. Zheng and Al-Saleh (2002) also showed that, the
MMLE for the location parameter was always more efficient than the MLE using SRS
and for the scale parameter, the MMLE was at least as efficient as the MLE using SRS,
when the same sample size was used. They also found that in case of perfect judgement
ranking, MMLE was relatively efficient than MLE based on RSS. When the judgement
ranking was imperfect using simulation they also found that the MMLE was more robust
than the MLE (Zheng and Al-Saleh, 2002).

At present forestry and range researchers are continuing to discover the effectiveness
of the RSS. Recently, a number of parametric alternatives of the usual estimation have
been suggested (Hossain and Muttlak, 1999; Bhoj, 2000). The SRSS method is an im-
provement of the RSS method, has the optimal estimators of location and scale parameters
(Hossain and Muttlak, 2001).

In this paper, the MMLE of the location and scale parameters based on SRSS data
were studied. These estimators were compared with usual estimators based on SRS and
RSS data for normal, uniform and two-parameter exponential distributions. The MMLE
for SRSS data was also discussed for the situation where errors in ranking might be oc-
curred. And for studying the effect of errors in ranking, we used Dell and Clutter’s model
(Dell and Clutter, 1972). The minimum value of the correlation coefficient between the
actual and erroneous ranking which is required for achieving better precision, with respect
to the usual SRS estimator and RSS estimator, were also discussed.

The first step of the RSS procedure was to draw n random sets with n elements in
each sample and ranked them (without actual measuring) with respect to the variable of
interest. From the first set, the element with the smallest rank was chosen. From the
second set, the element with the second smallest rank was chosen. The procedure was
continued until the element with the largest rank from the nth sample was chosen. This
procedure yielded a total number of n elements chosen to be measured, one from each
sample. The cycle might be repeated m times until nm units were measured. These nm
units formed the RSS data.

In the SRSS method instead of drawing n random sets of size n, only k < n random
sets of size n were drawn, and instead of measuring the ith smallest order statistic of the
ith set, the nith smallest order statistic of the ith set was considered for measurement. The
values of n1, . . . , nk, 1 ≤ n1 < · · · < nk ≤ n, is required to determine beforehand. De-
termination of n1, . . . , nk has described extensively earlier (Hossain and Muttlak, 2001).
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Present sampling method seems to be quite appealing because SRSS estimators are ex-
pected to be more precise than those obtained by SRS and RSS with the same number of
measurements when the underlying distribution is known (Hossain and Muttlak, 2001).

2 MMLEs of Location and Scale Parameters Using SRSS
Data

In a SRSS of size k, the measured elements are x(n1:n)1, . . . , x(nk:n)k. For simplicity, these
are denoted by x(n1), . . . , x(nk). Now, let x(ni), the nith smallest order statistic from the ith
random sample of size n, be drawn from a distribution with location and scale parameters
µ and σ, respectively. The likelihood function based on the SRSS can be written as
(Balakrishnan and Cohen, 1991)

L =
k∏

i=1

n!

(ni − 1)!(n− ni)!
{F (x(ni))}ni−1{1− F (x(ni))}n−nif(x(ni)) .

The algebraic deduction of the MMLE for SRSS data for normal distribution is de-
scribed below in short.

Let the sample be drawn from a normal distribution with pdf f(x) = (2πσ2)−1/2

exp{−(x− µ)2/2σ2}, hence the log-likelihood function can be written as

log L =
k∑

i=1

{− log σ + log f(z(ni)) + (ni − 1) log F (z(ni)) + (n− ni) log(1− F (z(ni)))
}

,

(1)
where

z(ni) =
x(ni) − µ

σ
.

Equating the first derivatives with respect to µ and σ to zero and let f ′(z(ni)) = −z(ni)f(z(ni)),
we have the simplified form

1

σ

k∑
i=1

{
z(ni) − (ni − 1)

f(z(ni))

F (z(ni))
+ (n− ni)

f(z(ni))

1− F (z(ni))

}
= 0 (2)

and

1

σ

k∑
i=1

{
1− z2

(ni)
+ (ni − 1)

f(z(ni))

F (z(ni))
z(ni) − (n− ni)

f(z(ni))

1− F (z(ni))
z(ni)

}
= 0 . (3)

These equations do not admit explicit solutions. So, we expand the function F (z(ni))
appearing in (2) and (3) in a Taylor series around the point F−1(p(ni)) = ε(ni). In general
we know that, if f (function) can be differentiated n times at a, then we can define the
nth Taylor polynomial for f about x = a as

p(ni) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ fn(a)

n!
(x− a)n .
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Let

f(x) =
f(z)

F (z)
and a = ε .

The simplified form of the estimator of location parameter is found as follows (Balakrishnan
and Cohen, 1991)

µ̂M = C + Lσ ,

where

C =

k∑
i=1

x(ni) +
k∑

i=1

(ni − 1)x(ni)β(ni) +
k∑

i=1

(n− ni)w(ni)x(ni)

k +
k∑

i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

, (4)

L =

−
k∑

i=1

(ni − 1)α(ni) +
k∑

i=1

(n− ni)γ(ni)

k +
k∑

i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

, (5)

where

α(ni) =
f(ε(ni))

{
1 + ε2

(ni)
+

ε(ni)
f(ε(ni)

)

p(ni)

}

p(ni)

,

β(ni) =
f(ε(ni))

{
f(ε(ni)) + p(ni)ε(ni)

}

p2
(ni)

,

γ(ni) =
f(ε(ni))

{
1 + ε2

(ni)
− ε(ni)

f(ε(ni)
)

q(ni)

}

q(ni)

,

w(ni) =
f(ε(ni)){f(ε(ni))− q(ni)ε(ni)}

q2
(ni)

.

The values of C and L in (4) and (5) have to be determined for given population
distributions such as normal distribution.

The estimator of the scale parameter can be obtained by finding the positive root of
the following equation

kσ2
M − σM

{
−

k∑
i=1

(ni − 1)α(ni)(x(ni) − µ) +
k∑

i=1

(n− ni)γ(ni)(x(ni) − µ)

}

−
{

k∑
i=1

(ni − 1)β(ni)(x(ni) − µ)2 +
k∑

i=1

(n− ni)w(ni)(x(ni) − µ)2 +
k∑

i=1

(x(ni) − µ)2

}

= 0 .
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3 Comparison of MMLE Using SRSS Data with Other
Estimators

The usual estimators of the population mean µ and variance σ2 based on SRS of size k is
given by

µ̂S =
1

k

k∑
i=1

xi and σ̂2
S =

1

k − 1

k∑
i=1

(xi − µ̄k)
2 , (6)

respectively.
Let φµ(M |S) and φσ(M |S) denote the relative precisions of µ̂M with respect to µ̂S and

σ̂M with respect to σ̂S , where M and S stand for MMLE for SRSS and SRS estimators.
The values of φµ(M |S) and φσ(M |S) for various values of n ≤ 7 (k < n) for a

normal, a uniform, and a two-parameter exponential distributions are presented in Table
1. The tabulated values show that high values of relative precision with respect to the usual
SRS estimators of size k can be achieved by MMLE for SRSS data with the same number
of measurements. For example, for n = 6 and k = 2, values of φµ(M |S) are 2.296,
2.503, 2.303 and the values of φσ(M |S) are 1.646, 20.291, 2.214 for normal, uniform
and two-parameter exponential distributions, respectively.

Table 1: Relative precision of MMLE of the population mean and standard deviation for
SRSS data compared to the usual SRS estimators µ̂S and σ̂S .

Normal Uniform 2-par. Exponential
n k φµ(M |S) φσ(M |S) φµ(M |S) φσ(M |S) φµ(M |S) φσ(M |S)
3 2 1.625 1.667 2.186 9.283 1.525 2.240
4 2 1.647 1.405 2.469 14.043 2.060 1.013

3 2.247 1.954 5.266 28.705 2.147 1.923
5 2 2.259 1.706 2.494 10.783 2.267 2.910

3 2.399 1.955 5.413 23.372 2.473 2.145
4 2.442 2.573 6.815 30.501 3.587 2.258

6 2 2.296 1.646 2.503 20.291 2.303 2.214
3 2.429 2.021 5.978 39.772 2.738 2.223
4 2.596 3.037 8.070 26.521 3.631 3.219
5 2.775 3.416 10.685 20.210 3.753 2.509

7 2 2.373 1.752 2.834 16.319 2.933 2.585
3 2.467 2.150 6.806 42.692 3.035 7.059
4 2.697 3.135 10.012 10.437 3.984 2.578
5 2.908 3.653 14.645 24.679 4.975 4.096
6 2.957 4.510 18.137 19.640 5.143 3.012

For complete RSS data the estimators of location and scale parameters are

µ̂k =
1

k

k∑
i=1

x(i) and σ̂2
k =

1

k − 1

k∑
i=1

(xi − µ̂k)
2 , (7)

respectively.
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The relative precisions of µ̂M and σ̂M based on k measurements with respect to µ̂k and
σ̂k are defined as φµ(M |R) and φσ(M |R), where M and R stand for MMLE for SRSS
and RSS.

Table 2 shows that the values of φµ(M |R) and φσ(M |R) for various values of n ≤ 7
(k < n) for a normal, a uniform, and a two-parameter exponential distribution. The
values of φµ(M |R) and φσ(M |R) suggested that the MMLE for SRSS for all the cases
considered were (no matter what the values of n and k) better than those based on RSS
with same number of measurements. For example, for n = 7 and k = 2, values of
φµ(M |R) are 1.815, 1.752, 1.700, and the values of φσ(M |R) are 1.697, 7.631, 2.457 for
normal, uniform and two-parameter exponential distributions, respectively.

Table 2: Relative precision of MMLE of the population mean and standard deviation for
SRSS data compared to the usual RSS estimators µ̂R and σ̂R.

Normal Uniform 2-par. Exponential
n k φµ(M |R) φσ(M |R) φµ(M |R) φσ(M |R) φµ(M |R) φσ(M |R)
3 2 1.226 1.473 1.458 8.834 1.143 2.162
4 2 1.248 1.331 1.625 9.883 1.274 1.006

3 1.462 1.328 2.591 10.441 1.465 1.059
5 2 1.318 1.572 1.665 9.376 1.534 2.826

3 2.067 1.656 2.700 8.866 1.554 2.098
4 2.431 2.011 2.718 5.848 1.662 2.236

6 2 1.807 1.618 1.748 9.940 1.559 1.564
3 2.382 1.323 2.967 10.629 1.710 1.966
4 2.433 1.712 3.223 6.902 1.752 2.530
5 2.656 2.610 3.526 10.452 1.899 2.175

7 2 1.815 1.697 1.752 7.631 1.700 2.457
3 2.419 1.313 3.325 11.422 1.972 3.739
4 2.662 1.951 4.014 8.624 1.919 2.038
5 2.891 2.292 4.830 16.712 2.380 3.857
6 2.913 2.393 5.163 13.885 3.403 1.971

4 MMLE for SRSS Data with Errors in Ranking
The usual RSS estimator and the MMLE for SRSS data of the population mean and the
standard deviation are based on the ranking of the variable of interest. Usually the ranking
is done subjectively by rankers and because of that an error may occur in such a ranking.
The errors in ranking may have an effect on the estimates (Stokes, 1980). For SRSS,
the ranking may not always be perfect, i.e., the nith smallest observation in the ith set
measured by the SRSS method may not be the actual nith order statistic in the set of
size n. Following the method in Dell and Clutter (1972) we call it the nith ‘judgement
order statistic’. Let x[ni] denote the nith smallest ‘judgement order statistic’ from the ith
random sample of size n. According to the approach of David and Levine (1972), we
can suppose that, while ranking, an observer subjectively gives each element a value of a
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variable y. We assume that the regression of x on y is linear and that the values follow
a bivariate normal distribution. Let ρ denote the correlation coefficient between x and y.
Now the following can be obtained (Hossain and Muttlak, 2001)

E(x[ni]) = E(E(x|y(ni))) = µ + ρσδni:n ,

var(x[ni]) = E(var(x|y(ni))) + var(E(x|y(ni))) = σ2(1− ρ2) + ρ2σ2ηnini:n ,

where
E(x(ni)) = δni:n , cov(x(ni), x(nj)) = ηnini:n

with z(ni) = (x(ni) − µ)/σ.
The MMLE for SRSS data of the population mean µ using ‘judgement order statistics’

is given as
µ∗[k] = C + Lσ ,

where C and L are defined in (4) and (5). It can be shown that µ∗[k] is an unbiased estimator
of µ, and its variance is

var(µ∗[k]) =

k∑
i=1

{
1 + (ni − 1)β(ni) + (n− ni)w(ni)x(ni)

}2
var(x(ni))

{
k +

k∑
i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

}2

=

k∑
i=1

{
1 + (ni − 1)β(ni) + (n− ni)w(ni)

}2 {
σ2(1− ρ2) + ρ2σ2ηnini:n

}

{
k +

k∑
i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

}2 .

Denoting the relative precision of µ∗[k] with respect to the SRS estimator µ̂S by φµ(E|S)
it is found that

φµ(E|S) =

{
k +

k∑
i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

}2

k

k∑
i=1

{
1 + (ni − 1)β(ni) + (n− ni)w(ni)

}2 {
(1− ρ2) + ρ2η(ni)(ni):n

}
,

where E stands for MMLE for SRSS with errors.
The value of φµ(E|S) depends on the magnitude of ρ, because φµ(E|S) = ψ(ρ2),

then

ψ(0) =

{
k +

k∑
i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

}2

k

k∑
i=1

{
1 + (ni − 1)β(ni) + (n− ni)w(ni)

}2

.
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It can be shown that φµ(E|S) ≥ 1 if ρ2 ≥ ρ2
0, where ψ(ρ2

0) = 1. The value of ρ2
0 can

be obtained as
ρ2

0 =
u− v

w
,

where

u =

{
k +

k∑
i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

}2

,

v = k

k∑
i=1

{
1 + (ni − 1)β(ni) + (n− ni)w(ni)

}2
,

w = k

k∑
i=1

(ηnini:n − 1)
{
1 + (ni − 1)β(ni) + (n− ni)w(ni)

}2
.

The RSS estimator of population mean in the presence of errors in ranking is given by
Dell and Clutter (1972) as

µ̂[k] =
1

k

k∑
i=1

x[i] ,

with variance

var(µ̂[k]) =
σ2

k2

k∑
i=1

((1− ρ2) + ρ2ηii:k) .

The relative precision of µ∗k with respect to the RSS estimator µ̂k is

φµ(E|R) =

1

k2

k∑
i=1

(
(1− ρ2) + ρ2ηii:k

)
{

k +
k∑

i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

}2

k∑
i=1

{
1 + (ni − 1)β(ni) + (n− ni)w(ni)

}2 {
(1− ρ2) + ρ2ηnini:n

}
.

It can be shown that φµ(E|R) ≥ 1 if ρ2 ≥ ρ2
1 where

ρ2
1 =

C1 − C2

D1 −D2

with

C1 =
1

k

{
k +

k∑
i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

}2

,

C2 =
k∑

i=1

{
1 +

k∑
i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

}2

,

D1 =
1

k2

k∑
i=1

(ηii:k − 1)

{
k +

k∑
i=1

(ni − 1)β(ni) +
k∑

i=1

(n− ni)w(ni)

}2

,

D2 =
k∑

i=1

(ηnini:n − 1)
{
1 + (ni − 1)β(ni) + (n− ni)w(ni)

}2
.
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Table 3: Relative precision φµ(E|S) of MMLE of the population mean for SRSS data
compared to the usual SRS estimator µ̂S when errors occur in ranking.

ρ

n k 0 0.25 0.4 0.5 0.7 0.8 0.9 0.95 |ρ0|
3 2 1.00 1.58 1.69 1.74 1.78 1.85 2.05 2.11 0.178
4 2 0.987 1.842 1.851 2.071 2.097 2.291 2.385 2.409 0.207

3 1.000 1.871 1.924 2.084 2.154 2.333 2.516 2.551 0.21
5 2 1.000 2.678 2.889 2.901 3.112 3.329 3.595 3.668 0.318

3 0.812 1.995 2.042 2.068 2.188 2.190 2.522 2.635 0.225
4 0.912 2.210 2.303 2.398 2.348 2.580 2.77 2.800 0.253

6 2 1.000 2.174 2.251 2.310 2.508 2.675 2.721 2.845 0.235
3 0.928 2.186 2.260 2.276 2.292 2.458 2.625 2.838 0.245
4 1.000 3.29 3.415 3.435 3.723 4.075 4.085 4.261 0.362
5 1.000 2.778 2.465 2.677 2.796 3.033 3.165 3.233 0.290

7 2 1.000 2.164 2.219 2.266 2.421 2.701 2.717 2.794 0.247
3 0.895 2.311 2.372 2.393 2.644 2.675 2.731 2.888 0.253
4 0.981 2.501 2.845 2.911 3.033 3.294 3.342 3.441 0.291
5 1.000 2.759 2.911 3.133 3.210 3.229 3.238 3.258 0.278
6 1.000 3.484 3.633 3.701 3.847 4.214 4.313 4.578 0.379

Table 4: Relative precision φµ(E|R) of MMLE of the population mean for SRSS data
compared to the usual RSS estimator µ̂R when errors occur in ranking.

ρ

n k 0 0.25 0.4 0.5 0.7 0.8 0.9 0.95 |ρ0|
3 2 0.991 0.990 1.069 1.074 1.098 1.165 1.176 1.279 0.094
4 2 0.887 0.968 1.075 1.092 1.116 1.153 1.209 1.296 0.091

3 0.611 0.789 0.832 0.872 0.881 0.929 0.986 1.026 0.088
5 2 0.801 0.826 0.879 0.932 0.988 0.992 1.019 1.045 0.093

3 0.712 0.769 0.811 0.825 0.891 0.906 0.996 1.019 0.082
4 1.000 1.242 1.269 1.352 1.376 1.386 1.406 1.429 0.089

6 2 0.763 0.781 0.816 0.905 0.926 0.946 1.016 1.092 0.081
3 0.751 0.746 0.812 0.816 0.845 0.879 1.529 1.586 0.083
4 0.723 0.777 0.792 0.826 0.832 0.912 0.956 0.976 0.088
5 1.000 1.788 1.792 1.801 1.886 1.892 1.902 1.982 0.085

7 2 1.000 1.782 1.796 1.06 1.882 1.892 1.906 1.983 0.085
3 0.695 0.716 0.776 0.816 0.862 0.889 0.935 1.011 0.079
4 0.771 0.779 0.788 0.862 0.856 0.873 0.968 1.015 0.081
5 1.000 1.319 1.386 1.472 1.489 1.546 1.576 1.645 0.083
6 1.000 1.302 1.356 1.363 1.436 1.636 1.675 1.859 0.097

Values of φµ(E|S) for various values of ρ, n, and k showed that values of φµ(E|S)
increased as the magnitudes of ρ increased. The values of |ρ0| for various n and k are also
given in Table 3. Table 4 gives the values of φµ(E|R) for various values of ρ, and |ρ1| for
various n and k. Considering Table 4, it can be seen that for the larger values of ρ, values
of φµ(E|R) were also large.
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5 Sensitivity of MMLE for SRSS of the Population Mean
In this section we studied the effects of any possible misspecification of the assumed dis-
tribution. Using the assumed distributions normal, uniform and two-parameter exponen-
tial values of φµ(A|R) are computed for various true distributions (rectangular, normal,
two-parameter exponential and exponential) and the values are given in Table 5 and 6 for
various n and k.

Table 5: Values of the relative precision φµ(A|R) for various true distributions and for the
rectangular and normal as assumed distributions.

True Distribution
n k Rectangular Normal 2-par. Exponential Exponential

Assumed Distribution: Rectangular
3 2 1.885 1.492 1.319 1.368
4 2 2.080 1.581 1.454 1.561

3 2.163 2.017 1.505 1.781
5 2 2.291 1.927 1.561 1.475

3 2.307 2.465 1.663 1.601
4 2.481 2.620 1.806 1.655

6 2 2.382 2.148 1.786 1.436
3 2.406 2.670 2.178 1.722
4 2.493 2.932 2.246 1.695
5 2.687 3.066 2.336 1.660

7 2 2.515 2.313 2.078 3.258
3 2.613 2.781 2.212 2.084
4 2.691 3.169 2.561 2.751
5 2.785 3.571 2.708 2.743
6 3.839 5.969 3.454 4.313

Assumed Distribution: Normal
3 2 0.789 1.193 0.971 1.068
4 2 0.875 1.484 0.990 1.104

3 0.924 1.512 1.051 1.110
5 2 0.876 1.730 1.319 1.171

3 0.951 1.782 1.222 1.274
4 0.959 1.808 1.486 1.306

6 2 0.881 1.828 1.336 1.336
3 0.960 1.787 1.302 1.354
4 1.032 1.941 1.559 1.379
5 1.039 1.973 1.651 1.542

7 2 0.910 1.928 1.351 1.413
3 0.980 2.863 1.411 1.573
4 1.029 2.073 1.665 1.442
5 1.059 2.100 1.782 1.622
6 1.075 2.211 1.971 2.504
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Table 6: Values of the relative precision φµ(A|R) for various true distributions and for the
two-parameter exponential distribution as assumed distribution.

True Distribution
n k Rectangular Normal 2-par. Exponential Exponential

Assumed Distribution: 2-par. exponential
3 2 1.002 1.042 0.937 1.076
4 2 1.147 1.140 1.098 1.162

3 1.175 1.172 1.112 1.183
5 2 1.169 1.171 1.127 1.232

3 1.208 1.226 1.167 1.280
4 1.210 1.308 1.225 1.304

6 2 1.195 1.265 1.135 1.352
3 1.259 1.254 1.223 1.471
4 1.218 1.350 1.233 1.484
5 1.343 1.389 1.603 1.512

7 2 1.196 1.267 1.255 1.435
3 1.353 1.277 1.230 1.538
4 1.297 1.415 1.259 1.719
5 1.350 1.424 1.896 2.114
6 1.444 1.571 2.128 2.668

6 Discussion and Conclusions
When the number of measurements was small and the cost of measurements was high,
instead of SRS and RSS a precise estimator could be obtained by using SRSS method.
For this, we compared MMLE for SRSS with SRS and RSS estimators based on the
same numbers of measurements. The results of the present research revealed that, for
all the cases considered in this study, the MMLE for SRSS were more efficient than the
estimators of SRS obtained from the same number of measurements (Table 1). So for all
cases considered, a generous gain in precision was realized by using MMLE for SRSS
estimators with k < n measurements.

The values of φµ(M |R) and φσ(M |R) in Table 2 suggested that for all the cases
considered here (no matter what the values of n or k are) the MMLE for SRSS were more
efficient than the RSS estimators obtained from the same number of measurements for
normal, uniform and two-parameter exponential distributions.

Looking at the values in Table 1 and 2, it can be observed that using the same sample
size the values of relative precisions were greater than 1 for all the distributions consid-
ered. It also can be seen that, for the same to number of measurements k, the values of
relative precisions (for population mean) increased as set size n increased.

In the presence of errors in ranking, MMLE for SRSS performed better than the SRS
and RSS estimators when the actual ranking was highly correlated with the ‘judgment
ranking’ (Table 3 and 4). Table 3 also showed that, in favor of MMLE for SRSS to
perform better than SRS, the required lower limit of the correlation coefficient between
the actual ranking and the ‘judgment ranking’ can be less than 0.2. Table 4 showed that,
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on behalf of MMLE for SRSS to perform better than RSS, the same limit can be less
than 0.24. The values of relative precisions for all n and k increased as the values of ρ
increased. This indicated that lesser was the extent of errors in ranking, better the MMLE
for SRSS performed.

From Table 5 and 6, we can see that, even if the assumption about the underlying
distribution is wrong, the MMLE of the population mean for SRSS data performed better
than the RSS estimator of the population mean for the cases considered.
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