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Abstract: The bootstrap is a simple and straightforward method for calcu-
lating approximated biases, standard deviations, confidence intervals, testing
statistical hypotheses, and so forth, in almost any nonparametric estimation
problem. In this paper we describe a bootstrap method for variance that is de-
signed directly for hypothesis testing in case of fuzzy data based on Yao-Wu
signed distance.

Zusammenfassung: Der Bootstrap ist eine einfache und geradlinige Meth-
ode um in fast jedem nichtparametrischen Schätzproblem geschätzte Biases,
Standardabweichungen, Konfidenzintervalle zu berechnen, wie auch statis-
tische Hypothesen zu testen und so weiter. In diesem Aufsatz beschreiben
wir eine Bootstrapmethode für die Varianz, welche unmittelbar für Hypothe-
sentests im Falle von unscharfen Daten basierend auf Yao-Wu vorzeichenbe-
hafteter Distanzen ausgelegt ist.
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1 Introduction
Statistical analysis in traditional form is based on crispness of data, random variables,
point estimations, hypotheses, and so on. There are many different situations in which
such concepts are imprecise. On the other hand, the theory of fuzzy sets is a well known
tool for the formulation and the analysis of imprecise and subjective concepts. Therefore,
confidence intervals and testing hypotheses with fuzzy data can be important. Methods
for statistical inference (confidence intervals and hypothesis tests) in fuzzy environments
are developed in different approaches.

Filzmoser and Viertl (2004) present a test based on fuzzy values by introducing the
fuzzy p-value. Torabi, Behboodian, and Taheri (2006) try to develop a new approach for
testing fuzzy hypotheses when the available data are fuzzy, too. They state and prove
a generalized Neyman-Pearson Lemma for such problems. Some methods of statistical
inference with fuzzy data are reviewed by Viertl (2006). Buckley (2005, 2006) studies the
problems of statistical inference in the fuzzy environment. Thompson and Geyer (2007)
proposed the fuzzy p-value in latent variable problems. Taheri and Arefi (2008) exhibit
an approach to test fuzzy hypotheses based on fuzzy test statistics.

The bootstrap using fuzzy data is developed in different approaches. Montenegro,
Colubi, Casals, and Gil (2004) present asymptotic one-sample procedures. The asymp-
totic development of Körner (2000) concerns general fuzzy random variables (taking val-
ues in the space of compact convex fuzzy sets of a finite-dimensional Euclidean space). In
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Gonzalez-Rodriguez, Montenegro, Colubi, and Gil (2006) it is shown that the one-sample
method of testing the mean of a fuzzy random variable can be extended to general ones
(more precisely, to those whose range is not necessarily finite and whose values are fuzzy
subsets of a finite-dimensional Euclidean space).

In this paper we construct a new method for bootstrap testing hypotheses in a fuzzy
environment which is completely different from those mentioned before. For this purpose
we organize the matter in the following way: In Section 2 we describe some basic con-
cepts of canonical fuzzy numbers and the Yao and Wu (2000) signed distance. In Section
3 we come up with crisp and fuzzy bootstrap confidence intervals for the variance. In
Section 4 we summarize the testing of crisp and fuzzy hypotheses.

2 Preliminaries
In this section we study canonical fuzzy numbers and the Yao-Wu singed distance.

2.1 Canonical Fuzzy Numbers
Let X be the universal space, then a fuzzy subset x̃ of X is defined by its membership
function µx̃ : X → [0, 1]. We denote by x̃α = {x : µx̃(x) ≥ α} the α-cut set of x̃ and x̃0

is the closure of the set {x : µx̃(x) > 0}, and

(1) x̃ is called a normal fuzzy set, if there exists a x ∈ X such that µx̃(x) = 1,

(2) x̃ is called a convex fuzzy set, if µx̃(λx + (1 − λ)y) ≥ min(µx̃(x), µx̃(y)) for all
λ ∈ [0, 1],

(3) the fuzzy set x̃ is called a fuzzy number, if x̃ is a normal convex fuzzy set and its
α-cut sets are bounded ∀α 6= 0,

(4) x̃ is called a closed fuzzy number, if x̃ is a fuzzy number and its membership function
µx̃ is upper semicontinuous,

(5) x̃ is called a bounded fuzzy number, if x̃ is a fuzzy number and its membership
function µx̃ has compact support.

If x̃ is a closed and bounded fuzzy number with xL
α = inf{x : x ∈ x̃α} and xU

α =
sup{x : x ∈ x̃α} and its membership function is strictly increasing on the interval [xL

α, xL
1 ]

and strictly decreasing on the interval [xU
1 , xU

α ] for any α ∈ [0, 1], then x̃ is called canonical
fuzzy number.

Let “¯” be a binary operation ⊕ or ª between two canonical fuzzy numbers ã and b̃.
The membership function of ã¯ b̃ is defined by

µã¯b̃(z) = sup
x◦y=z

min{µã(x), µb̃(y)} , ∀z ∈ R ,

for ¯ ∈ {⊕,ª} and ◦ ∈ {+,−}.
In the following let ¯int denote a binary operation ⊕int or ªint between two closed

intervals ãα = [aL
α, aU

α ] and b̃α = [bL
α, bU

α ]. Then ãα ¯int b̃α is defined as

ãα ¯int b̃α = {z ∈ R : z = x ◦ y, x ∈ ãα, y ∈ b̃α} .
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If ã and b̃ are two closed fuzzy numbers, then ã ⊕ b̃ and ã ª b̃ are also closed fuzzy
numbers. Furthermore, we have

(
ã⊕ b̃

)
α

= ãα ⊕int b̃α =
[
aL

α + bL
α, aU

α + bU
α

]
,

(
ãª b̃

)
α

= ãα ªint b̃α =
[
aL

α − bU
α , aU

α − bL
α

]
.

2.2 Yao-Wu Signed Distance
Now we define a signed distance between fuzzy numbers which is used later. Several
ranking methods have been proposed so far by Cheng (1998), Modarres and Sadi-Nezhad
(2001), and Nojavan and Ghazanfari (2006). In this paper we use another ranking system
for canonical fuzzy numbers, which is very realistic and is defined by Yao and Wu (2000)
as the following:

Definition 1: For each a, b ∈ R define the signed distance d∗ of a and b by d∗(a, b) = a−b.
Thus, we have the following way to define the rank of any two numbers on R. For each
a, b ∈ R

d∗(a, b) > 0 ⇔ d∗(a, 0) > d∗(b, 0) ⇔ a > b ,

d∗(a, b) < 0 ⇔ d∗(a, 0) < d∗(b, 0) ⇔ a < b ,

d∗(a, b) = 0 ⇔ d∗(a, 0) = d∗(b, 0) ⇔ a = b .

Definition 2: For each ã, b̃ (arbitrary canonical fuzzy numbers), define the signed distance
of ã and b̃ as

d(ã, b̃) =

∫ 1

0

(Mα(ã)−Mα(̃b)) dα =

∫ 1

0

d∗(Mα(ã),Mα(̃b)) dα ,

where Mα(ã) and Mα(̃b) equal (aL
α + aU

α )/2 and (bL
α + bU

α )/2, respectively. Furthermore,
d(ã, b̃) means the distance of ã to b̃.

Definition 3: (Yao and Wu, 2000) For each ã, b̃ (arbitrary canonical fuzzy numbers)
define the rankings ≺, Â, and ≈ of ã and b̃ by

d(ã, b̃) > 0 ⇔ (ã, 0) > d(̃b, 0) ⇔ ã Â b̃ ,

d(ã, b̃) < 0 ⇔ d(ã, 0) < d(̃b, 0) ⇔ ã ≺ b̃ ,

d(ã, b̃) = 0 ⇔ d(ã, 0) = d(̃b, 0) ⇔ ã ≈ b̃ .

3 Bootstrap Confidence Interval for Variances
In this section we introduce a way to get bootstrap crisp and fuzzy confidence intervals
based on fuzzy data. Through the use of the bootstrap based on fuzzy observations we
obtain accurate intervals without having to make use of the normal theory. This procedure
estimates the χ2-distribution directly from the fuzzy data. Here is the bootstrap method
in more detail.
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3.1 Crisp Confidence Interval
Suppose that we have a canonical fuzzy random sample x̃ = (x̃1, . . . , x̃n). We generate
B bootstrap fuzzy random samples x̃∗

1
, . . . , x̃∗

B (i.e., each x̃∗
b is a fuzzy sample of size

n randomly drawn with replacement from x̃) and for each we compute

χ2∗b

=
(n− 1)s2∗b

(x̃)

s2
(x̃)

, b = 1, . . . , B ,

where

s2∗b

(x̃) =
1

n− 1

n∑
i=1

d2(x̃∗
b

i , x̃
∗
) , x̃

∗
=

1

n

n∑
i=1

x̃∗
b

i , s2
(x̃) =

1

n− 1

n∑
i=1

d2(x̃i, x̃) ,

and d is the Yao-Wu signed distance. The γth percentile of χ2∗b is estimated by the value
t̂γ such that

#{χ2∗b ≤ t̂γ}
B

= γ .

Finally, the crisp bootstrap confidence interval using fuzzy data is

Π∗ =

[
(n− 1)s2

(x̃)

t̂1−γ
,
(n− 1)s2

(x̃)

t̂γ

]
.

If Bγ is not an integer, the following procedure can be used. Assuming γ ≤ 1/2, let
k = [(B +1)γ] be the largest integer less or equal (B +1)γ. Then we define the empirical
γ and 1− γ quantiles by the kth and (B + 1− k)th largest values of Z∗b , respectively.

Example 1: Suppose that we have taken a fuzzy random sample of size n = 12 from a
population and that we have observed the triangular fuzzy data of Table 1.

Table 1: Fuzzy random sample of size n = 12 from a population

Observation Observation Observation
1 (33, 35, 36) 5 (60, 63, 66) 9 (100, 103, 105)
2 (80, 82, 84) 6 (70, 70, 72) 10 ( 54, 56, 58)
3 (85, 87, 87) 7 (70, 73, 76) 11 ( 40, 40, 42)
4 (90, 90, 90) 8 (65, 70, 73) 12 ( 94, 96, 99)

If B = 10000, the estimates of the 5% and 95% percentiles are the 500th and 9500th
largest of all χ2∗b values. The last line of Table 2 shows the percentiles of χ2∗b for the
variance computed using 10000 bootstrap samples.

The bootstrap confidence interval (γ = 0.05 or 90%) using fuzzy data is

Π∗ =

(
11 · 444.922

15.27
,
11 · 444.922

4.523

)
= (320.5, 1082.1) .

Figure 1 shows the distribution of χ2∗b computed using 10000 bootstrap samples.
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Table 2: Percentiles of the χ2
7 and χ2

11 and the bootstrap distribution of χ2∗b

Percentile 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995
χ2

7 0.989 1.239 1.690 2.167 14.067 16.013 18.475 20.278
χ2

11 2.603 3.053 3.816 4.575 19.675 21.920 24.725 26.757
Bootstrap 2.699 3.077 3.850 4.523 15.270 16.889 18.290 21.349
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Figure 1: Bootstrap distribution based on B = 10000 generated χ2∗b values

3.2 Fuzzy Confidence Interval
We generate B bootstrap fuzzy random samples x̃∗

1
, . . . , x̃∗

B . Then the α-cuts of the
bootstrap confidence interval using fuzzy data are

Π∗∗
α =

{(∑n
i=1(xi − x)2

t̂1−γ
,

∑n
i=1(xi − x)2

t̂γ

)
: xi ∈ x̃iα, i = 1, . . . , n

}
,

whenever its membership function is given by

µΠ∗∗(y) = sup
0≤α≤1

α IΠ∗∗α
(y) .

Example 2: Consider the sample in Table 1. Now the α-cuts of the bootstrap confidence
interval (γ = 0.05 or 90%) using fuzzy data are

Π∗∗
α =

{(∑12
i=1(xi − x)2

15.27
,

∑12
i=1(xi − x)2

4.523

)
: xi ∈ x̃iα, i = 1, . . . , n

}
.

For some α values we get the α-cuts as given in Table 3.

4 Bootstrap Hypotheses Tests of the Variance
We now introduce a way to get bootstrap tests for crisp and fuzzy hypotheses based on
fuzzy data.



126 Austrian Journal of Statistics, Vol. 38 (2009), No. 2, 121–130

Table 3: α-cuts leading to respective confidence intervals (CIs)

α 0 0.1 0.2 0.3 0.4 0.5
CI (317.7, 1115.8) (318.1, 1112.7) (318.4, 1109.6) (318.8, 1106.6) (319.2, 1103.2) (319.7, 1101.0)
α 0.6 0.7 0.8 0.9 1
CI (320.2, 1098.4) (320.7, 1095.8) (321.3, 1093.4) (321.9, 1091.1) (322.5, 1088.9)

4.1 Crisp Method and Crisp Hypotheses

Based on fuzzy observations x̃ = (x̃1, . . . , x̃n) we consider an approach to test the fol-
lowing hypotheses:

• H0: σ = σ0 H1: σ 6= σ0,

• H0: σ ≥ σ0 H1: σ < σ0,

• H0: σ ≤ σ0 H1: σ > σ0.

Decision rule: We know that Π∗ is a crisp confidence interval, thus

• if σ2
0 ∈ Π∗, we accept H0,

• if σ2
0 6∈ Π∗, we reject H0.

Example 3: Consider the sample in Table 1. Suppose we are interested in a bootstrap test
for the hypotheses

H0: σ = 27 H1: σ 6= 27 .

Since we have 729 ∈ [320.5, 1082.1], we accept H0.

4.2 Fuzzy Method and Crisp Hypotheses

According to the hypotheses in Subsection 4.1, we consider the problem in the following
way:
Decision rule:

• if µΠ∗∗(σ
2
0) < 1/2, we reject H0 with degree of rejection (DoR) 1− µΠ∗∗(σ

2
0),

• if µΠ∗∗(σ
2
0) > 1/2, we accept H0 with degree of acceptance (DoA) µΠ∗∗(σ

2
0),

• if µΠ∗∗(σ
2
0) = 1/2, we accept H0 or H1.

Example 4: Consider the sample in Table 1. Suppose we are interested in a bootstrap test
for the hypotheses

H0: σ = 17.9 H1: σ 6= 17.9 .

We use the ability of the package Maple 7 and verify that µΠ∗∗(17.9) = 0.684 and that
1− µΠ∗(17.9) = 0.316. Thus, we accept H0 with DoA 0.684.
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4.3 Fuzzy Method and Fuzzy Hypotheses
We define some models as fuzzy sets of real numbers for modelling the extended versions
of the simple, the one-, and the two-sided ordinary (crisp) hypotheses to the fuzzy ones.

Testing statistical hypotheses is a main topic in statistical inference. Typically, a sta-
tistical hypothesis is an assertion about the probability distribution of random variables.
Traditionally, all statisticians assume that the hypothesis (for which we want to provide a
test) are well-defined. Sometimes, this limitation force the statistician to make decision
procedures in an unrealistic manner. This is because in realistic problems, we may come
across with non-precise (fuzzy) hypotheses. For example, suppose that θ is the proportion
of a population with a disease. We take a random sample and study this sample in order
to have some idea about θ. In crisp hypotheses testing one uses hypotheses of the form
H0: θ = 0.2 versus H1: θ 6= 0.2 or H0: θ ≤ 0.2 versus H0: θ > 0.2, and so on. However,
we sometimes like to test more realistic hypotheses. In this example, more realistic ex-
pressions about θ would be considered as small, very small, large, approximately 0.2, and
so on. Therefore, a more realistic formulation of the hypotheses might be H0: θ is small
versus H1: θ is not small. We call such expressions fuzzy hypotheses.

Definition 4: Let θ0 be a real known number. A hypothesis of the form
• “H: θ is approximately θ0” is called a fuzzy simple hypothesis.
• “H: θ is not approximately θ0” is called a fuzzy two-sided hypothesis.
• “H: θ is essentially smaller than θ0” is called a fuzzy left one-sided hypothesis.
• “H: θ is essentially larger than θ0” is called a fuzzy right one-sided hypothesis.

We denote the above definitions by

H0: θ is approx. θ0 vs. H1: θ is not approx. θ0, or H0: θ is H̃0 vs. H1: θ is H̃1,
H0: θ is approx. θ0 vs. H1: θ is certainly larger than θ0, or H0: θ is H̃0L vs. H1: θ is H̃1,
H0: θ is approx. θ0 vs. H1: θ is certainly smaller than θ0, or H0: θ is H̃0R vs. H1: θ is H̃1.

These fuzzy hypotheses are shown in Figures 2 to 4.
Consider the problem of testing the fuzzy hypotheses H̃0 versus H̃1 based on a fuzzy

random sample. H̃0L versus H̃1 and H̃0R versus H̃1 are similar to H̃0 versus H̃1.

Assumptions: Let
• CT be the total area under H̃0,
• CA be the area of the intersection between H̃0 and µΠ∗∗ ,
• CR be the area of the intersection between H̃0 and 1− µΠ∗∗ .

We know that H̃0 and Π∗∗ are canonical fuzzy numbers, thus the areas CT , CA and CR

are finite.

Decision rule:
• if CT = CA and CR = ∅, then we accept H0.
• if CT = CR and CA = ∅, then we reject H0.
• if CA/CR > 1, then we accept H0 with DoA CA/CT .
• if CA/CR < 1, then we reject H0 with DoR CR/CT .
• if CA/CR = 1, then we accept H0 and H1.
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Figure 2: Fuzzy hypothesis H̃0 versus H̃1
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Figure 3: Fuzzy hypothesis H̃0L versus H̃1
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Figure 4: Fuzzy hypothesis H̃0R versus H̃1

If CT = CA and CR = ∅, then the fuzzy number θ̃0 lies in the fuzzy confidence interval
Π∗∗ and the null hypothesis H̃0 is certainly accepted with DoA CA/CT = 1. On the other
hand, if CA decreases then the value CR/CT increases and we certainly reject H̃0 with
DoR CR/CT = 1 when CT = CR and CA = ∅. In other words, the value θ̃0 lies in the
fuzzy confidence interval 1− Π∗∗.

Taking greater membership functions 0.7 or 0.8 for θ̃0 and Π∗∗ we could reach more
accurate values of CT , CA, and CR. In summary, the above procedure is an applicable tool
in fuzzy statistical inferential schemes. In the end of paper, we exhibit a decision making
method which for α = 1 is the same as under classical procedures.

Example 5: Consider the sample in Table 1. Now suppose that we want to test the fuzzy
hypotheses

H0: σ is (25, 30, 55) H1: σ is not (25, 30, 35) .
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Here, H0 suggests that σ is approximatively 30, and H1 suggests that σ is away from 30.
Hence, based on the ability of Maple 7 we have CA/CR = 1.97 > 1. Thus, we accept H0

with DoA CA/CT = 0.865. Figure 5 shows the distribution of the membership function
µΠ∗∗ and fuzzy hypotheses H̃0 versus H̃1. Figure 6 shows essentially the same but the
plot is based on a larger membership function of 0.42. Hence, we have CA/CR = 13 > 1.
Thus, we accept H0 with DoA CA/CT = 0.914.
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Figure 5: Membership function µΠ∗∗ and fuzzy hypotheses H0 versus H1
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Figure 6: Membership function µΠ∗∗ and fuzzy hypotheses H0 versus H1 with α = 0.42

5 Conclusions
The new approach for bootstrap statistical inference for the variance based on fuzzy data
has the following issues:

1. It is established upon the notion of crisp and fuzzy confidence intervals (note that,
in classical testing hypotheses, there is a relationship between interval estimation
and testing hypothesis).

2. By introducing the concepts of DoA and DoR, it enables us to test fuzzy hypotheses
in a rather natural way.
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This procedure is based on the relationship between interval estimation and hypothesis
tests in fuzzy environments. Extension of the proposed method to test the variance, cor-
relation, and parameters in linear regression models is a potential area for future work.
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