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Abstract: The distribution of a linear combination of random variables arise
in many applied problems, and have been extensively studied by different re-
searchers. This article derived the exact distribution of the linear combination
aX + bY , where a > 0 and b are real constants, and X and Y denote gamma
and Rayleigh random variables respectively and are distributed independently
of each other. The associated cdfs and pdfs have been derived. The plots for
the cdf and pdf, percentile points for selected coefficients and parameters,
and the statistical application of the results have been provided. We hope the
findings of the paper will be useful for practitioners in various fields.

Zusammenfassung: Die Verteilung einer Linearkombination von Zufallsvari-
ablen tritt in vielen angewandten Problemen auf und wurden von verschiede-
nen Forscher umfangreich untersucht. In diesem Artikel wird die exakte
Verteilung der Linearkombination aX + bY hergeleitet, wobei a > 0 und
b reelle Konstanten sind, und X und Y eine Gamma- und Rayleigh Zu-
fallsvariable bezeichnen, welche unabhängig von einander verteilt sind. Die
dazugehörenden cdfs und pdfs wurden hergeleitet. Abbildungen der cdf and
pdf, Perzentile für ausgewählte Koeffizienten und Parameter, und die statis-
tische Anwendung der Resultate werden bereitgestellt. Wir hoffen, dass die
Ergebnisse in diesem Aufsatz brauchbar für Praktiker in verschiedenen Ge-
bieten sein werden.

Keywords: Error Function, Hypergeometric Function, Incomplete Gamma
Function, Parabolic Cylinder Function.

1 Introduction
The distributions of the linear combination of two independent random variables arise
in many fields of research, see, for example, Ladekarl et al. (1997), Amari and Misra
(1997), Cigizoglu and Bayazit (2000), Galambos and Simonelli (2005), Nadarajah and
Kibria (2006a, 2006b), among others. In recent years, there has been a great interest in
the study of the distributions of the linear combination aX + b Y , when X and Y are
independent random variables and belong to different families, among them, Nadarajah
and Kotz (2005) for the linear combination of exponential and gamma random variables,
Kibria and Nadarajah (2007) for the linear combination of exponential and Rayleigh ran-
dom variables, and Nason (2006) for the distributions of the sum X + Y , when X and
Y are independent normal and sphered student’s t random variables respectively, are no-
table. This paper discusses the distributions of the linear combination aX + bY , when
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X and Y are gamma and Rayleigh random variables and are distributed independently of
each other.

The organization of this paper is as follows. In Section 2, the derivations of the cdfs
and pdfs of linear combination aX + bY and corresponding plots have been provided.
Percentage points of the new distribution for some selected parameters are given in Sec-
tion 3. As an application, an example has been considered in Section 4. Some concluding
remarks are provided in Section 5.

The derivations of the associated cdf’s and pdf’s in this paper involve some spe-
cial functions, which are defined as follows. For details on these, see, for example,
Abramowitz and Stegun (1970), Gradshteyn and Ryzhik (2000), Lebedev (1972), and
Prudnikov et al. (1986), among others. The integrals Γ(α) =

∫∞
0

tα−1e−t dt, and γ(α, x) =∫ x

0
tα−1e−t dt, α > 0, are called (complete) gamma and incomplete gamma functions re-

spectively, whereas the integral Γ(α, x) =
∫∞

x
tα−1e−t dt, α > 0, is called complemen-

tary incomplete gamma function. It is well-known that, for Re(p) > 0, and Re(α) > 0,∫∞
0

xα−1e−px dx = Γ(α)/pα, and Γ(α, z) = Γ(α)− γ(α, z) =
∫∞

z
tα−1e−t dt. The func-

tions defined by erf(x) = 2√
π

∫ x

0
e−u2

du, and erfc(x) = 2√
π

∫∞
x

e−u2
du = 1 − erf(x)

are called error and complementary error functions respectively. The following series

1F1(α, β; z) =
∑∞

k=0
(α)kzk

(β)kk!
, (where |z| < ∞, β 6= 0,−1,−2, . . . ), is known as the

confluent hypergeometric function of Kummer. The series

Ψ(α, β; z) =
Γ(1− β)

Γ(α− β + 1)
1F1(α, β; z) +

Γ(β − 1)

Γ(α)
z1−β

1F1(α− β + 1, 2− β; z) ,

(where |z| < ∞, β 6= 0,±1,±2, . . . ), is known as the confluent hypergeometric function
of Tricomi. It is well-known that γ(α, z) = (zα/α)1F1(α, α + 1;−z), and Γ(α, z) =
e−zΨ(1 − α; 1 − α; z). The function Dp(z) = (e−z2/4/Γ(−p))

∫∞
0

x−p−1e−zx−x2/2 dx,
where Re(p) > 0. It is well-known that

Dp(z) = 2p/2e−z2/4Ψ(−p/2, 1/2; z2/2) , D−1(z) =
√

π/2ez2/4erfc(z/
√

2) ,

and D−2(z) =
√

π/2ez2/4{
√

2/πe−z2/2 − zerfc(z/
√

2)} is called the parabolic-cylinder
function.

2 Distributions of the Linear Combination
Let Z = aX + bY , where a > 0 and b are real constants, and X and Y denote gamma and
Rayleigh random variables respectively and are distributed independently of each other.
In what follows, we consider the derivation of the distribution of the linear combination
Z = aX + bY . The gamma and Rayleigh random variables are defined as follows.
Gamma Distribution: A continuous random variable X is said to have a gamma distri-
bution if its pdf fX(x) and cdf FX(x) = P (X ≤ x) are, respectively, given by

fX(x; α, β) =
βα

Γ(α)
xα−1e−βx , x > 0 , α > 0 , β > 0 (1)

and

FX(x) =
γ(α, βx)

Γ(α)
. (2)
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Rayleigh Distribution: A continuous random variable Y is said to have a Rayleigh dis-
tribution if its pdf fY (y) and cdf FY (y) = P (Y ≤ y) are, respectively, given by

fY (y) = (y/σ2)e−y2/2σ2

, y > 0 , σ > 0 , (3)

and
FY (y) = 1− e−y2/2σ2

. (4)

2.1 Derivation of the CDF and PDF of Z = aX + bY

This section derives the expressions for the cdf and pdf of Z = aX + bY . We can see that
the distribution of the linear combination (LC) depends on the constants a and b. Based
on the conditions on a and b (a > 0, b > 0 or b < 0), we have provided three different
sets of CDF and PDF of the LC and provided them in Theorem 1.1, 1.2 and 1.3.

Theorem 1.1: Let Z = aX + bY , where X is a gamma random variable with pdf (1) and
cdf (2), Y is a Rayleigh random variable with pdf (3) and cdf (4), and a and b are real
constants. Suppose, without loss of generality, that a > 0. Then, if b > 0 and z > 0, the
cdf and pdf of Z are respectively given by

FZ(z) =
γ

(
α, βz

a

)

Γ(α)
−

[
bσ√
2Γ(α)

(
β

a

)α (
az − βb2σ2

a

)α−1

e−β(2az−βb2σ2)/2a2

×
∞∑

j=0

(−1)jU jΓ(α)

(j!)Γ(α− j)

{
γ

(
j+1

2
,
(az−βb2σ2)2

2a2b2σ2

)
−γ

(
j+1

2
,
β2b2σ2

2a2

)}]
, (5)

and

fZ(z) =
1

Γ(α)

(
β

a

)α

zα−1e−βz/a− bσ√
2Γ(α)

(
β

a

)α(
az−βb2σ2

a

)α−1

e−β(2az−βb2σ2)/2a2

×
∞∑

j=0

(−1)jU jΓ(α)

(j!)Γ(α− j)

{
β

a

[
γ

(
j + 1

2
,
β2b2σ2

2a2

)
−γ

(
j + 1

2
,
(az − βb2σ2)2

2a2b2σ2

)]

+
a(α− j − 1)

(az − βb2σ2)

[
γ

(
j + 1

2
,
(az − βb2σ2)2

2a2b2σ2

)
−γ

(
j + 1

2
,
β2b2σ2

2a2

)]

+
az − βb2σ2

ab2σ2

(
az − βb2σ√

2abσ

)j−1

e−(az−βb2σ2)2/(2a2b2σ2)

}
(6)

where

U =

√
2abσ

az − βb2σ2
, a > 0, b > 0, α > 0, β > 0, σ > 0, z > 0 .

Proof: Using expression (2) for the cdf of a gamma random variable X and expression
(3) for the pdf of a Rayleigh random variable Y , the cdf of the RV Z = aX + bY is given
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by

FZ(z) = Pr(aX + bY ≤ z) = Pr(X ≤ (z − bY )/a)

=

∫ z/b

0

FX

(
z − by

a

)
fY (y) dy

=
1

σ2Γ(α)

∫ z/b

0

γ

(
α,

β(z − by)

a

)
ye−y2/2σ2

dy

= γ

(
α,

βz

a

)
/Γ(α)−

{
b

Γ(α)

(
β

a

)α

e−β(2az−βb2σ2)/2a2

×
∫ z/b

0

(z − by)α−1e
− 1√

2σ
(y−βbσ2/a)

dy

}
. (7)

The result for cdf in (5) easily follows by using the substitution (y − βbσ2/a)/
√

2σ =

t, the binomial series representation (1 + w)k =
∑∞

j=0
Γ(k)

Γ(k−j)
wj

j!
, and the definition of

the incomplete gamma function in (7). The pdf expression in (6) is easily obtained by
differentiating the cdf in (5).

Theorem 1.2: Let Z = aX + bY , where X is a gamma random variable with pdf (1) and
cdf (2), Y is a Rayleigh random variable with pdf (3) and cdf (4), and a and b are real
constants. Suppose, without loss of generality, that a > 0. Then, if b < 0 and z ≤ 0, the
cdf and pdf of Z are respectively given by

FZ(z) =

[
bσ√
2Γ(α)

(
β

a

)α (
az − βb2σ2

a

)α−1

e−β(2az−βb2σ2)/2a2

×
∞∑

j=0

(−1)jU jΓ(α)

(j!)Γ(α− j)

{
γ

(
j + 1

2
,
(az − βb2σ2)2

2a2b2σ2

)
− Γ

(
j + 1

2

)}]
, (8)

and

fZ(z) =
bσ√
2Γ(α)

(
β

a

)α (
az−βb2σ2

a

)α−1

e−β(2az−βb2σ2)/2a2

×
∞∑

j=0

(−1)jU jΓ(α)

(j!)Γ(α−j)
{

β

a

[
γ

(
j+1

2
,
β2b2σ2

2a2

)
+Γ

(
j+1

2
,
β2b2σ2

2a2

)
−γ

(
j+1

2
,
(az−βb2σ2)2

2a2b2σ2

)]

+
a(α−j−1)

az−βb2σ2

[
γ

(
j+1

2
,
(az−βb2σ2)2

2a2b2σ2

)
−γ

(
j+1

2
,
β2b2σ2

2a2

)
−Γ

(
j+1

2
,
β2b2σ2

2a2

)]

+
az−βb2σ2

ab2σ2

(
az−βb2σ2

√
2abσ

)j−1

e−(az−βb2σ2)2/(2a2b2σ2)

}
, (9)
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where

U =

√
2abσ

az − βb2σ2
, a > 0 , b > 0 , α > 0 , β > 0 , σ > 0 , z > 0 .

Proof: Expressions (8) and (9) can be easily established similar to the Theorem 1.1.

Theorem 1.3: Let Z = aX + bY , where X is a gamma random variable with pdf (1) and
cdf (2), Y is a Rayleigh random variable with pdf (3) and cdf (4), and a and b are real
constants. Suppose without loss of generality that a > 0. Then, if b < 0 and z > 0, the
cdf and pdf of Z are respectively given by

FZ(z) = γ

(
α,

βz

a

)
/Γ(α)−

[
bσ√
2Γ(α)

(
β

a

)α (
az − βb2σ2

a

)α−1

e−β(2az−βb2σ2)/2a2

×
∞∑

j=0

(−1)jU jΓ(α)

(j!)Γ(α− j)
Γ

(
j + 1

2
,
β2b2σ2

2a2

)]
, (10)

and

fZ(z) =
1

Γ(α)

(
β

a

)α

zα−1e−βz/a+
bσ√
2Γ(α)

(
β

a

)α(
az − βb2σ2

a

)α−1

e−β(2az−βb2σ2)/2a2

×
∞∑

j=0

(−1)jU jΓ(α)

(j!)Γ(α− j)

(
β

a
− a(α− j − 1)

az − βb2σ2

)
Γ

(
j + 1

2
,
β2b2σ2

2a2

)
, (11)

where

U =

√
2abσ

az − βb2σ2
, a > 0 , b > 0 , α > 0 , β > 0 , σ > 0 , z > 0 .

Proof: Expressions (10) and (11) can be easily established similar to Theorem 1.1.

Corollary 1: Let Z = aX + bY , where X and Y are distributed according to (1) and (3),
respectively, and a and b are real constants. Suppose α = 1 in (1). Then, using the special
properties of incomplete gamma and error functions, it is easy to see that the cdf and pdf
of Z can be expressed as follows:

(i) for b > 0, β > 0, σ > 0, and z > 0,

FZ(z) = 1− e−
βz
a +

√
π

2

βbσ

a
e−β(2az−βb2σ2)/2a2

{
erf

(
βbσ√

2a

)
− erf

(
βb2σ2 − az√

2abσ

)}

and

fZ(z) =
β

a

[
e−βz/a − e−z2/(2b2σ2) +

(√
π

2

βbσ

a
e−β(2az−βb2σ2)/2a2

)

×
{

erf

(
βbσ√

2a

)
− erf

(
βb2σ2 − az√

2abσ

)}]
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(ii) for b < 0, β > 0, σ > 0, and z ≤ 0,

FZ(z) =

√
π

2

βbσ

a
e−β(2az−βb2σ2)/2a2

[
erf

(
βb2σ2 − az√

2abσ

)
− 1

]

and

fZ(z) =
β

a

[
e−z2/(2b2σ2) +

√
π

2

βbσ

a
e−β(2az−βb2σ2)/2a2

{
1− erf

(
βb2σ2 − az√

2abσ

)}]

(iii) for b < 0, β > 0, σ > 0, and z > 0,

FZ(z) = 1− e−
βz
a

[
1 +

√
π

2

βbσ

a
eβ2b2σ2/2a2

{
1 + erf

(
βbσ√

2a

)}]

and

fZ(z) =
β

a
e−

βz
a

[
1 +

√
π

2

βbσ

a
eβ2b2σ2/2a2

{
1 + erf

(
βbσ√

2a

)}]
.

The results in corollary 2.1 coincide with that of Kibria and Nadarajah (2007), where
they considered the distribution of the linear combination of exponential and Rayleigh
distribution.

Corollary 2: Let Z = aX + bY , where X and Y are distributed according to (1) and
(3), respectively, and a and b are real constants. Suppose α = 1 in (1). Then, from the
case (i) of Corollary 1, that is, for b > 0, β > 0, σ > 0, and z > 0, it is easy to see that
the cdf and pdf of Z can be expressed in terms of parabolic-cylinder function Dp(·) and
confluent hypergeometric function 1F1(·) as follows:
(I) CDF: for b > 0, β > 0, σ > 0, and z > 0,
(A)

FZ(z) = 1− e−βz/a − βσ2

a
e−(2βaz−b2β2σ2)/2a2

[
b2β1F1

(
1

2
,
3

2
;−b2β2σ2

2a2

)

− βb2σ2 − az

σ2 1F1

(
1

2
,
3

2
;−(βb2σ2 − az)2

2a2b2σ2

)]

(B)

FZ(z) = 1− e−βz/a −
√

2bβσ

a
e−(2βaz−b2β2σ2)/2a2

×
[
e−(βb2σ2−az)2/(4a2b2σ2)D−1

(
βb2σ2 − az

abσ

)
− e−(β2b2σ2/4a2

D−1

(
βbσ

a

)]

(II) PDF: for b > 0, β > 0, σ > 0, and z > 0,
(A)

fZ(z) =
β

a

[
e−βz/a − e−z2/(2b2σ2) +

b2β2σ2

a2
e−(2βaz−b2β2σ2)/2a2

×
{

βb2σ2 − az

βb2σ2 1F1

(
1

2
,
3

2
;−(βb2σ2 − az)2

2a2b2σ2

)
− 1F1

(
1

2
,
3

2
;−b2β2σ2

2a2

)}]
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(B)

fZ(z) =
β

a

[
e−βz/a − e−z2/(2b2σ2) +

√
π

2

bβσ

a
e−(2βaz−b2β2σ2)/2a2

×
{

e−(βb2σ2−az)2/(4a2b2σ2)D−1

(
βb2σ2 − az

abσ

)
− e−β2b2σ2/4a2

D−1

(
βbσ

a

)}]

Remark: Using the definition of parabolic-cylinder function Dp(·) and confluent hyper-
geometric function 1F1(·), as discussed in Section 1, one can easily obtain the expressions
for the cdf and pdf of Z = aX + bY in terms of these special functions for cases (ii) and
(iii) of Corollary 1.

Corollary 3: Suppose X and Y are distributed according to (1) and (3), respectively.
Suppose α = 1 in (1). Then, one can easily obtain the cdf and pdf of Z = X + Y from
(i) in Corollary 1 as

FZ(z) = 1− e−βz +

√
π

2
βσe−β(2z−βσ2)/2

{
erf

(
βσ√

2

)
− erf

(
βσ2 − z√

2σ

)}

and

fZ(z) = β

[
e−βz − e−z2/2σ2

+

√
π

2
βσe−β(2z−βσ2)/2

{
erf

(
βσ√

2

)
− erf

(
βσ2− az√

2σ

)}]
,

where β > 0, σ > 0, and z > 0.

Corollary 4: Suppose X and Y are distributed according to (1) and (3), respectively.
Suppose α = 1 in (1). Then, one can easily obtain the cdf and pdf of Z = X − Y from
(iii) in Corollary 1 as

FZ(z) = 1− e−βz

[
1 +

√
π

2
βσeβ2σ2/2

{
1 + erf

(
βσ√

2

)}]

and

fZ(z) = βe−βz

[
1 +

√
π

2
βσeβ2σ2/2

{
1 + erf

(
βσ√

2

)}]
,

where β > 0, σ > 0, and z > 0.

2.2 Plots of the CDF and PDF of Z = aX + bY

Using Maple 11, the possible shapes of the cdfs and pdfs of Z = aX+bY are provided for
some selected values of coefficients and parameters in Figures 1 to 4 below. The effects
of the parameters can easily be seen from these graphs.

From these graphs, it is evident that the distribution of z is right skewed. Similar plots
can be drawn for others values of the parameters.
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Figure 1: CDF plots of Z = aX + bY for a = 1, b = 1, α = 1, σ = 0.5, β = 0.2, 0.5, 1, 2
(left), and a = 1, b = 1, α = 1, σ = 1, β = 0.2, 0.5, 1, 2 (right).

Figure 2: CDF plots of Z = aX + bY for a = 1, b = −1, α = 1, σ = 0.5, β =
0.2, 0.5, 1, 2 (left), and a = 1, b = −1, α = 1, σ = 1, β = 0.2, 0.5, 1, 2 (right).

Figure 3: PDF plots of Z = aX + bY for a = 1, b = 1, α = 1, σ = 0.5, β = 0.2, 0.5, 1, 2
(left), and a = 1, b = 1, α = 1, σ = 1, β = 0.2, 0.5, 1, 2 (right).
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Figure 4: PDF plots of Z = aX+bY for a = 1, b = −1, α = 1, σ = 0.5, β = 0.2, 0.5, 1, 2
(left), and a = 1, b = −1, α = 1, σ = 1, β = 0.2, 0.5, 1, 2 (right).

3 Percentiles
This section computes the percentage points of the distribution of the LC Z = aX + bY ,
where a > 0 and b are real constants. For any 0 < p < 1, the 100pth percentile (also
called the quantile of order p) of the distribution with pdf fZ(z) is a number zp such that
the area under fZ(z) to the left of zp is p. That is, zp is any root of the equation

F (zp) =

∫ zp

−∞
fZ(u) du = p . (12)

By numerically solving equation (12) for the cdf in Theorem 1.1 using a Maple 11 pro-
gram, percentage points zp associated with the cdf of Z are computed for some selected
values of the parameters. These are provided in Table 1 and 2.

4 Applications
To illustrate the performance of the new distribution, an example of rain fall data has
been considered in this section. We have considered the maximum 24-hour precipitation
recorded for thirty-six inland hurricanes (1900-1969) (Source: Larsen and Marx, 2006, p.
360. The mean, median and skewness of this data are 7.29, 5.58 and 2.52, respectively.
We can see that the data are right skewed. The rain-fall data is provided in Table 3.

Maple 11 has been used for computing the data moments, estimating the parameter
(by the method of moments), and chi-square test for goodness-of-fit. The data moments
are computed as µ̂1 = 7.29, µ̂2 = 85.59 and µ̂3 = 1543.64. The estimation of the
parameters and chi-square goodness-of-fit test are provided in Table 4 and 5, respectively.
From the chi-square goodness-of-fit test we observed that the gamma, Rayleigh and LC
model fit the rainfall data reasonably well. However, the LC model produces the highest
p-value and therefore fitted better than the gamma and Rayleigh distribution. Also, for
the parameters estimated in Table 4, gamma, Rayleigh, and the LC model have been
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Table 1: Percentage points of Z = X + Y for α = 1.
σ β 75 % 80 % 85 % 90 % 95 % 99 %

0.5 0.2 3.626579 3.736235 3.843157 3.947593 4.049755 4.129971
0.5 2.632961 2.711655 2.788662 2.864144 2.938239 2.996599
1.0 2.144516 2.209016 2.272378 2.334725 2.396162 2.444716
2.0 1.817671 1.873934 1.929467 1.984368 2.038720 2.081854

1.0 0.2 4.211928 4.323557 4.432266 4.538329 4.641980 4.723301
0.5 3.205419 3.287408 3.367389 3.445570 3.522126 3.582302
1.0 2.708586 2.777780 2.845389 2.911590 2.976534 3.027672
2.0 2.377645 2.440037 2.501121 2.561056 2.619977 2.666463

Table 2: Percentage points of Z = X − Y for α = 1.
σ β 75 % 80 % 85 % 90 % 95 % 99 %

0.5 0.2 2.476823 2.583890 2.688448 2.790727 2.890906 2.969647
0.5 1.548095 1.623300 1.697144 1.769743 1.841200 1.897604
1.0 1.130406 1.191086 1.251018 1.310269 1.368899 1.415391
2.0 0.893320 0.946215 0.998805 1.051126 1.103206 1.144716

1.0 0.2 2.091253 2.193567 2.293780 2.392052 2.488529 2.564502
0.5 1.281635 1.352142 1.421667 1.490283 1.558052 1.611698
1.0 0.962859 1.020183 1.077045 1.133480 1.189521 1.234089
2.0 0.813168 0.864682 1.077045 0.967269 1.018373 1.059177

Table 3: Rainfall data (see Larsen and Marx, 2006).
31.00 2.82 3.98 4.02 9.50 4.50 11.40 10.71 6.31

4.95 5.64 5.51 13.40 9.72 6.47 10.16 4.21 11.60
4.75 6.85 6.25 3.42 11.80 0.80 3.69 3.10 22.22
7.43 5.00 4.58 4.46 8.00 3.73 3.50 6.20 0.67

Table 4: Parameter estimates for the rainfall data assuming different models.
Model

LC Z = X + Y Gamma Rayleigh
α̂ 1 1.63500
β̂ 0.17751 0.22436
σ̂ 1.31986 5.8146

Table 5: Comparison criteria (chi-square test for goodness-of-fit).
Model

LC Z = X + Y Gamma Rayleigh
Test statistic 0.600 0.759 1.050
Critical value 5.991 5.991 5.991
p-value 0.740 0.684 0.591

superimposed on the histogram of the rainfall data as in Figure 5, from which we observed
that the LC fits the rainfall data reasonably well.
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Figure 5: Fitting the pdfs under the LC, gamma and Rayleigh model for the rainfall data.

5 Concluding Remarks
This paper has derived the exact probability distribution of the linear combination of two
independent random variables X and Y , where X has a Rayleigh and Y has a gamma dis-
tribution. The expressions for cdf and pdf of the linear combination of two independent
random variables are given. The plots for the cdf and pdf, percentile points for selected
coefficients and parameters, and the statistical application of the distributions have been
provided. We considered the rainfall data and found that LC fitted better than both gamma
and Rayleigh distributions. Note that Kibria and Nadarajah (2007) considered the linear
combination of exponential and Rayleigh distributions and therefore, Kibria and Nadara-
jah (2007) is a special case of this paper. We hope the findings of the paper will be useful
for the practitioners and encourage the young scientists to do more researches in these
topics.
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