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Abstract: A new type of redescending M-estimators is constructed, based on
data augmentation with an unspecified outlier model. Necessary and suffi-
cient conditions for the convergence of the resulting estimators to the Huber-
type skipped mean are derived. By introducing a temperature parameter the
concept of deterministic annealing can be applied, making the estimator in-
sensitive to the starting point of the iteration. The properties of the annealing
M-estimator as a function of the temperature are explored. Finally, two ap-
plications are presented. The first one is the robust estimation of interaction
vertices in experimental particle physics, including outlier detection. The
second one is the estimation of the tail index of a distribution from a sample
using robust regression diagnostics.

Zusammenfassung: Ein neuer Typ von wiederabsteigenden M-Schitzern
wird konstruiert, ausgehend von Datenerweiterung mit einem unspezifizierten
Ausreilermodell. Notwendige und hinreichende Bedingungen fiir die Kon-
vergenz zu Hubers “Skipped-mean”-Schitzer werden angegeben. Durch Ein-
fiihrung einer Temperatur kann die Methode des “Deterministic Annealing”
angewendet werden. Der Schitzer wird dadurch unempfindlich gegen die
Wahl des Anfangspunkts der Iteration. Die Eigenschaften des Schitzers als
Funktion der Temperatur werden untersucht. Schlielich werden zwei An-
wendungen vorgestellt. Die erste ist die robuste Schitzung von Wechsel-
wirkungspunkten in der experimentellen Teilchenphysik, einschlielich der
Erkennung von Ausreilern. Die zweite ist die Schitzung des “Tail index”
einer Verteilung aus einer Stichprobe mittels robuster Regressionsdiagnostik.

Keywords: Regression Diagnostics.

1 Introduction

M-estimators were first introduced by Huber (2004) as robust estimators of location and
scale. Their study in terms of the influence function was undertaken by Hampel and
co-workers (Hampel et al., 1986). Redescending M-estimators are a special class of M-
estimators. They are widely used for robust regression and regression clustering, see
e.g. Miiller (2004) and the references therein. According to the definition in Hampel et al.
(1986), the 1/-function of a redescending M-estimators has to disappear outside a certain
central interval. Here, we merely demand that the v)-function tends to zero for |z| — 0.
If + tends to zero sufficiently fast, observations lying farther away than a certain bound
are effectively discarded. Redescending M-estimators are thus particularly resistant to
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extreme outliers, but their computation is afflicted with the problem of local minima and
a resulting dependence on the starting point of the iteration.

The problem of convergence to a local minimum can be cured by combining the iter-
ative computation of the M-estimate with a global optimization technique, namely deter-
ministic annealing. For a review of deterministic annealing and its applications to clus-
tering, classification, regression and related problems see Rose (1998) and the references
therein. To the best of our knowledge, the combination of M-estimators with determin-
istic annealing has been proposed only by Li (1996). It will be shown below, however,
that his annealing M-estimators have infinite asymptotic variance at low temperature, a
feature that we deem to be undesirable in certain applications.

The purpose of this note is to construct a new type of redescending M-estimators
with annealing that converge to the Huber-type skipped mean Hampel et al. (1986) if the
temperature 7' approaches zero. The starting point is a mixture model of data and out-
liers. Data augmentation is used to formulate an EM algorithm for the estimation of the
unknown location of the data. The EM algorithm is then interpreted as a redescending
M-estimator that can be combined with deterministic annealing in a natural way (Sub-
sections 2.1 and 2.2). The most important case is a normal model for the data, but other
models are possible. In Subsection 2.3 conditions are derived under which the corre-
sponding M-estimator converges to the skipped mean. Section 3 explores the properties
of the annealing M-estimator with a normal data model and illustrates the effect of de-
terministic annealing on a simple example with synthetic data. Section 4 presents two
applications of the annealing M-estimator: first, robust regression applied to the problem
of estimating an interaction vertex in experimental particle physics; and second, regres-
sion diagnostics applied to the problem of estimating the tail index of a distribution from
a sample.

2 Redescending M-estimators with
Deterministic Annealing

This section shows how a new type of redescending M-estimators can be constructed
via data augmentation. The estimators are then generalized by introducing a temperature
parameter so that deterministic annealing can be applied. The case of data models other
than the normal one is discussed, and conditions for convergence to the skipped mean are
derived.

2.1 Construction via Data Augmentation
The starting point is a simple mixture model of data with outliers, with the p.d.f.
W) =p- flzip,o)+ (1 —p)-g(z). (D

By assumption, f(x; u, o) is the p.d.f. of the normal distribution with location y and scale
o and can be written as

flzsp,o) =¢(r),  with  r=(z—p)/o,
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©(+) being the standard normal density. The distribution of the outliers, characterized by
the density g(z), is left unspecified.

Now let (z1,...,x,) be a sample of size n from the model in (1). The sample is
augmented by a set of indicator variables /;, j = 1,...,n, where I; = 0 (1) indicates that
x; 1s an inlier (outlier). If the scale o is known, the location can be estimated by the EM
algorithm (Dempster, Laird, and Rubin, 1977). In this particular case, the EM algorithm
is an iterated re-weighted least-squares estimator, the weight of the observation x; being
equal to the posterior probability that it is an inlier. The latter is given by Bayes’ theorem:

P(x;|l; =0) - P(I; = 0)
(2]1; =0) - P(I; = 0) + P(x;|[; =1) - P(I; = 1)

P(I; = 0lz;) = 5 (2)
As we do not wish to specify the outlier distribution, we resort to a worst case scenario
and set P(I; = 0) = P(I; = 1) = 1/2. In addition we require that in the vicinity of x,
an observation should be an inlier rather than an outlier, so P(/; = 1|z) < P(I; = 0|z)
for |z — p|/o < ¢, ¢ > 0, where ¢ is a cutoff parameter. This can be achieved by setting
the prior probability P(z;|/; = 1) that z; is an outlier to P(; + co|l; = 0) = ¢(c). The
posterior probability P(/; = 0|z;) then reads:
f($j;“> U) SO(TJ')

P = Oley) = flajim o)+ ()~ o(ry) +¢(0) v

where r; = (x; — p)/o. If r; = c, the posterior probabilities of z; being an inlier or an
outlier, respectively, are the same.

If the inlier density is normal the EM algorithm is tantamount to an iterated weighted
mean of the observations:

pF ) = Z w](-k)xj/ Z w](-k) ) with
j=1 j=1

k
(k) 90(7“](' ))
j k)N . 0
p(r{) + ¢(c)
k
= (2, - u®)/o.

and

The iterated weighted mean can also be interpreted as an M-estimator of location (Huber,
2004), with

oy re(r) N ,
virio) = A0 and p(r,c)—/z/z(r,c)dr.

This interpretation allows us to analyze the estimator in terms of its influence function
and associated concepts such as gross-error sensitivity and rejection point.

2.2 Introducing a Temperature

The shape of the score function p(r;c) can be modified by introducing a temperature
parameter 7' into the weights. This allows to improve global convergence by using the
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technique of deterministic annealing (Rose, 1998; Li, 1996). The modified weights are
defined by

wirieT) - SCNVT)  esp(ort/am) "

o(r/VT) + o(c/VT)  exp(—r?/2T) + exp(—c?/2T) )

The redescending M-estimator with this weight function is called a normal-type or N-type
M-estimator. Its ¥-function is given by

rexp(—r?/2T)
exp(—r2/2T) + exp(—c?/2T) "’

U(rie,T) =

and its p-function by

2
p(rie,T) = % — T'log (exp(r?/2T) + exp(c®/2T)) + T'log (1 + exp(c?/2T)) . (5)

Figure 1 shows the weight function, the ¢)-function and the p-function of the N-type M-
estimator for three different temperatures (7' = 10, 1,0.01). Note that (5) is not suitable
for the numerical computation of p(r; ¢, T) if T is very small. A numerically stable ver-
sion of (5) is given by

2 1 —c?/2T
T_+T10g +exp( ¢ / ) ) lf|7" <,
(rie,T) = 2 1+ exp((r? — ¢2)/2T)
PTG 2 T 1+ exp(—c?/27T) 1] >
- 0} 1I |7 C.
27 P T exp((@ = r2)20)

If the temperature increases, the weight drops more slowly as a function of r. In the
limit of infinite temperature we have

lim w(r;c,T) = =
T—o00 2

for all ¢, and the M-estimator degenerates into a least-squares estimator. If the temperature
drops to zero, the weight function converges to a step function.

Proposition 1 Let H () be the unit step function (Heaviside function) with the additional
convention H(0) = 1/2. Then

%{I})w(r; ¢, T)=H(c—r).

Proposition 1 follows from the more general Proposition 2 below.

2.3 Non-normal Data models

The density ¢ used in defining the weight function in (4) need not be the standard normal
density. In fact, every unimodal continuous symmetric density f(x) with location 0, scale
1 and infinite range generates a type of redescending M-estimators. The behaviour of
the weight function wy(r; ¢, T') at low temperature is determined by the tail behaviour of
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(@)

(b)

w(r,T)

Figure 1: N-type M-estimator: a) w(r;c,T'), (b) ¥(r;¢,T) and (¢) p(r;¢,T) for ¢ = 2.5
and T = 10, 1,0.01.

f(x), as described by the concept of regular variation at infinity (Seneta, 1976). We recall
that a function f(z) : [0,00) — (0, 00) is called regularly varying at infinity with index
¢ € Rif it satisfies

A
lim £ _ e for any A > 0.
a0 f(x)
If f(x) is a probability density function, £ has to be in the interval (—oo, —1). The defi-
nition can be extended in the obvious sense to § = —oo. If £ = —o0,

11m
z—oo f(x) oo for\ < 1.

I f(A\z) _ {O for A > 1,

In this case f(x) is also called rapidly varying at infinity (Seneta, 1976). Normal densities
are rapidly varying at infinity, as are all densities with exponential tails.

Proposition 2
(a) Let H(-) be as in Proposition 1. f(r) is rapidly varying at infinity if and only if

%1g%)wf(7“;c, T)=H(c—r)

forall c > 0.
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(b) f(r) is regularly varying at infinity with index £ € R if and only if

/r'g C_E

lim we(r; e, T) = =
T—0 f(’ ’ ) 7"5—}—05 r*ﬁ_{_cff

forall ¢ > 0. U
The proof is omitted, but can be obtained from the authors on request.

Example 1 (The Hyperbolic Secant Distribution)
The hyperbolic secant distribution is a symmetric distribution with exponential tails. The
standardized density is equal to

1
hr) = 2cosh(rm/2) "
The -function of the corresponding (HS-type) redescending M-estimator is shown in
Figure 2(a), for three different temperatures (T = 10, 1,0.01). It is easy to show that h(r)
is rapidly varying at infinity. According to Proposition 2, the weight function wy,(r; ¢, T)
converges to H(c — r) for T — 0, and the corresponding M-estimator approaches the
skipped mean. 0

Example 2 (Student’s ¢-Distribution)
Student’s t-distribution is a symmetric distribution with tails falling off according to a
power law. The standardized density with v > 2 degrees of freedom is equal to

I'((v+1)/2) (1+ r2 )—<u+1>/z'

fulr) = (v —2)T(v/2) v—2

The 1)-function of the corresponding (t,-type) redescending M-estimator with v = 3 is
shown in Figure 2(D), for three different temperatures (T = 10, 1,0.01). The density t,,(r)
is regularly varying at infinity with index ¢ = —(v + 1). From Proposition 2 follows:

Cl/+1
pny s 1) =
For v — oo, this function approaches the step function H(c — ). 0

3 N-type M-estimators of Location

In this section the properties of the annealing M-estimator with a normal data model are
explored. The effect of deterministic annealing on the objective function of the estimator
is illustrated on a simple example with two clusters (data and outliers).
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(b)

y(r,T)
y(r,T)

Figure 2: ¢ (r;c,T) of redescending M-estimators of (a) hyperbolic secant-type and (b)
Student’s ¢3-type , for c = 2.5 and 7" = 10, 1, 0.01.

3.1 Basic Properties

The influence function is always proportional to ):
IE(r;(r;e,T), F) = ¢(r; ¢, T)/K(c,T).

If the model distribution is the standard normal distribution, K (¢, T") is given by (Hampel
et al., 1986):

K(C,T):/Rrw(r;c,T)gp(r)dr:Z/OOOrw(r;c,T)go(r)dr.

Unfortunately, the integral cannot be written in closed form. Figure 3(a) shows K (¢, T') as
a function of 7, for c = 1.5 : 0.5 : 3, computed by numerical integration. Complications
at very small values of 7" can be avoided by splitting the interval of integration [0, co) at
c. The low- and high-temperature limits can be computed explicitly:

1
lim K(c,T) = 2®(c) — 1 — 2cyp(c), lim K(c,T) = .

T—0 T—o00 2

The point of maximum influence can be computed by means of the Lambert 1//-function
(Coreless et al., 1996):

Tmax (6, T) = \/2Tw(c, T) + T, with w(e,T) =W (% exp(c®/2T — 1/2)) .

Tmax 18 shown in Figure 3(b). The maximum value of the influence function is the gross-
error sensitivity y*:

(e ) = maxIF(r e, 7) = Yrm(eT)ie ) - 1 2VTw(eT)

r K(c,T) K(e,T)\2w(e,T)+1

Figure 3(c) shows the gross-error sensitivity as a function of 7, forc = 1.5 : 0.5 : 3.
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Figure 3: N-type M-estimator: (a) K (c,T), (b) mmax, (c) gross error sensitivity, (d) ef-
fective rejection point for ¢ = 1072 and (e) asymptotic variance, as a function of the
temperature 7', forc = 1.5: 0.5 : 3.

The minimum value lies in the range 1 < T' < 2, so if one aims to minimize ~*, the final
temperature should be chosen in that range. In the low-temperature limit we have

c
li (e, T) = .
7o (e, ) 20(c) — 1 —2¢p(c)

AtT = 0, v* is minimal for ¢ ~ 2.14. The weight function w(r; ¢, T") is always positive,

so the M-estimator does not have a finite rejection point. However, an effective rejection
point can be computed for a threshold ¢:

pei(c, Ty e) = sup{r : IF(r;¢,T) > €} .
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Figure 3(d) shows the effective rejection point for ¢ = 1073, In the limit 7" — 0 the
effective rejection point approaches the cutoff value c. Finally, the asymptotic variance at
the standard normal distribution, given by

Je(rie, T)e(r)dr
K(e, T)? ’

Ve, T) =

is shown in Figure 3(e). The low- and high-temperature limits are given by:

1
:1F1£n>0v(c T) = 20(c) — 1 —2¢cp(c)’ Th_r)gloV(c =1
Figure 3 shows that, for a given cutoff value c, it is not possible to minimize the gross-error
sensitivity and the rejection point at the same time. The choice of the stopping temperature
therefore depends on the problem at hand. If the asymptotic efficiency is important the
cutoff value c should be between 2.5 and 3, at the cost of a somewhat higher gross-error
sensitivity and a larger rejection point. Cutoff values larger than 3 are not recommended.

3.2 Effect of Deterministic Annealing

The effect of deterministic annealing on the minimization of the objective function of the
N-type estimator is illustrated on a simple problem of location estimation with synthetic
data. The data are generated from the following mixture model with mean-shift outliers
(see Equation (1)):

W) = po(a) + (1 — p)p((x —m) /o).

We have chosen the following mixture parameters:

which results in two barely separated standard normal components. An example data
set with 500 observations is shown in Figure 4. There are 364 inliers and 136 outliers.
The scale estimate s is computed by taking the median of the absolute deviations from the
half-sample mode, which in this situation is a better measure of the inlier location than the
sample median (Bickel and Friithwirth, 2006). Its normal-consistent value for the example
data is 1.31, whereas the normal-consistent MAD is equal to 1.56. The cutoff has been
setto c = 2.5.
It is instructive to observe the evolution of the objective function

M (p;e,T) = Zp w)/s;c,T)

with falling temperature 7" (see Figure 5). At large T, the weights are nearly independent
of the residuals, and the objective function is almost quadratic. If the temperature is de-
creased, the objective function starts to reflect the structure of the data, eventually showing
two clear local minima. These minima could be used to detect clusters in the data (Garlipp
and Miiller, 2005). As the objective function is minimized at each temperature, the final
estimate is now totally independent of the starting value. As long as the high-temperature
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Figure 4: Example data set with 500 observations from a mixture of two standard normal
distributions. The difference of the means is equal to six. There are 364 inliers and 136
outliers.

minimum is closer to the deeper low-temperature minimum convergence to the latter is
virtually guaranteed.

If the separation m between inliers and outliers is decreased, the final objective func-
tion eventually has a single minimum. Figure 6 shows the final objective function at
T = 0.1 form = 6,5,4,3. At m = 5 the second local minimum has disappeared, but
the objective function still has a point of inflection close to the outlier location, and the
estimate is unbiased. At m = 4 the point of inflection is barely visible, and the estimate
shows a small bias. At m = 3 the point of inflection has disappeared, and the estimate
shows a clear bias. In contrast, the median and the half-sample mode are totally unaffected
by the change in separation.

Deterministic annealing in combination with redescending M-estimators has already
been proposed by Li (1996). One of the weights function used there is a modified Welsch
estimator with the weight function

w(r; T) = exp(—r?/2T),

which is equal to the numerator of the N-type weight function in (4). It is easy to show
that the asymptotic variance of this estimator at the standard normal distribution is equal
to

(1+1T)3
2+ 1) RT3

V(T) =

and consequently

lim V(T') = 0.

T—0

The same holds for the other two weight functions proposed by Li (1996).
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Figure 5: Evolution of the objective function M (y; ¢, T') with falling temperature. The

open circle (O) is the starting point of the iteration at the respective temperature, the
x-mark (x) is the final estimate at the respective temperature.
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Figure 6: The objective function M (u; ¢, T') at the final temperature 7" = 0.1, for different
values of the mean shift m between inliers and outliers. The open circle (O) is the starting
point of the iteration, the x-mark () is the final estimate.
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Figure 7: A primary vertex with several outgoing tracks.

4 Applications

In this section we present two application of the annealing M-estimator. In the first one
the estimator is applied to the problem of estimating robustly the interaction vertex of
a particle collision or a particle decay. The results show that annealing is instrumental
in identifying and suppressing the outliers. In the second application the annealing M-
estimator is used for regression diagnostics in the context of the estimation of the tail
index of a distribution from a sample.

4.1 Robust Regression and Outlier Detection

The N-type estimator can be applied to robust regression with minimal modifications. The
procedure is illustrated with the following problem from experimental particle physics.

An interaction vertex or briefly vertex is the point where particles are created by a
collision of two other particles, or where an unstable particle decays and produces two or
more daughter particles. The position of the vertex has to be estimated from the parame-
ters of the outgoing particles, the so-called track parameters. The track parameters consist
of location, direction and curvature. They have to be estimated before the vertex can be
estimated. As an illustration, Figure 7 shows a primary vertex, the interaction point of
two beam particles in the accelerator, and several outgoing tracks. The precision of the
estimated track parameters is indicated by the width of the tracks.

The least-squares (LS-)estimator of the vertex position v minimizes the sum of the
squared standardized distances of all tracks from the vertex position v:

1 n 1 n
s = in L ith L(v) =) r(v)=5) d 2
s = argmin L(v) wi (v) 2 2 ri(v) 2 2 “(v)/o;

The distance d; is approximated by an affine function of v, obtained by a first-order Taylor
expansion of the track model, which is the solution of the equation of motion of the
particle:
di(v) ~¢; +alv.
The o2 are known from the estimation procedure of the track parameters.
With the redescending N-type M-estimator each track gets a weight w;:

o exp(—r7/2T)
" exp(—r?/2T) + exp(—c2/2T)
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Table 1: Results of vertex estimation with the N-type M-estimator, using simulated data.
For details see the text.

Inliers Outliers Vertices
Annealing Schema w<05 w>05|w<05 w>05>5 Trec
No annealing, 7' =1 0.312 0.688 0.859 0.141 1422
No annealing, T = 0.01 | 0.512 0.488 0.899 0.101 1004
Annealing, Tyq = 1 0.101 0.899 0.828 0.172 1913
Annealing, Tenq = 0.01 0.092 0.908 0.829 0.171 1939

As a consequence, outlying or mis-measured tracks are downweighted by a factor w;. As
the factor w; depends on the current vertex position v, the M-estimator is computed as an
iterated reweighted least-squares estimator. The dependence on the starting point is cured
by annealing. The final weights can be used for a posterior classification of the tracks as
inliers (w; > 0.5) or outliers (w; < 0.5).

In our example we have used simulated events from the CMS experiment (CMS col-
laboration, 1994; CMS Collaboration, 2007) at CERN, real data not yet being available.
We have studied the estimation of the primary (beam-beam collision) vertex. For more de-
tails about the estimation problem, see Waltenberger, Frithwirth, and Vanlaer (2007). The
primary particles produced in the beam-beam collision are the inliers, whereas short-lived
secondary particles produced in decays of unstable particles are the outliers, along with
mis-measured primary tracks. Primary and secondary tracks can be identified from the
simulation truth. Estimation of the primary vertex was done by the N-type M-estimator,
with the least-squares estimator as the starting value. The annealing schedule was T =
256, Tip1 = Tena + q(T5 — Tena), with ¢ = 0.25.

The results are summarized in Table 1. The first column shows the type of annealing
used, the second and third columns show the classification of the primary tracks by their
final weights, the fourth and fifth columns show the classification of the secondary tracks,
and the last column shows how many vertex estimates were within 100um of the true
vertex position, known from the simulation. Without annealing, the N-type M-estimator
performs better at 7' = 1 than at 7" = 0.01. However, the results show that annealing
is essential for the correct classification of primary and secondary tracks. The natural
stopping temperature of the annealing procedure is 7.,q = 1, but cooling to 7;,q4 = 0.01
gives a slight improvement.

A similar method can be employed for the estimation of the track parameters. In this
case, several observations may compete for inclusion into the track, and the computation
of the weights has to be modified accordingly (Frithwirth and Strandlie, 1999).

4.2 Tail Index Estimation

The tail index « of the distribution of a random variable X is defined by

a=sup{d > 0: E(|X|°) < oo} .
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Figure 8: Pareto quantile plots of two samples of size n = 1000 from the ¢-distribution,
with (a) v = 2 and (b) v = 4, respectively.

The tail index determines how many moments of X exist. A consistent estimator of o ~*
from a sample (z1, ..., x,) is the Hill estimator (Hill, 1975):

k
4! 1
Q- = 7 Z 0g X(n—jt1) —log Xnpy -

As pointed out by Beirlant, Vynckier, and Teugels (1996), the choice of k is a problem of
regression diagnostics. This can be understood by looking at the Pareto quantile plot of
the sample. The latter is a scatter plot (z;,y;), j = 1,...,n, with

j .
xj:—10g<n—+1> , Yy =g Xejy, =10,

As an example, Figure 8 shows the Pareto quantile plot of two samples from the ¢-
distribution, with v = 2 and v = 4, respectively. The sample size is n = 1000.

If a line is fitted to the linear part of the plot, its slope is an estimate of 1/«. The
problem is therefore to find the linear part of the plot. It is worth noting that standard
robust regression methods such as LMS or LTS (Rousseeuw and Leroy, 1987) will fail,
as by definition the tail is not the majority of the data.

The N-type M-estimator can be used for regression diagnostics in order to find the
linear part of the Pareto quantile plot. The algorithm is based on the idea of the forward
search (Atkinson and Riani, 2000) and is composed of the following steps:

Algorithm A

Al. Compute the scale of y;, using the asymptotic expression for quantiles and a kernel
estimator for the probability density function. As the kernel estimator is unreli-
able in the very extreme part of the tail, the largest half percent of the sample is
discarded.
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Figure 9: (a) Optimal proportion p,, of the sample and (b) optimal RMSE of the Hill
estimator, as a function of v.

A2. Fit a robust regression line with the N-type M-estimator to the m largest points in
the Pareto quantile plot. The starting line is the LMS regression line. The tempera-
ture is setto 7' = 1.

A3. Freeze all weights and extend the fit successively to the lower portion of the plot,
by adding m points at a time. The choice of m is a trade-off between speed and
safety.

A4. Stop adding points when the new weights get too small, indicating failure of the
linear model.

We have tested the algorithm on samples from the ¢-distribution with v degrees of
freedom, with n = 1000 and v = 1 : 0.5 : 10. The baseline is the Hill estimator using the
optimal value of £. The latter was found for each value of v by computing Hill estimators
with different values of k£ and choosing the one that minimizes the root mean-square error
(RMSE) of @,;1 with respect to the true value o' = 1/v. Figure 9 shows the optimal
proportion p = k/n and the RMSE of the corresponding Hill estimators as a function
of v.

Algorithm A as described above was run with m = 10, i.e. one percent of the sample
size. The cutoff parameter ¢ was adjusted at the 99%-quantile of the x? distribution, i.e. at
¢ = 2.576. The fit was stopped as soon as at least half of the new weights were smaller
than 99% of the maximum weight wy,,, = 1/[1 + exp(—c?/2)] = 0.965. Figure 10
summarizes the results. The left hand panel (a) shows box plots of the proportion of the
sample included in the regression, one for each value of v. The right hand panel (b) shows
the resulting RMSE of d,;l with respect to the true value a~! = 1/v, for all v. The figure
clearly shows that there is a tendency to include more data points than required for the
optimal estimate. As a consequence, the RMSE is somewhat larger than in the optimal
case. On the other hand, in a real life situation no external information at all may be
available about the optimal value of k. In this case the regression diagnostics approach,
which is entirely driven by the data, is a viable alternative.
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Figure 10: (a) Proportion p of the sample used by Algorithm A and (b) resulting RMSE
of Algorithm A, as a function of v.

5 Summary

A new type of redescending M-estimators has been introduced, suitable for combination
with deterministic annealing. It has been shown that the annealing M-estimator con-
verges to the skipped mean if and only if the inlier density is rapidly varying at infinity.
Deterministic annealing helps to make the estimator insensitive to the starting point of
iteration. Possible applications are location estimation, robust regression and regression
diagnostics. The new type of estimators is particularly useful if the scale of the observa-
tions is known. In other cases the scale has to be estimated from the data, preferably in a
robust way.
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