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Abstract: Large-scale experiments usually run on carriers (e.g., test benches
in technical industry) which may have individual limitations concerning the
setting of certain design factors. Consequently, this leads to restricted fac-
tor ranges for single realizations of the experiment. This article discusses
a modular algorithm for the generation of a D-optimal design based on the
point exchange principle. For single experiments, fixed and partly fixed fac-
tor settings can be considered. The term dynamic refers to the possibility of
experiment-specific design adaptations.

Zusammenfassung: Aufwendige technische Versuche laufen üblicherweise
auf Trägern (z.B. Prüfständen), welche hinsichtlich der Einstellbarkeit von
zu studierenden Faktoren individuell eingeschränkt sind. Die Menge der
möglichen Positionen im Faktorraum variiert von Träger zu Träger. Dieser
Artikel diskutiert einen modularen Austausch-Algorithmus für das Erstellen
eines D-optimalen Designs. Dabei können Experimente mit fixierten und
teilweise fixierten Faktoreinstellungen berücksichtigt werden. Die Bezeich-
nung dynamic bezieht sich auf die Möglichkeit der versuchsspezifischen De-
signerweiterung.

Keywords: Computer Generated Designs, Adaptive Optimal Design, Life
Time Experiments.

1 Introduction
A large-scale experiment usually is carried out to investigate several properties of a com-
plex object. E.g., the automotive industry provides typical practical problems.

1. The wear behavior of an engine at several positions (piston, cylinder head, bushings
etc.) has to be compared with the performance of the forerunner model.

2. A validation program for a vehicle should be designed. The experiments have to be
carried out under (multivariate) customer-representative load. Various requirements
regarding several subsystems have to be considered.

3. The functionality of an exhaust gas aftertreatment system has to be optimized. A
couple of component variants are available, several critical usage conditions have to
be borne in mind. Existing experiment carriers dedicated to engine testing should
be used as far as possible.

4. A number of physical parameters cause various failure modes of a sensor system
during usage. Per mode, a damage model should be created dependent on real-
world stress conditions spanning the usage space.
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Such experimental programs are expensive in terms of time and money. Several simulta-
neous targets, individual restrictions of experiment carriers as well as limited resources of
different parts or components of the object require design of large-scale experiments to

• provide designs with a given number of (initial) experiments,
• inspect factors which may not be varied independently,
• examine experiments already carried out before creating the design,
• consider experiments with a subset of factor settings a priori fixed,
• adapt the design during the experimentation.

These requirements demand rather computer generated designs than classical designs
as described in textbooks like Montgomery (2005). Relevant concepts for computer-
generation of designs are point exchange algorithms (see, e.g., Dykstra, 1971, Mitchell,
1974a, Mitchell, 1974b, Cook and Nachtsheim, 1980, Galil and Kiefer, 1980, Johnson and
Nachtsheim, 1983) and genetic algorithms (compare Heredia-Langner, Carlyle, Mont-
gomery, Borror, and Runger, 2003).

We found that the point exchange approach is very flexible to be suitable for designs
with fixed and partly fixed experimental settings. Therefore, it will be used as basis for
the development of the dynamic design algorithm.

In Section 2 we introduce the general notation, the classical linear model, the accel-
erated failure time model, a general life time model, and mention also some design cri-
teria. The modular algorithm for dynamic design of experiments (DDoE) is established
in Section 3 and specific recommendations concerning configuration matters are given in
Section 4. In Section 5, our proposed algorithm is compared with standard DoE tools and
finally, in Section 6, applied to life time experiments motivated by practical requirements.

2 Concepts for Experimental Design

2.1 Notation
Suppose g(x) = (g1(x), . . . , gm(x))′ to be m linear independent functions on a compact
space Ωx which is a compact set in the Euclidean space of dimension m0 ≤ m. A design
measure or weight is a probability measure χ(x) on Ωx with

∫
Ωx

χ(dx) = 1. A finite
design is given as (

g(x1) . . . g(xn)
χ(x1) . . . χ(xn)

)
,

where x1, . . . ,xn ∈ Ωx. If nχ(xj) ∈ N ∀ j ∈ {1, . . . , n}, the design is discrete and
will be denoted as (n × m)-matrix X containing the series of experiments g′(xj) with
(xj : j = 1, . . . , n). To find a design providing maximum information under given
boundary conditions, first let

M(χ) =

(∫

Ωx

gi(x)gk(x)χ(dx)

)

i,k=1,...,m

.

In the special case of a discrete design we have χn = 1/n for each experiment or point xj

and hence M(χn) = X′X/n, where M is the moment matrix.
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2.2 Model Assumptions
Consider the linear model y = g′(x)θx+ε with response y ∈ R and m0-vector x of factors
extended by the function g carrying the structure of m effects. θx = (θ1, . . . , θm)′ is the
m-parameter vector and ε ∼ Pε(0, σ) is the error term following a known location-scale
distribution with unknown scale σ. The corresponding matrix notation for n independent
realizations of y, y = Xθx + ε, contains the discrete design X as (n×m)-model matrix
with n ≥ m and rank(X) = m.

The Classical Linear Model

Let Pε = N(0, σ2), i.e. a normal distribution with variance σ2 independent of x. For
X and an uncensored response y we have ε = (y − Xθx)/σ with the total likelihood
L(θx, σ) ∝ ∏n

j=1 f(εj)/σ where f(εj) is the p.d.f. of the error term. In this case, the
maximum likelihood estimator for θx is identical to the ordinary least squares estimator
θ̂x = (X′X)−1X′y with E(θ̂x) = θx and covariance matrix Σθ̂x

= σ2(X′X)−1 where
its inverse is known as the information matrix Iθx = (X′X)/σ2 (see, e.g., Fahrmeir,
Hamerle, and Tutz, 1996).

The Accelerated Failure Time Model

If the response is a life time random variable t ∈ R+, we may observe also incomplete,
i.e. right-censored, data. Then, for a maximum possible duration of the experiment tr > 0,
we observe yj = min(τ(tr), τ(tj)) with δj = 1 if tj ≤ tr and δj = 0 otherwise, where
τ is a monotonically increasing transformation. In general, the correlation between the
parameter estimators increases with increasing proportion of censored data. Haselgruber
(2007) investigated this property in detail for the intercept model (y = θ + ε) with dif-
ferent distributions Pε. Assuming a sufficient proportion of exact life time data, the total
likelihood is

L(θx, σ) ∝
n∏

j=1

(
1

σ
f(εj)

)δj

S(εj)
1−δj

with ε = (y−Xθx)/σ and survival function S(ε) =
∫∞

ε
f(ε)dε. The information matrix

of θx is

Iθx = E

(
−∂2 log L(θx, σ)

∂θx∂θ′x

)
= E

(
1

σ2

n∑
j=1

ajxjx
′
j

)
(1)

with aj = δj∂
2 log h(εj)/(∂ε)2 − ∂h(εj)/∂ε and h(ε) = f(ε)/S(ε).

Note that here Pε could be any location-scale distribution with σ independent of x.
Expression (1) is equal to E(a)(X′X)/σ2 if a = aj ∀ j ∈ {1, . . . , n}. If there is no a priori
knowledge on the relation between y and x – which is usually the case for large-scale
experiments – we assume g1(x) = 1 and the null hypothesis H0 : θ2 = · · · = θm = 0.
Then we have aj = a ∀ j and Iθx ∝ M. For Pε = N(0, σ2), the transformed response y =
τ(t) = log(t) leads to a log-normal distribution of t. For Pε = sEv(0, σ), i.e. a smallest
extreme value distributed error variable ε and y = log(t), we have a Weibull distribution
for t. The book of Fahrmeir et al. (1996) contains further details on accelerated failure
time models.
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A General Life Time Model

For known distributions Pε with some unknown parameters, the maximum likelihood
method provides minimum-variance estimators. If Pε is not known at all or the data
contain unobserved heterogeneity, the maximum likelihood method is not applicable. In
these cases, least squares estimation provides robust results and should be used therefore.
Buckley and James (1979) propose least squares estimation for right-censored response
variables. They define the pseudo random variable

y∗j = δjyj + (1− δj)E(τ(tj)|τ(tj) > yj) ,

describe the iterative estimation of E(τ(tj)|τ(tj) > yj), and propose θ̂x = (X′X)−1X′y∗.
Smith (2002) describes the estimation procedure and gives further references. As far as
there is no a priori information on the distribution of the censored data on Ωx and thus,
their influence on the information of the design is unknown for a given tr, we will assume
complete data for optimizing a design. At least in this case we have with Iθx ∝ (X′X).

2.3 Design Criteria
Important contributions to the theory of optimum designs are due to Fedorov (1972),
Wynn (1972), and Kiefer (1974). Chernoff (1962) proposes a method to design acceler-
ated life time experiments for univariate parameter estimation. Additionally, the books of
Pukelsheim (1993), Schwabe (1996), and the monograph of Fedorov and Hackl (1997)
extend the theory to more general models and criteria. The moment matrix M of a discrete
design as introduced above is a suitable basis for design criteria, because it is proportional
to the information matrices discussed in this chapter. Subsequently, the widely-used de-
terminant criterion D = det(M−1)1/m, measuring the generalized variance of θ̂x, will
be applied. Another criterion of interest is G = supx∈Ωx

x′M−1x/n which quantifies the
maximum prediction variance in Ωx. Pukelsheim (1993) shows the theoretical optimum
of G as m/n which leads to the definition of G-efficiency as Ge = m/(nG).

3 An Algorithm for Dynamic Design of Experiments
The requirements regarding fixed and partly fixed experiment settings demand the use
of the point exchange concept with the focus of optimization on discrete designs. To
evaluate their performance they will be compared with continuous optimal designs. In
general, the latter designs have better performance since they are not limited to design
weights with restrictions nχ ∈ N, although in applications the weights have to be rounded
correspondingly.

Our DDoE algorithm consists of four modules which will be, by default, performed
sequentially and iteratively:

• Module 1, design space: creating the set of candidate points

• Module 2, initialization: setting up the start design matrix

• Module 3, optimization: finding an initial D-optimal design

• Module 4, adaptation: extending the design
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The advantage of the modular concept is that the algorithm may be started with any
module. The following sections describe the individual modules in detail.

3.1 The Set of Candidates

The set of candidates Ξx consists of ν ≥ m points representing experiment settings
distributed on the design space Ωx. The required density of the points depends on the
model assumed. At least all corner points of Ωx should belong to Ξx. The density in
dimension j of Ωx, j = 1, . . . , m0, depends on the level of measurement of factor xj . For
quantitative factors xj there have to be at least (dm,j + 1) different points if dm,j denotes
the highest degree of xj in the model. Here, they will be equidistant on the interval
[xmin; xmax] occupying the interval bounds. For the investigation of polynomial models, a
non-uniform pattern of points may be considered (compare, e.g., Wynn, 1972).

In addition, a (ν × 1)-candidate alternative group vector ξA has to be established.
Exactly one member from each alternative group has to be included in the optimized
design. In ξA, each alternative group will be identified by a unique integer value. The
(ν×1)-candidate status vector ξS indicates whether a certain experiment xk, k = 1, . . . , ν,
has to be a member of the optimized design (i) obligatory (ξSk = 1) or (ii) if it may be
replaced during the exchange algorithm (ξSk = 0) by any of the candidates. For each
member of an alternative group, the candidate status is 1.

DDoE Algorithm Module 1: Creating the Set of Candidate Points
1. Create exchangeable candidates

(a) Define the mesh density ρj for each factor xj , j = 1, . . . , m0. This is the
maximum number of different attitudes per factor investigated in the design.
For qualitative factors, it is the number of levels, for quantitative factors xj , a
lower bound for ρj is dm,j + 1.

(b) Create a full factorial design based on the mesh densities ρj . If there are
mn ≥ 0 quantitative and ml ≥ 0 qualitative factors, the full factorial design
contains ν+

0 =
∏m0

j=1 ρj experiments (points) where m0 = mn + ml > 0.

2. Set restrictions
(a) If there are any multiple factor restrictions, remove all νr points outside the

restricted design space. Then, the number of candidates in the set Ξx changes
to ν0 = ν+

0 − νr candidates. If there are no multiple restrictions, consequently
νr = 0.

(b) If there are any experiments with partly fixed factor settings to consider in
the optimized design, i.e. nf > 0, each of them may be varied in a subspace
Ωxkj

⊂ Ωx, j = 1, . . . , nf . kj denotes the index set of factors which are
not fixed for experiment j. Add per experiment j all distinct candidate points
νfj ≥ 2 in Ωxkj

to Ξx which sum up to νf =
∑nf

j=1 νfj ≥ 2nf candidates.
(c) If there are any experiments mandatory for the optimized design , i.e. ne > 0

fixed experiments, add them to the set of candidates such that Ξx contains
ν = ν0 + νf + ne runs.

3. Identify properties of candidates



234 Austrian Journal of Statistics, Vol. 37 (2008), No. 3&4, 229–244

(a) Set up the (ν×1)-alternative group vector ξA which contains a unique integer
value for each candidate except those in an alternative group 1, . . . , nf . Assign
one integer value to all candidates within the same alternative group. For
computational purposes, the integer values should be assigned in ascending
order.

(b) Set up the (ν × 1)-status vector ξS which contains value 1 for each of the νf

and ne experiments and value 0 for all other candidates.

4. According to the model y = g′(x)θx +ε, use g to extend the candidate set such that
each of the m model effects will be represented by a column of Ξx.

Module 1 provides a set of candidate points fulfilling the boundary conditions and
ready to be selected for the initial design.

3.2 An Initial Design
Module 2 contains the search for a design with a non-singular moment matrix as starting
point for the subsequent optimization module. After selecting ne mandatory and nf partly
fixed candidates, n0 points out of Ξx will randomly be selected such that (m ≤ ne +nf +
n0 ≤ n). If ne + nf + n0 < n, the remaining n − (ne + nf + n0) points are the results
of a systematic selection due to optimizing the determinant criterion. The design size n
depends on the model and has as lower bound m since the model matrix X requires full
column rank.

DDoE Algorithm Module 2: Setting up the Start Design
1. Select constrained candidates

(a) If ne > 0, initialize the start model matrix X with the ne fixed (mandatory)
experiments, initialize the design status vector ζS = 1ne and the alternative
group vector ζA with corresponding values of ξA.

(b) If nf > 0, select one candidate randomly from each alternative group 1, . . . , nf

and concatenate it to the model matrix X. Extend the design status vector as
ζS = 1ne+nf

. Extend ζA by the group identifications contained in ξA.

2. Select exchangeable candidates and check design
(a) Add n0 ≤ n − ne − nf randomly selected points from the ν0 exchangeable

points of Ξx to X and extend the design status vector to ζS =

(
1ne+nf

0n0

)
as

well as ζA by the corresponding n0 group identifications of ξA.
(b) Ensure that ne + nf + n0 ≥ m, compute Mn = X′X, and check whether Mn

is regular. In case of singularity, repeat the random sampling of n0 points until
Mn becomes regular. If necessary, increase n0 (and possibly n) or go back to
module 1 and adapt the candidate set.

3. Fill up to design size required
(a) Compute det(Mn) and M−1

n . If ne + nf + n0 = n, terminate this module.
(b) Add the candidate x′k, k = 1, . . . , ν0, from Ξx which maximizes x′kM

−1
n xk.

(c) Set X =

(
X
x′k

)
, ζS =

(
ζS

0

)
, and ζA =

(
ζA

ξAk

)
.
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4. Repeat step 3 until the design size n is reached.

Based on the start design, the optimum will be searched by point exchange. This
algorithmic principle concentrates only on candidates j with ζj = 0, i.e. exchangeable
candidates, or members of an alternative group. In the latter case, only candidates within
the same alternative group will be considered as exchangeable candidates.

The Exchange Delta Function

To save computation time in the optimization routine, Fedorov (1972) proposed an itera-
tive computation of det(Mn) and M−1

n . If x is a point to be augmented to (+) or removed
from (−) X, then

det(Mn ± x′x) = det(Mn)(1± x′u) ,

(Mn ± x′x)−1 = M−1
n ∓ uu′/(1± x′u)

and u = M−1
n x. Let x0 be the point taken out and x1 be the point taken into the design,

then

det(Mn + x1x
′
1 − x0x

′
0) = det(Mn)(1 + ∆(x0,x1)) where ,

∆(x0,x1) = x′1u1 − x′0u0 + (x′1u0)
2 − x′1u1x

′
0u0 . (2)

DDoE Algorithm Module 3: Finding a D-Optimal Design

1. Initialize optimization measures

(a) Compute det(Mn) and M−1
n for the given model matrix X.

(b) ∀ xk : k = 1, . . . , ν − ne, initialize the information factor ωk = x′kM
−1
n xk.

2. Find most efficient point exchange

(a) Find simultaneously a point xj in the current n-point design X and a point
xk in the candidate set Ξx which maximize ∆(xj,xk) calculated by (2). The
index j refers to points of the design X, the index k to that of the candidate
set Ξx.

i. Set ∆act = 0.
ii. ∀ xj : j = ne +1, . . . , n, compute the information factor wj = x′jM

−1
n xj .

iii. ∀ j ∈ (ne + 1, . . . , n)
• Set k = (1, . . . , ν0)
• If (∃ k ∈ (1, . . . , ν) : ξAk = ζAj & xj 6= xk), set k = (k : ξAk = ζAj)
• ∀ k ∈ k

– If ωk − wj > ∆act, compute ∆(xj,xk)
– If ∆(xj,xk) > ∆act, set ∆act = ∆(xj,xk), jout = j, kin = k.

(b) Replace xjout by xkin in X and update ζA.
(c) Update det(Mn), M−1

n , and ωk : k = 1, . . . , ν − ne.

3. Repeat step 2 until ∆(xj,xk) is less than ε (e.g., ε = 10−5).

4. Compute D based on X and export the results.
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The evaluation of ∆(xj,xk) is required only in those cases where the sum of its first
two terms is larger than ∆act, the currently largest value of ∆(xj,xk) obtained at a par-
ticular point. The Cauchy-Schwarz inequality shows that the sum of the last two terms of
(2) is always less than or equal to 0.

Following a recommendation of Nguyen and Piepel (2005), the modules 2 and 3
should be repeated several times to reduce the risk of reaching a sub-optimal solution
caused by the n0 randomly selected points.

3.3 Extension of an Existing Design

This routine extends an existing design of size n by na ≥ 1 experiments such that the new
design of size (n + na) is D-optimal regarding the existing design and Ξx.

A specific part of the point exchange principle is also suitable for the dynamic exten-
sion of the design. Then, the objective may be to add a new experiment to the existing
design under given boundary conditions to reach a new D-optimal design.

DDoE Algorithm Module 4: Extending the Design

1. Identify boundary conditions for design extension

(a) Identify the experiment xj to be replaced and the restrictions for the extension.
If the design has to be extended without any specific replacement of a point,
the number of experiments na to add has to be defined.

(b) Identify the index set k of all candidate experiments appropriate for extension
or for replacing xj , i.e. k = (k : ξAk = ζAj) ⇔ (∃ k ∈ (1, . . . , ν) : ξAk =
ζAj & xj 6= xk). By default, k = (1, . . . , ν0). For single candidates k ∈ k not
appropriate, set ξSk = ξSk − 2.

2. Initialize optimization measures

(a) Compute M−1
n for the existing design X.

(b) ∀ xk : k ∈ k & ξSk ≥ 0, compute the information factor ωk = x′kM
−1
n x′k.

3. Extend the design

(a) Select the candidate xopt with ωopt = maxk∈k & ξSk≥0(ωk).

(b) Set X =

(
X
x′opt

)
, build the new corresponding model matrix X, and update

ζA as well as ζS . If any values ξSk < 0, k ∈ k, replace them by ξSk = ξSk +2.
(c) If na > 1, repeat steps 1 (b) to 3 until the model matrix X has n + na rows.

4. Compute D based on X and export the results.

All requirements stated in the introduction can be handled with the algorithm pre-
sented above. For the dynamic aspects of enlarging the design by rows (i.e. additional
experiments) or by columns (i.e. additional factors), the candidate set has to be adapted
accordingly.
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4 Configuration
To apply the dynamic design algorithm, several parameters have to be set in advance.
These are not only controllable algorithmic parameters but also parameters driven by
properties of the specific application. Thus, the configuration of the DDoE algorithm is
a robust design problem. The target is to provide optimal designs with respect to given
boundary conditions, as far as possible independent of the properties of the specific ap-
plication.

Computer simulation experiments (CSE) have been carried out to find an optimal con-
figuration of the DDoE algorithm. Due to the random selection of n0 points in module 2,
the simulation experiments are stochastic rather than deterministic. For the CSE parame-
ters, Table 1 shows the ranges defined due to practical relevance and experience. A lower
bound for the number of experiments n is nm dependent on m0 (mn,ml) and dm. Usually,
also an upper bound for n is given by economical reasons. As a consequence, the number
of factors and the degree of the statistical model (degree 1 for linear models and degree 2
for linear models with second order interactions) are restricted. Three levels are assumed
for each qualitative factor. Since the influence of partly fixed points on the design quality
is between that of fixed and fully exchangeable candidates, in this study we use no fixed
candidates (nf = 0). In case of no multiple factor restrictions we set rm = 0. Otherwise,
for rm = 1, the area x1 + x2 > 1 of the standardized factors x1, x2 will be excluded from
Ωx.

Table 1: Ranges of the CSE parameters for configuration of the dynamic design algorithm.
Note that n, ne, and n0 are dependent factors.

Label CSE Parameter Type Controllable Range
m0 no. of factors quant. no {2; 4}
ml no. of qualitative factors quant. no {0; 1}
rm multiple factor restrictions qual. no {0; 1}
dm degree of model qual. no {1; 2}
ρn mesh density quant. yes {3; 5}
n no. of experiments quant. yes {nm; 2nm}
ne no. of fixed experiments mixture no {0;nm/2}
n0 no. of randomly selected points mixture yes {nm/2 . . . 2nm}
nrep no. of repetitions quant. yes {24; 28}

Table 2 shows six different decompositions of n which have been investigated for all
combinations of the CSE parameters ρn, nrep,m0,ml, rm, and dm. This leads to nCSE =
384 simulation experiments, i.e., generate 384 times either 16 or 256 designs and compute
for each optimized design a desirability value W ∈ (0; 1) as a function of D and G to
consider also the aspect of prediction variance. In each simulation experiment select the
design with maximum W . The DDoE module 4 will not be investigated in this study
since its optimization part is similar to that of module 3. Haselgruber (2007) contains a
detailed description of this CSE study.

Linear models including interactions between controllable parameters and noise fac-
tors have been fitted for desirability expectation E(W ) and variance V(W ). The robust
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Table 2: Decomposition of n into ne, n0, and points to be added systematically to the start
design in module 2. For odd nm use ne = bnm/2c and complement n0 correspondingly.

n ne n0 n− ne − n0

nm nm/2 nm/2 0
nm 0 nm 0
2nm nm/2 3nm/2 0
2nm nm/2 nm/2 nm

2nm 0 nm nm

2nm 0 2nm 0

1

0.
8

0.
6

0.
4

0.
2

0

p fil
l

0

0.2

0.4

0.6

0.8

1

p
fix

0 0.2 0.4 0.6 0.8 1prnd

Optimization of the Start Design’s Composition

Ŵ
V̂(W)

Figure 1: Estimated desirability Ŵ and estimated variance of W for the design size n
decomposed into ne, n0, and n − ne − n0 expressed as pfix = ne/n, prnd = n0/n, and
pfill = 1− pfix− prnd in a trilinear coordinate system. All other CSE parameters have been
set to 0 in their standardized form. Compare also Table 2.

setting of the CSE parameters will be found by a simultaneous search for supΩ W and
infΩ V(W ) in the CSE parameter space Ω. The results show how to calibrate the dynamic
design algorithms by the controllable parameters.

All noise factors investigated have influence on the desirability and interact with con-
trollable factors. E.g., as expected, a qualitative factor (ml), multiple factor restrictions
(rm), and a higher degree (dm) of the assumed model have a negative influence on W .
The impact of these noise factors ml, rm, and dm on the response can be reduced by an
increased number of experiments n. The number of randomly selected points n0 in DDoE
module 2 should be as high as possible to increase the expectation of the desirability as
well as to minimize its variance (compare Figure 1).
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5 Comparison of the DDoE with other Algorithms and
some DoE Software Tools

In general, the results of any optimization algorithm may be influenced by its fine tuning
and coding, so this section has not to be interpreted as a benchmark between DoE software
tools. The aim is to validate the results of the DDoE algorithm for one representative
example.

Without claim of completeness, the following tools and algorithms have been com-
pared with the DDoE algorithm modules 2 and 3: DesignExpert version 7.0.1, MATLAB
version 6.5, Minitab version 14.13, MODDE version 7.0.0.1, SAS/QC version 6.1, STA-
TISTICA version 7.1, a fast Fedorov exchange algorithm (FFEA, see Nguyen and Piepel,
2005), a genetic algorithm (see Heredia-Langner et al., 2003), and the design package
AlgDesign version 1.0.7 of the statistical programming language R, which provides con-
tinuous designs (see Wheeler, 2004).

The modules 1 and 4 of the DDoE algorithm provide the flexibility required for the
design of large-scale life time experiments and are not of interest here. For the com-
parison, a well-known example mentioned by Heredia-Langner et al. (2003) as well as
Nguyen and Piepel (2005) has been used. There are two quantitative factors x1 and x2,
both scaled to [−1; 1] and restricted by

I: x1 + x2 ≤ 1 and

II: x1 + x2 ≥ −1
2
.

The candidate set has a mesh density ρn = 21, i.e. 21 levels per factor in the unrestricted
design space. The statistical model is y = θ1x1 + θ2x2 + θ12x1x2 + θ11x

2
1 + θ22x

2
2 + ε with

ε ∼ Pε. The design should contain n = 12 experiments.
The DDoE algorithm (modules 2 and 3) has been repeated nsim = 1, 000 times. For

each trial it reached the optimal design provided by the FFEA algorithm presented in
Nguyen and Piepel (2005) and shown in Figure 2.

As the DDoE algorithm, the software packages MATLAB and STATISTICA as well
as the FFEA algorithm reach D = 4.5836 in the first trial. Note that the loss of infor-
mation of these discrete designs compared to the continuous D-optimal design is smaller

Table 3: Continuous D-
optimal design from R
AlgDesign.

p x1 x2

0.1216 0.5 −1.0
0.1231 1.0 −1.0
0.0517 −0.3 −0.2
0.1529 1.0 0.0
0.1552 0.1 0.1
0.1182 −1.0 0.5
0.1246 −1.0 1.0
0.1528 0.0 1.0

Table 4: Criteria of different designs declared as D-optimal.
Tool D Dec G Ge

R AlgDesign1 4.4947 1.0000 0.6667 0.7500
DesignExpert 5.1925 0.8656 0.8952 0.5585
MATLAB 4.5836 0.9806 0.6754 0.7403
Minitab 4.5887 0.9795 0.6761 0.7395
MODDE 4.7501 0.9462 0.6848 0.7301
SAS 4.7185 0.9462 0.7105 0.7037
STATISTICA 4.5836 0.9806 0.6754 0.7403
FFEA 4.5836 0.9806 0.6754 0.7403
GA 4.6856 0.9593 0.8497 0.5885
DDoE algorithm 4.5836 0.9806 0.6754 0.7403

1R AlgDesign creates a continuous, all other tools discrete designs.
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Figure 2: The left chart shows the candidate set and the D-optimal design reached
nsim = 1, 000 times by the DDoE algorithm. Points marked with an asterisk represent
two experiments with equal factor settings. The right chart shows the prediction vari-
ance factor x′M−1x/n over the design space with the supremum of around 0.6754 at
(x1 = 1, x2 = −1) determining G.

than 2% as indicated by Dec in Table 4. All other tools and the GA algorithm have an
information loss smaller than 15%. Similar results for G are reached by scaling the con-
tinuous design accordingly for n = 12. Rounding the weights p of the continuous design
(see Table 3) leads to the discrete design as shown in Figure 2. All tools and algorithms
have been used with the same candidate set which might influence the potential of the
genetic algorithm.

6 An Application Example
The durability y of an engine component has to be investigated with respect to 3 potential
influence factors. Thus, a discrete D-optimal design should be found for the linear model
y = g′(x)θx + ε with an intercept, m0 = 3 quantitative factors, and all two-factor-
interactions. The restrictions for the factors are:

I: −x1 + x3 ≤ 1

II: 4
3
x1 − 4x2 + x3 ≤ 5

3

Factors x1 and x3 can take only values from the standardized set {−1,−1/2, 0, 1/2, 1},
factor x2 is continuously adjustable between its standardized bounds [−1; 1]. This will be
approximated by a mesh density of 25 points equally distributed on [−1; 1].

The final design should contain n = 15 experiments, four of them mandatory with
factor settings listed in Table 5. In addition, four experiments should be considered with
fixed settings for the factors x1 and x2 but free for x3 within the design space. Table 6
contains the corresponding settings.

Module 1 of the DDoE algorithm provides the candidate set Ξx with the alternative
vector ξA and the status vector ξS as shown in Table 7.
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Table 5: Fixed experiments.

Exp. ID in Fig. 3 x1 x2 x3

1 N 1 4/5 1
2 N 1 1 4/5
3 N 1 1 −1
4 N 0 1 −1

Table 6: Partly fixed experiments.

Exp. ID in Fig. 3 x1 x2 x3

5 ¦ −1 −1/2 ?
6 ∇ −1 1 ?
7 ¤ 1 1 ?
8 ◦ 1 1/2 ?

Table 7: Consideration of the partly fixed and fixed experiments in the candidate set.

j ξSj ξAj ID in Fig. 3 Int. x1 x2 x3 x1x2 x1x3 x2x3

1 0 1 1 −1 −1 −1 1 1 1
2 0 2 1 −1 −11/12 −1 11/12 1 11/12
...

...
...

...
...

...
...

...
...

...
389 0 389 1 1 1 1 1 1 1
390 1 390 ¦ 1 −1 −1/2 −1 1/2 1 1/2
391 1 390 ¦ 1 −1 −1/2 −1/2 1/2 1/2 1/4
392 1 390 ¦ 1 −1 −1/2 0 1/2 0 0
393 1 391 ∇ 1 −1 1 −1 −1 1 −1
394 1 391 ∇ 1 −1 1 −1/2 −1 1/2 −1/2
395 1 391 ∇ 1 −1 1 0 −1 0 0
396 1 392 ¤ 1 1 1 −1 1 −1 −1
397 1 392 ¤ 1 1 1 −1/2 1 −1/2 −1/2
398 1 392 ¤ 1 1 1 0 1 0 0
399 1 392 ¤ 1 1 1 1/2 1 1/2 1/2
400 1 392 ¤ 1 1 1 1 1 1 1
401 1 393 ◦ 1 1 1/2 −1 1/2 −1 −1/2
402 1 393 ◦ 1 1 1/2 −1/2 1/2 −1/2 −1/4
403 1 393 ◦ 1 1 1/2 0 1/2 0 0
404 1 393 ◦ 1 1 1/2 1/2 1/2 1/2 1/4
405 1 393 ◦ 1 1 1/2 1 1/2 1 1/2
406 1 394 N 1 1 4/5 1 4/5 1 4/5
407 1 395 N 1 1 1 4/5 1 4/5 4/5
408 1 396 N 1 1 1 −1 1 −1 −1
409 1 397 N 1 0 1 −1 0 0 −1

After nsim = 1, 000 trials with modules 2 and 3 of the DDoE algorithm, the results
contain designs with five different values of the determinant criterion, i.e. at least four
pseudo D-optimal designs. Figure 3 summarizes the results and shows that all designs
declared as optimal are of similar quality concerning D. The coefficient of variation is
≈ 0.003. The presented solutions have to be interpreted as D-optimized designs even the
best performing out of nsim designs will be called discrete D-optimal regarding the given
candidate set. Table 8 lists the factor settings of the design with D ≈ 1.977. The corre-
sponding continuous optimal design with D ≈ 1.7347 provided by R AlgDesign does not
consider the partly fixed and fixed experiments. Thus, the comparability is limited.
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Figure 3: The left panel shows the D-optimal design, reached in approximately 20% of
the trials, as indicated in the right panel. The points marked with an asterisk represent
two experiments. The selected experiments of the alternative groups as well as the fixed
experiments are marked accordingly.

If y = τ(t) there may occur life time terminating events during experimentation.
The capacity reserved for a planned duration tr of the experiments should be used with
maximum efficiency, even after the occurrence of a life time terminating event. The first
four experiments (Exp. 1, 2, 3, 4) have been carried out already in the past. The remaining
11 experiments run in the study and may be terminated by a corresponding event before
the planned duration tr will be reached. If such an event occurs, the task is to extend the
design D-optimally. Module 4 provides this feature.

Table 9 contains the life time experiments terminated by an event occurring before
tr (in the following denoted shortly as failed experiments). Experiment 9 fails at first
and will be replaced by experiment 16 with new, different settings. Then, experiment 8
fails which has partly fixed settings of the factors x1 and x2. I.e., the new experiment 17
should have the same settings for x1 and x2 etc. This procedure will be continued until
the planned experiment duration tr is reached or if the required precision of the parameter
estimators is obtained.

If the failed experiment has partly fixed factor settings, the candidate set for the design
extension may include only members of the corresponding alternative group.

The analysis of the data showed that the durability of the investigated component is
significantly influenced by factor x2. Corresponding modifications of the component led
to a satisfactory performance in the series production.

Our DDoE algorithm has been applied successfully to various tasks in the automotive
industry. In particular, we solved problems connected with the development of innovative
power-trains (engine, transmission, exhaust gas aftertreatment).
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Table 8: Factor settings of the D-optimized design (D ≈ 1.977) provided by the DDoE
algorithm. The non-fixed experiments 9 to 15 are listed in randomized order.

Exp. x1 x2 x3 Remark
1 1 4/5 1 fixed
2 1 1 4/5 fixed
3 1 1 −1 fixed
4 0 1 −1 fixed
5 −1 −1/2 0 partly fixed
6 −1 1 −1 partly fixed
7 1 1 −1 partly fixed
8 1 1/2 1 partly fixed
9 −1/2 1 1/2

10 0 −1/6 1
11 −1 −1 −1
12 −1/2 1 1/2
13 −1 −1 −1
14 1 −1/3 −1
15 1 −1/3 −1

Table 9: After the occurrence of a life time terminating event, the experiment will be
restarted with a new object realization and new, D-optimal factor settings with respect to
the candidates set depending on the experiment failed.

Failed Exp. x1 x2 x3 New Exp. x1 x2 x3 D

9 −1/2 1 1/2 16 −1 1 −1 1.8175
8 1 1/2 1 17 1 1/2 1 1.7340

17 1 1/2 1 18 1 1/2 1 1.6738
6 −1 1 −1 19 −1 1 −1 1.5903
7 1 1 −1 20 1 1 −1 1.5108

19 −1 1 −1 21 −1 1 0 1.4416
16 −1 1 −1 22 0 −1/6 1 1.3387
22 0 −1/6 1 23 1 −1/3 −1 1.2755

References

Buckley, J., and James, I. (1979). Linear regression with censored data. Biometrika, 66,
429-436.

Chernoff, H. (1962). Optimal accelerated life designs for estimation. Technometrics,
391-408.

Cook, R. D., and Nachtsheim, C. J. (1980). A comparison of algorithms for constructing
exact D-optimal designs. Technometrics, 22, 315-324.

Dykstra, O. J. (1971). The augmentation of experimental data to maximize det(X’X).
Technometrics, 13, 682-688.

Fahrmeir, L., Hamerle, A., and Tutz, G. (1996). Multivariate Statistische Verfahren.
Berlin: Walter de Gruyter.



244 Austrian Journal of Statistics, Vol. 37 (2008), No. 3&4, 229–244

Fedorov, V. V. (1972). Theory of Optimal Experiments. New York: Academic Press.
Fedorov, V. V., and Hackl, P. (1997). Model-Oriented Design of Experiments. New York:

Springer-Verlag.
Galil, Z., and Kiefer, J. (1980). Time- and space-saving computer methods, related to

Mitchell´s DETMAX, for finding D-optimum designs. Technometrics, 22, 301-
313.

Haselgruber, N. (2007). Sampling and design of large-scale life time experiments. Un-
published doctoral dissertation, Graz University of Technology.

Heredia-Langner, A., Carlyle, W., Montgomery, D., Borror, C., and Runger, G. (2003).
Genetic algorithms for the construction of D-optimal designs. Journal of Quality
Technology, 35, 28-46.

Johnson, M. E., and Nachtsheim, C. J. (1983). Some guidelines for constructing exact
D-optimal designs and convex design spaces. Technometrics, 25, 271-277.

Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory).
The Annals of Statistics, 2, 849-879.

Mitchell, T. J. (1974a). An algorithm for the construction of D-optimal experimental
designs. Technometrics, 16, 203-210.

Mitchell, T. J. (1974b). Computer construction of D-optimal first-order designs. Techno-
metrics, 16, 211-220.

Montgomery, D. C. (2005). Design and Analysis of Experiments (6th ed.). New York:
John Wiley & Sons, Inc.

Nguyen, N.-K., and Piepel, G. F. (2005). Computer-generated experimental designs for
irregular-shaped regions. Quality Technology and Quantitative Management, 2,
77-90.

Pukelsheim, F. (1993). Optimal Design of Experiments. New York: John Wiley & Sons,
Inc.

Schwabe, R. (1996). Optimum Design for Multi-Factor Models. New York: Springer-
Verlag.

Smith, P. J. (2002). Analysis of Failure and Survival Data. Florida: Chapman &
Hall/CRC.

Wheeler, B. (2004). optFederov. AlgDesign. The R project for statistical computing.
(http://www.r-project.org/)

Wynn, H. P. (1972). Results in the theory and construction of D-optimum experimental
designs. Journal of the Royal Statistical Society (B), 133-147.

Author’s Address:

Nikolaus Haselgruber
AVL List GmbH Graz
Hans-List-Platz 1
A-8020 Graz

E-mail: nikolaus.haselgruber@avl.com


