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Abstract: The present paper discusses some classes of shrinkage estimators
for the variance of the exponential distribution in the presence of large true
observations when some a priori or guessed interval containing the variance
parameter is available from some past experiences. Empirical study shows
the high efficiency of the developed classes of shrinkage estimators when
compared with Pandey and Singh’s estimator, minimum MSE estimator and
special classes of shrinkage estimators.

Zusammenfassung: Dieser Aufsatz diskutiert einige Klassen von shrink-
age Schitzern fiir die Varianz der Exponentialverteilung falls grole wahre
Beobachtungen vorhanden sind und falls ein priori oder mutmaSliches In-
tervall aus vergangener Erfahrung verfiigbar ist, das diesen Varianzparam-
eter enthdlt. Eine empirische Studie zeigt die Effizienz dieser Klasse von
Schitzern verglichen mit dem Schitzer von Pandey und Singh, dem Mini-
mum MSE Schitzer und speziellen Klassen von shrinkage Schitzern.

Keywords: Bias, Guessed Interval, Mean Squared Error, Percent Relative
Efficiency.

1 Introduction

The exponential distribution has its significance due to its variety of applications in reli-
ability engineering and life testing problems. The exponential distribution would be an
adequate choice for a situation where failure rate appears to be more or less constant.
The problem considered in this paper can be illustrated by the question that a sampler
frequently asks himself, particularly if he is working with relatively small samples. The
question is, “what do I do with large or extreme observations in the sample?” The sam-
pler first attempt to answer this question by a careful review of the data to see if an outlier
has somehow appeared or if in fact the offending observation or observations are actu-
ally true observations. It is also noted that in practice the experimenter often possesses
some knowledge of the experimental conditions, based on awareness with the perfor-
mance of the system under investigation or from the past experience or from some extra-
neous source and thus in opinion to give an adequate guessed interval of the value of the
variance. In this paper we suggest some classes of shrinkage estimators for the variance
of exponential distribution in the presence of large true observations when some a priori
or guessed interval (6%, 6032), 62 < 63, containing the parameter 62, say, is available from
some past experiences.

Letzy,...,z, be arandom sample of size n, drawn from the exponential distribution.
The probability density function of which is given by

1
o gexp(—x/ﬁ) r>6,0>0,
f(;0) = {O otherwise,

6]
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where 0 is the mean and acts as a scale parameter and 6? is the variance.
Pandey and Singh (1977) suggested the minimum mean squared error (MMSE) esti-

mator 9
~ n 9

QMMSE -
(n+2)(n+3) .

for 62 in the class of estimators of the form M2, where M is a suitably chosen constant
and 7 = )" | x;/n. The bias and mean squared error (MSE) of Oy are

2)

2(2n + 3)6?
(n+2)(n+3)

bias (éMMSE> =—

and

A 2(2n + 3)6*
)=+ 3)

M MMSE | — .
SE (6 n+2)(n+3)

Tracy et al. (1996) envisaged a class of shrinkage estimators for §? when some point prior
information 63 of 6 is available, and is given as

§my = 05 + am (22— 63)

where

on I'(n + 2h)
I'(n + 4h)

and / is a non-zero real number. In particular, if 4 = 1 then §() reduces to the point

estimator for the variance, which is given as

“4)

Q(h) =

(7~ 63)

2
Sy =06+ (n+2)(n+3)’

and is due to Tracy et al. (1996).

The distribution (1) is positive valued and positive skewed. It has positive probability
that the sample may contain one or more observations from right tail of the distribution
leading to a larger estimate of the parameter using unbiased estimator. In such a situation,
where some “extremely large” values x; > t are present in the sample, Searls (1966) sug-
gested an estimation procedure suitable to estimate the population mean ¢, which reduces
the effect of such large true observations for the distribution which is unimodal, positive
valued, and positively skewed. Searls (1966) defined the estimator for 6 as

1 m
Ty = — ; —m)t =0,1,... <t 5
T n (jzl'rj—i_(n m)) ) m ) L 1, ‘1;]_ ) ()

which is formulated by replacing all the observations greater than a predetermined cutoff
point ¢ by the value of ¢ itself. Searls (1966) has shown that there exists a wide range of ¢
values for which the MSE of Z; is less than the variance of the usual unbiased estimator Z.
We also refer to Bartholomew (1957), Ojha and Srivastava (1979), Ojha (1982), Srivastava
et al. (1985), Srivastava (1986), Singh (1987), Srivastava and Kumar (1990), Upadhyaya
et al. (1997), and Singh and Shukla (2002) in this context.
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The estimation problem using some a priori information regarding some population
parameters has been investigated by various authors, for example see Mehta and Srini-
vasan (1971), Jani (1991), Singh and Saxena (2003), Saxena and Singh (2004), Singh et
al. (2004), Singh and Saxena (2005), Saxena (2006), Saxena and Singh (2006), and also
Singh and Chander (2007).

Thompson (1968) considered the problem of shrinking an unbiased estimator @/A) of ¢
towards an interval (11, 1) and suggested a shrinkage estimator ¢ + (1 — p) (1 +103) /2,
where 0 < p < 1 is constant. The objective is to propose a class of shrinkage estimators
of 2, when a prior or guessed interval of 6 is available in the form of (07, 02), 62 < 63.

2 The Suggested Classes of Shrinkage Estimators

Let the prior information on 6% be available in form of an interval with end points 6?
and 02, where 62 < 02. The arithmetic mean (AM), the geometric mean (GM), and the
harmonic mean (HM) are measures of location, which are used for suggesting different
classes of shrinkage estimators for #% in model (1). We define the family

gg;'g) = AGH(a,b) + ap) (22 — AGH(a,b)) , (6)

where « ;) is given by (4) and h is a non-zero real number. Moreover,
1 b
AGH(wb) = @63 (502 +68))

and i = 1,2, 3 corresponds to pairs (a, b) respectively taken as (0,1), (1/2,0), or (1, —1)
in AGH (a,b).
It is interesting to note that

e for (a,b) = (0,1) in (6) we get a class of shrinkage estimators based on the arith-
metic mean (6% + 03)/2, defined as

~ 1 1
0 = 501+ ) v (= 5 (08 +60) )

e for (a,b) = (1/2,0) we get a class of shrinkage estimators based on the geometric
mean /60263, given as

& = /0203 + aw (fEQ - \/9%9§> ,

e for (a,b) = (1,—1) we get a class of shrinkage estimators based on the harmonic
mean 26503 /(07 + 03), defined as

202 202
c3) 9192 —2 9192
f(h)—Qe%_i_e%—FOé(h) (33 -2 .
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Bias and MSE of these estimates are

b1as(§ >—92< ( —oz(h))—i-%)

and

MSE (5 ) — 64 (1” + A + 2ra ) | %
where
P 1 2 5 . 1
G = n3(n+1)(n+2)(n+3)—5(7’+1)(n+1)+(r+1) , CQZE—T,
 AGH(a,b)
— i

Replacing 7 by 7, in (6), we define the class of estimators
€y = AGH (a,b) + ag {7} — AGH(a,b)} , (8)

for the variance in the presence of large true observations, where « ;) and ; are respec-
tively given by (4) and (5). Also here m denotes the number of observations less than a
predetermined cutoff point ¢ and follows a binomial distribution with parameters n and p,
where p = P(x <t) =1—exp(—t/f)and ¢ = 1 — p = exp(—t/0).

The necessary expectations are

02 o4
Bz) =p0,  B@E)=—OG+m?),  B#) = —m+mn), 9)

where

m = 3\3(n — 2) 4+ 6A(n*p* + 2npq + 2)
ne = np’(n’p + 4g + 8) — 12npq(t/0)* — 4q(t/9)°
A=1-2qt/0 —¢*.

Bias and MSE of the estimates defined in (8) are
bias (5(( ) =62 < (1—am) + % (A + np” —n))
and
MSE (£),)) = 10" + o, (B(z{) + AGH?(a,b) — 2AGH(a, b)E(3?))
+2r0%a) (E(z7) — AGH(a,b)) . (10)

Substituting (9) in (10) gives

MSE (£),)) = 0" (2 + afye1 + 2rapes) | (11)
where

1 2
v = —(m+m)+(r+1)" = —(r+ DA +np?)

1
o2 = —( ) = (r+ 1),
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Ast — oo, we get p — 1, ¢ — 0, and thus MSE (é((;),t)) — MSE (5((2))) From (7)
and (10) we have

MSE (£0,) = MSE (€0)) = 0° (0 (&1 - ¢i) + 2ragu (e - )

94Oé(h

= — ) (a(h)(X + 2n2X*) —2rX*(1 - oz(h))nz)

<0,
if

a(h)(anX* —+ X)

- 2X*(1 — Oz(h))nz

or if
AGH (a,b) S a(h)(ZnQX* + X)
02 - 2n2X*(1 — Oé(h)) ’
or if ACH 2y
)< gt < ACH(@D2EX (1~ o)
Oz(h)(QHQX* + X)
where
X=m+mn)—-nm+1)n+2)(n+3), X =n(l—-p*)—A+1.

Thus we established the following theorem:

Theorem 2.1: The classes of shrinkage estimators é ((;) ;) are more efficient than 5 ((;)), 1=
1,2,3, if 6% is between 0 and 2n*X*AGH (a, b)(1 — o)) /(e (202 X* + X)).

3 Special Cases
For h = 1 in (6) we get classes of shrinkage estimators 1[38)), i=1,2,3, for 6% as

Yl = AGH(a,b) + aq (3* — AGH(a,b)) (12)

where a1y = n*/(n + 2)(n + 3). The MSE of 7;8)) can be easily obtained by putting
h = 11in (10) and is given as

MSE (qp ) = 0" (r? + a2y (G + 2raG) - (13)
For h = 1 in (8) we get shrinkage estimators in the presence of large true observations as
Uy = AGH(a,b) + aq) (7} — AGH(a,b)) . (14)

Putting h = 1in (11), we get
MSE (4{7,)) = 0° (12 + afyer + 2raes) | (15)

Ast — oo, we getp — 1, ¢ — 0, and MSE (1&((?1&)) — MSE (1;((?)) Thus we proved
the following theorem:

Theorem 2.2: The classes of shrinkage estimators zﬂ((i)t) are more efficient than 1/;8))
i =1,2,3,if 6% is between 0 and 2X*AGH (a,b)(5n + 6)/(2(n + 2)(n + 3) X* + X).
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4 Numerical Illustrations and Comparisons

To have a concrete idea about the performance of the proposed estimators f@g? »» We have

computed their percentage relative efficiency (PRE) with respect to GMMSE given in (2) and
w(( )) given by (12) for various values of n, 7 /62, 02 /62, and for different cutoff points ¢.
The following formulae are used for this calculation:

MSE (éMMSE>
MSE (7’/}(1)1&)) ;

MSE (W))
MSE (4(}))

PRE (1), s ) = 100 PRE (4}, {})) = 100 ,

where MSE (G ), MSE () ), and MSE (4}, ) are given by (3), (13) and (15)

From Table 1 we observe that the suggested classes of estimators show better effi-
ciency than € if

e {/0=1,n<11,and A € [0.7,2.7], where A = AGH(0,1)/6?,
e 2<1t/0<10,n <30,and A € [0.3,2.0].

From extended computation and from Table 1, we further observe that

~

o for A < 1, 1&8)@ (based on the AM) is more efficient than éMMSE, (" o

2
(1
e for A > 1, 13((?)75) (based on the HM) is more efficient than éMMSE, 1[1(( )t), and w(l)

o for A=1land1 < ¢/0 < 3, @Z;éi)t shows higher efficiency than QMMSE, @/J((i)t), and

w(l 1 whereas for A = 1 and 3 < t/0 < 10, 2/1 (Lt) is better than éMMSE, 1&82), and
7.(1)
Y
Further, it reveals from Table 2 that ﬁéi) 0 shows better efficiency than QZ((?) if
e {/0=1,n<5,and A € [0.7,2.0], where A = AGH(0,1)/6?,
e t/0=1,5<n<25and A € [1.2,2.5],
e 2<t/0<6,n<25and A € [0.7,2.0].

It is also observed that

e for A < 1, the estimator 1&8 )t) (based on the AM) is more efficient than 1;((?), ﬁ((i)t),
and @@(3)
1,t)

e for A > 1, the estimator w (L) (based on the HM) is more efficient than zﬁ((i)), 1/3((3),
and @D(l)

e fort/0 > 6, the classes of estimators zﬂ((? 0 and z/?((i)) are equally efficient.
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Table 1: Percentage relative efficiencies, PRE, of the estimators @/A)g)t) 1= 1,2,3, with
respect to Oy for different n, 02 /02, 6262, ¢/6.
t/6=1 t/6 =5 t/6 =10

5,%) n=5 n=15 n=25 n=5 n=15 n=26 n=5 n=15 n=25
0.2, 1.0)

i=1 196.25 71.86 43770 19945 13790 125.67 175.00 12533 115.22

=2 143.04 62.42 3992 175.65 131.75 122.03 15748 12094 112.78

1=3 116.22  56.53 37.40 156.25 12593 118.53 14236 11651 110.24
0.4,1.2)

1= 324.66 87.80 49.52 217.85 142.09 12824 187.01 127.72 116.48

= 24423  78.67 46.27 21045 14045 127.19 18254 12695 116.09

1= 196.25 71.86 43770 19945 137.90 125.67 175.00 12533 115.22
0.5, 1.3)

= 44046 97.81 52.88 21850 14228 128.49 186.50 127.36 116.25

1= 330.49 88.38 49.72  218.07 142.14 12827 187.11 127.73 116.48

1= 263.08 81.03 47.13  213.11 141.04 12756 18425 127.28 116.26
0.6,1.4)

1= 62790 109.61 56.58 213.00 141.17 128.04 181.53 12595 11544

= 465.26  99.62 5346 218.00 142.19 128.47 18597 12720 116.15

1=3 36491 91.61 50.83 218.86 142.33 12842 187.36 127.70 116.46
0.7, 1.5)

= 955.23 123.64 60.68 202.22 138.81 12690 172.79 123.58 114.09

1= 691.77 112.84 57.55 210.77 140.70 127.82 179.69 12545 115.16

= 530.70 104.00 54.85 21623 141.84 128.33 18431 126.72 115.88
(0.8,1.6)

1 =1 1579.4 140.51 6525 187.71 135.33 125.11 161.34 120.34 112.22

=2 1107.6 12859 62.06 197.99 137.83 12641 169.44 122.65 113.55

1 =3 823.6 118.68 59.27 206.31 139.73 12736 176.06 124.47 114.60
0.9, 1.7)

=1 2845.7 16099 70.34 171.18 130.89 12271 148.36 116.39 109.89

=2 1946.6 147.60 67.06 181.75 133.79 124.29 156.67 11896 111.41

1 =3 13949 136.32 64.15 191.30 136.22 12558 164.16 121.16 112.69
(1.0,2.2)

1 =1 3352.8 25745 89.71 122.30 113.88 112.69 109.16 101.74 100.78

=2 56264 211.84 8133 140.32 12096 117.02 123.80 107.78 104.64

1 =3 4410.2 179.38 74.55 15838 127.06 120.57 13823 113.04 107.88
(1.0, 2.8)

i=1 697.80 46693 118.19 8547 95.18 100.16  78.32 85.83 89.84

=2 2146.2 293.75 9565 140.32 12096 117.02 100.68 97.84 98.21

1 =3 5687.1 208.65 80.69 141.87 121.52 117.35 125.05 108.26 104.94
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Table 2: Percentage relative efficiencies, PRE, of the estimators 1/}((
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i = 1,2, 3, for different n, 67 /62, 65/6, /0.

i)
1

0 with respect to @/;8)),

o=1 t/6=5 t/6 =10

B.%) n=5 n=15 n=25 n=5 n=15 n=25 n=5 n=15 n=25
0.2, 1.0)

i=1 11251 5744 3798 11435 11022 10922 10033 100.17 100.14

i=2 9LI0 5170 3544 11187 109.12 10834 10029 100.16 100.14

i=3 8185 4860 3397 11005 10825 107.66 10026 100.15 100.13
04, 1.2)

i=1 17425 6887 4258 11692 11145 11026 10037 100.19 100.15

i=2 13427 6208 3992 11570 110.83 10973 10035 100.18 100.15

i=3 11251 5744 3798 11435 11022 10922 100.33 100.17 100.14
05, 1.3)

i=1 23705 7694 4556 11760 11193 11070 10037 100.19 100.15

i=2 17728 6932 4275 11698 11149 11029 10037 100.19 100.15

i=3 14329 6378 4060 11608 111.01 109.88 100.36 100.18 100.15
0.6, 1.4)

i=1 34716 87.19 4909 11776 11229 111.09 10037 100.19 100.15

i=2 25111 7847 4610 117.66 11200 11077 100.37 100.19 100.15

i=3 19549 7187 4371 11725 11166 11044 10037 100.19 100.15
0.7, 1.5)

i=1 55477 10024 5327 11744 11254 11141 10035 100.19 100.16

i=2 38638 9012 5006 11773 11236 11117 10036 100.19 100.16

i=3 28900 8223 4741 11775 11214 11092 100.37 100.19 100.15
08, 1.6)

i=1 98220 11697 5823 11673 112.66 11166 10033 100.19 100.16

i=2 65596 10505 5474 11726 11259 11149 10035 100.19 100.16

i=3 46949 9553 5180 117.60 11247 11131 10036 100.19 100.16
0.9, 1.7)

i=1 19243 13858 6410 11575 11267 11184 10031 100.18 100.16

i=2 12466 12431 6029 11639 11268 11173 10033 100.19 100.16

i=3 85258 11273 5701 11692 112.64 11161 10034 100.19 100.16
(1.0,22)

i=1 30787 25349 8915 11230 11213 11199 10024 100.17 100.15

i=2 45569 19690 77.84 113.64 11242 11200 10027 100.18 100.15

i=3 31999 15898 6921 11491 11261 11193 10029 100.18 100.16
(1.0, 2.8)

i=1 89252 54485 13173 10933 11106 11164 100.18 100.15 100.14

i=2 21365 30072 9754 11150 111.90 11194 10022 100.17 100.15

i=3  4560.1 19307 7701 11376 112.44 11199 10027 100.18 100.15
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5 Conclusion

From the above we conclude that the developed classes of estimators @8) " 1 =1,2,3,
are to be preferred over éMMSE and @Z((ll)) in practice as they are more efficient than éMMSE and
15((;)) with larger gain in efficiency.

We also note that zﬁg)t) (based on the AM) performed better than éMMSE, qﬂ((i)t), ﬁ((i)t),

and ;). i = 1,2,3, when t/0 < 10, n < 25, and 0.7 < A < 1.0, while for t/6 > 6,

n < 25,and 0.7 < A < 1.0, the proposed estimators zﬂ((i)t) and @EB are equally efficient,
so one can choose any one of them. It is further observed that the suggested estimator
@/A}((f?t) (based on the HM) has smaller MSE than éMMSE, 1/38,)”, Qﬂ((i)t), and QE((;)) 1 =1,2,3,
when t/0 < 6, n < 25, and 1 < A < 2. In such situations we suggest the use of the

estimator ﬁg’)t) On the other hand it is noted that for ¢/0 > 6,n < 25,and 0.7 < A < 1

the estimators @/A}g)t) and QE((%) approximately have the same MSE and hence any one of
them can be chosen in such situation.
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