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Abstract: A long record of daily data is used to study the lake levels of
Lake Neusiedl, a large steppe lake at the eastern border of Austria. Daily
lake level changes are modeled as functions of precipitation, temperature,
and wind conditions. The occurrence and the amount of daily precipitation
are modeled with logistic regressions and generalized linear models.

Zusammenfassung: Der Wasserstand des Neusiedlersees, ein grosser Step-
pensee an der Grenze zwischen Österreich und Ungarn, wird mittels Tages-
daten über einen sehr langen Zeitraum hinweg beschrieben. Tägliche Änder-
ungen des Wasserstandes werden als Funktion von Niederschlag, Lufttem-
peratur, und Windverhältnissen modelliert. Das Auftreten und die Menge des
Niederschlages werden mit logistischen Regressionsmodellen und verallge-
meinerten linearen Modellen (GLM) erklärt.

Keywords: Circular Data, Generalized Linear Model (GLM), Logistic Re-
gression, Rainfall-Runoff Relationship, Time Series Regression Model.

1 Introduction
Lake Neusiedl (“Neusiedlersee”), the second largest steppe lake in Central Europe, covers
315 km2, of which 240 km2 is on the Austrian side and 75 km2 on the Hungarian side.
The lake’s drainage basin has an area of about 1,120 km2. From north to south, the lake
is 36 km long, and from east to west, it is between 6 km and 12 km wide. On average, the
lake’s surface is roughly 115.45 meters above the Adriatic Sea and the lake is no deeper
than 1.8 meters. A man-made sluice (“Einser Kanal”) in the south-east corner of the lake
provides the only (and also controllable) outflow. Because of the channel’s very shallow
nature, the outflow into the river Raab (which feeds into the Danube) is largest if winds
are from the northwest, while flood waters from the Raab and the Danube can back up into
the lake. Lake levels fluctuate widely. Fluctuations are due to meteorological conditions
such as precipitation and temperature. Due to the shallow nature of the lake, the local lake
level is also affected by wind conditions.

In this paper we analyze daily data on lake levels and meteorological conditions from
January 1971 through December 2004. Our objectives are to:

• study the behavior of daily average lake levels over this 34-year period,

• establish relationships between yearly averages of average lake level and meteoro-
logical conditions,

• model daily changes of average lake levels as a function of rainfall and meteorolog-
ical conditions,

• compare lake levels at an individual station (Neusiedl am See) to average lake lev-
els, and investigate the impact of wind,
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• construct models for the occurrence and the magnitude of daily rainfall.

Lake level changes have a great impact on tourism and agriculture, and they affect
the economic well-being of the whole area. Our paper illustrates how carefully selected
graphs and relatively simple appropriate statistical methods can shed light on a problem
of practical interest. In our analysis of daily lake level changes we employ time series
regression models relating the daily changes to meteorological conditions while also tak-
ing account of the serial correlation in the data. In our modeling of the lake level at a
specific location we explain how to best deal with the circular nature of wind direction.
In our modeling of daily precipitation we develop models for both the occurrence and the
magnitude of daily rainfall, and we show how these models can be estimated within the
generalized linear models (GLM) framework.

2 Data
The Hydrology Office of the state of Burgenland (Hydrographischer Dienst Burgenland)
provided

• daily data on average lake level (representing the overall level of the lake) and lake
levels at various measurement stations including Neusiedl am See (in meters above
Adriatic sea level),

• daily data on precipitation (in mm of rainfall) at eight measurement stations sur-
rounding the lake (Pöttsching, Steinbrunn, Margarethen, Donnerskirchen, Oggau,
Rust, Podersdorf, Apleton); the sum of daily measurements from these eight sta-
tions is taken as a measure of overall daily precipitation,

• daily data on water temperature (in degree C), measured at the station Neusiedl am
See (from 1976),

• bimonthly data on water outflow (million of meter3) through the Einser Kanal (from
1971 through 2000).

The Austrian Central Institute for Meteorology and Geodynamics provided daily data
on air temperature, wind speed and wind direction for its station at Neusiedl am See.
Wind speed and wind direction was measured at 7 am, 2 pm, and 7 pm. Wind speed,
originally measured in Beaufort units, is converted into km/h for some of our analyses.
Wind direction is coded as 0 (no wind), 4 (winds from north-east), 8 (east), 12, 16 (south),
20, 24 (west), 28, and 32 (north). Average daily air temperature is expressed in degrees
C.

3 Descriptive Analysis of Daily Average Lake Levels and
an Analysis of Yearly Averages

Figure 1 shows time series graphs of the daily average lake level; each panel represents a
single year. Water evaporation on hot summer days tends to decrease the lake level during
the summer months, while precipitation during the spring and fall/winter periods keeps
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the lake level high. However, one notices considerable variability in these patterns from
year to year. One also observes large differences among the lake levels between years.

Yearly averages of the lake level and related meteorological conditions are shown in
Figure 2. The large reduction in the average lake level (about 50 cm) from 1996 through
2004 is particularly noteworthy. A decline in precipitation occurs during the same period,
suggesting that the decline in the lake level during these years is due to the dry weather
conditions. A scatter plot of yearly average lake level against yearly average precipitation
is shown in Figure 3. The fitted regression line explains 18.7 percent of the variabil-
ity. Scatter plots of yearly average lake level against yearly average water (and also air)
temperature indicate only modest relationships, and are not shown. The only other note-
worthy relationship is between yearly average lake level and yearly outflow through the
artificial channel. The outflow increases with increasing lake level. This can be explained
by the channel’s operation which restricts the outflow if the lake level is low.

Another obvious relationship is between yearly average water and air temperatures;
a one degree increase in average air temperature results in an increase of average water
temperature of about the same magnitude (slope = 0.9634).
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Figure 1: Time series plots of daily average lake levels.
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Figure 2: Time series plots of yearly averages: average lake level, precipitation, air tem-
perature and water temperature.
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Figure 3: Scatter plots: Yearly average lake levels against yearly average precipitation.
Yearly average water temperatures against yearly average air temperature. Yearly average
outflow against yearly average lake level.
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4 Modeling the Daily Changes of Average Lake Levels as
a Function of Precipitation and Air Temperature

4.1 Preliminary Exploration

Daily changes of average lake levels expressed in cm have a mean of about zero (−0.0023),
a standard deviation of roughly 1 (0.93 cm), minimum−11 cm, and maximum 14 cm. The
distribution is symmetric. Since large negative and positive differences occur rarely, we
combine the smallest changes from −11 cm to −4 cm into a single group and the largest
changes from 4 cm to 14 cm into another. For each of the nine groups of daily lake level
changes (that is, daily changes of −4 cm or less, −3 cm, . . . , 3 cm, and 4 cm or more)
we construct box plots of the contemporaneous precipitation during the 24-hour interval,
as well as of the precipitation at previous (lag) and future (lead) days. While we expect
contemporaneous and lagged effects, we expect no relationship between the changes in
water level and future precipitation. Nevertheless we have included the lead effect as a
check of the reasonableness of the analysis. The results in Figure 4, especially the third
quartiles of the box plots, show that current and past precipitation are tied to increases
in the lake level. It is especially the precipitation of the previous day (lag 1) that is most
influential. It is reassuring that there is no evidence of a relationship with future rainfalls.
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4.2 Time Series Regression Model
Instead of using rainfall in its original metric, which has a distribution with a very long
right tail (see Section 6), we consider the logarithm of precipitation, P ∗

t = log(1 + Pt).
The addition of “one” is necessary because of days without rain. A regression model
relating the changes in lake levels to precipitation during the concurrent 24-hour period
as well as prior precipitation is considered. We also add concurrent air temperature to the
model as we expect evaporation to play a role; more water is evaporated on warm days.
The diagnostics of the regression model with uncorrelated errors shows evidence of serial
correlation. We correct for that by introducing a second order moving average model for
the error components. Table 1 shows the fitting results of the time series regression model

Levelt − Levelt−1 = β0 + β1P
∗
t + β2P

∗
t−1 + β3P

∗
t−2 + β4Tempt + εt − θ1εt−1 − θ2εt−2 .

The model explains 8.2 percent of the variability; the largest rain impact comes from pre-
cipitation during the previous day. The negative coefficient of air temperature expresses
the effect of evaporation. While not much importance should be attached to the very
large t-statistics (which is largely due to the extremely large sample size), the t-ratios ex-
press the fact that the effect of the lag 1 precipitation is more significant than that of the
contemporaneous and the lag 2 precipitations.

Table 1: Maximum likelihood estimation results for the time series regression model
assuming normal errors.

Variable Coefficient Std.Error t-Ratio
Constant β0 −0.0204 0.0112 −1.83
log(1 + Pt) β1 0.0404 0.0055 7.28
log(1 + Pt−1) β2 0.0888 0.0061 14.57
log(1 + Pt−2) β3 0.0244 0.0055 4.41
Tempt β4 -0.0143 0.0007 -21.07
MA(1) θ1 -0.1534 0.0089 -17.29
MA(2) θ2 -0.1511 0.0098 -17.02
R-square 8.22 %
Durbin-Watson 1.98

4.3 Exploring the Presence of Nonlinearity in the Relationship
Many models for the rainfall-runoff relationship have been developed in hydrology, and
the range of models extends from simple linear models to very elaborate nonlinear for-
mulations that take account of catchment descriptors of the area such as terrain, soil con-
ditions, and vegetation properties. See for example, Jakeman and Hornberger (1993) who
investigate how much complexity is warranted in a rainfall-runoff model; Sivapalan et
al. (2003) who discuss the importance of developing accurate predictive models; and
Rodriguez-Iturbe and Rinaldo (1997) who describe recent developments in nonlinear
rainfall-runoff modeling.
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The saturation of the soil from previous rains may affect the runoff of precipitation,
and hence the impact of rain on the lake level. We use an exponentially weighted moving
average of past rainfalls to measure the saturation of the soil. With smoothing constant
α = 0.05, the saturation is given by

St = EWMA(P ∗
t )

= α
[
P ∗

t + (1− α)P ∗
t−1 + (1− α)2P ∗

t−2 + (1− α)3P ∗
t−3 + · · · ]

= α
∑
i≥0

(1− α)iP ∗
t−i .

The exponentially weighted moving average St is the fitted value that results from an
ARIMA(0, 1, 1) model with moving average parameter θ = 0.95; see Abraham and
Ledolter (1983).

The coplot in Figure 5 (using the statistical software R) assesses the nonlinearity
graphically. There we plot changes in the lake level against the logarithmically trans-
formed precipitation (here at lag 1, as our earlier analysis has shown that the effect is
strongest at this lag), and we condition the graph on the magnitude of prior saturation,
St−1 = EWMA(P ∗

t−1). The scatter plots in the bottom panel, from left to right, are
for days t with prior day saturation levels St−1 within the three lower groupings shown
on top of the coplot; the bottom left graph is the scatter plot when St−1 is between 0
and about 0.85. The scatter plots in the top panel, from left to right, are for days t with
prior day saturation levels St−1 within the three top groupings; the upper right graph is
the scatter plot when St−1 is between 1.2 and about 2.3. We add to these graphs the
nonparametric “lowess” smoother (see Cleveland, 1979, 1981) that provides a robust re-
gression fit of lake level changes on prior precipitation. We observe that the relationship
changes with the level of saturation. The effect of rainfall becomes stronger if the soil
is saturated, suggesting the presence of some nonlinearity. As expected, the amount of
nonlinearity is rather minor as we are dealing with a very large lake, and not a river.
Generalized additive models for the difference in the lake levels, Levelt−Levelt−1, with
mean function µt = f0(St−1)+f1(St−1)P

∗
t +f2(St−1)P

∗
t−1+f3(St−1)P

∗
t−2+βTempt and

normal errors, failed to provide interpretable results. Generalized additive models have
all the features of generalized linear models (including standard link functions, parent
distributions, and linear model components), but include in their mean specification also
sums of smooth nonparametric functions of some regressors. The functions fi(St−1) are
represented through penalized regression splines, and the necessary smoothing parame-
ters are selected through cross validation; see Wood (2006) and the available R-computer
software (mgcv).

5 Analysis of Daily Lake Levels at the Station Neusiedl
am See: Modeling the Impact of Wind

Due to the shallow nature of the lake, the local lake level is also affected by wind condi-
tions. We investigate the role of wind by studying the difference between the daily lake
level at Neusiedl am See, a station at the northern tip of the lake, and the daily average
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Figure 5: Coplot of successive lake level differences against lag 1 transformed precipita-
tion, conditioned on the saturation St−1 = EWMA(P ∗

t−1).

lake level. Relative to the overall lake level, the lake level at Neusiedl can be expected
to decrease with strong winds from the north (as northerly winds transport water south)
and increase with strong winds from the south (as southerly winds push water towards the
northern edge of the lake).

A graph of the averages of these lake level differences, for non-overlapping categories
of wind speed at 2 pm (measured in Beaufort, where 1 represents a wind speed between
1 and 5 km/h, 2 [6–11], 3 [12–19], 4 [20–28], 5 [29–38], 6 [39–49] and 7 [50–61 km/h])
and 2 pm wind direction (given in 45 degree angle increments), is shown in Figure 6. This
graph shows quite convincingly that winds from the south increase and winds from the
north decrease the lake level at Neusiedl, relative to the average lake level, and that the
effects increase with wind speed.

Figure 6 relates the average of daily lake level differences to the wind conditions at 2
pm. Similar patterns arise for wind conditions at 7 am and 7 pm, and they are not shown
here. Next, we average wind speed and wind direction across the three daily measure-
ment times (7 am, 2 pm, 7 pm). Since wind direction is circular, it would be incorrect
to compute the arithmetic average of the three wind directions. Instead, we construct



J. Ledolter 155

M
e
a
n
 L
a
k
e
 L
e
v
e
l 
D
if
fe
re
n
c
e

Wind Direction

Wind Speed

32(North)2824(West)2016(South)128(East)4

76543217654321765432176543217654321765432176543217654321

0.10

0.05

0.00

-0.05

-0.10

-0.15

Mean Lake Level Difference: Wind Speed and Direction at 2 pm

Figure 6: Plot of average daily lake level differences (Neusiedl minus overall), for non-
overlapping categories of wind speed and wind direction at 2 pm.

50250-25-50

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

Average Daily Perpendicular Wind Component

L
a
k
e
 L
e
v
e
l 
D
if
fe
re
n
c
e

S 0.0349895

R-Sq 32.2%

R-Sq(adj) 32.2%

Regression

95% PI

Fitted Regression Line
LakeLevelDifference =  0.01364 - 0.002316 AveWSPer

- 0.000018 AveWSPer**2 - 0.000000 AveWSPer**3

 

Average WS Perpendicular

L
a
k
e
 L
e
v
e
l 
D
if
fe
re
n
c
e

453525155-5-15-25-35

0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20

95% CI for the Mean

Lake Level Difference against Perpendicular Wind Speed

Figure 7: Plot of daily lake level differences (Neusiedl minus overall) against the average
daily perpendicular (due north) wind component (raw data and smoothed version).

the perpendicular wind speed component (due north) at each of the three time periods,
WSp = wind speed × cos(wind direction from North), and average the three resulting
components. In Figure 7a we plot the daily difference in the lake levels against the daily
average perpendicular wind speed component. A smoothed version of this graph is shown
in Figure 7b. There we divide daily average perpendicular wind speed components into
non-overlapping groups and calculate, for each group, the average difference of the lake
levels. The intervals shown on this graph represent 95 percent confidence for the means.
Figure 7b shows an approximate linear relationship. The push-up effect of strong winds
from the south is somewhat smaller (7.5 cm) then the diffusion effect of strong winds
from the north (about 10 cm). Apparently it is more difficult for winds from the south to
build up water at the northern edge of the lake than it is for northern winds to push the
water out of the way.

6 Statistical Models for Daily Rainfall: Modeling its Oc-
currence and its Magnitude

Our model for the daily rainfall, as expressed as the sum of rainfall at the eight measure-
ment stations in the vicinity of the lake, consists of two components (see Coe and Stern,
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1982): (a) A model for the occurrence of daily rainfall (0 for no rain, and 1 for rain), spec-
ified as a logistic regression with covariates for monthly seasonality and the presence or
absence of rain during the previous day. Trace rainfall amounts (those with magnitude of
0.5 mm or less) are coded as zero. (b) A generalized linear model for the amount of daily
rainfall, for days with rain, specified as a Gamma distribution with a log link function to
monthly seasonality and previous rainfall.

6.1 Modeling the Occurrence of Rain

Precipitation occurs on 42.75 percent of the days. The graph of the monthly proportions of
days with rain in Figure 8 exhibits seasonal variation, with June and November showing
the largest fraction of rainy days. A simple cross tabulation shows that the chance of rain
after a day with no rain is 29.5 percent, whereas the probability of rain is 60.5 after a day
with rain. This leads us to consider a logistic regression model that relates the logarithm of
the odds (for rain) ratio to monthly indicators and the presence of rain during the previous
day. Alternatively, seasonal harmonics could be used. The fitting results are shown in
Table 2. Prior presence of rain increases the odds for rain more than three-fold.
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Figure 8: Proportion of days with rain.

Ignoring the seasonal components, the logistic regression model is equivalent to a
first-order Markov chain model with separate transition probabilities for the two different
states that describe the presence of prior rain (no rain or rain).

A Markov chain model with seasonal indicators amounts to dividing the data set
{(presence of rain on day t − 1, presence of rain on day t); t = 2, . . . , n} into two
non-overlapping segments according to the rain state on the previous day (no rain and
rain), and fitting to each segment a logistic regression with monthly indicators as covari-
ates. For example, the no rain/rain sequence “0010110”, resulting in the six pairs (0, 0),
(0, 1), (1, 0), (0, 1), (1, 1), (1, 0) in the logistic regression on lag rain as covariate, would
be divided into two data sets: One where previous rain is 0 [that is, (0, 0), (0, 1), (0, 1)],
and the other where previous rain is 1 [that is, (1, 0), (1, 1), (1, 0)]. The approach of fit-
ting two separate logistic models on seasonal indicators is more general than our logistic
model with seasonal indicators and lag rain in Table 2 as it allows for different seasonal
effects. In fact, fitting two separate logistic models provides the saturated model, and
hence the deviance 20.9439, with 11 degrees of freedom and probability value 0.034, in
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Table 2: Occurrence model: Logistic regression model relating the log odds of rain
to monthly indicators and the presence of rain on the previous day (Minitab output):
log{P [Rain]/P [NoRain] = β0 + β1x1 + · · ·+ βpxp.

Logistic Regression Table
Odds 95% CI

Predictor Coef SE(Coef) Z P Ratio Lower Upper
Constant -0.897 0.068 -13.21 0.000
LagRainOcc 1.276 0.038 33.21 0.000 3.58 3.32 3.86
FEBRUARY -0.180 0.096 -1.87 0.061 0.84 0.69 1.01
MARCH 0.014 0.093 0.15 0.882 1.01 0.85 1.22
APRIL 0.008 0.094 0.08 0.936 1.01 0.84 1.21
MAY 0.071 0.093 0.77 0.444 1.07 0.90 1.29
JUNE 0.359 0.093 3.85 0.000 1.43 1.19 1.72
JULY 0.158 0.092 1.71 0.087 1.17 0.98 1.40
AUGUST -0.029 0.093 -0.32 0.750 0.97 0.81 1.16
SEPTEMBER -0.065 0.094 -0.69 0.488 0.94 0.78 1.13
OCTOBER -0.210 0.094 -2.23 0.026 0.81 0.67 0.98
NOVEMBER 0.201 0.093 2.16 0.031 1.22 1.02 1.47
DECEMBER 0.074 0.093 0.80 0.426 1.08 0.90 1.29

Log-Likelihood = -7842.999
Test that all slopes are zero: G = 1266.058, DF = 12, P-Value = 0.000

Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 20.9646 11 0.034
Deviance 20.9439 11 0.034
Hosmer-Lemeshow 9.8752 7 0.196

Table 2 is the log-likelihood ratio statistic for testing the hypothesis that the coefficients
of the seasonal indicators are the same for both segments. The differences turn out to be
minor and only moderately significant (probability value 0.034).

We can extend the approach by considering higher-order models; that is adding the
presence of rain two days prior to the logistic regression model or dividing the data set
into four different segments depending on the state of rainfall during the two previous
periods. It turns out that a first-order model is sufficient.

6.2 Modeling the Amount of Rainfall
A histogram of the amount of rainfall for the 5309 days with rainfall is given in Figure 9.
The 3-parameter Gamma distribution with p.d.f.

f(x; α, β, λ) =
1

βαΓ(α)
(x− γ)α−1 exp[−(x− γ)/β]
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is fit to the data. The fitted model in Figure 9, with parameter estimates α̂ = 0.509
(shape), β̂ = 56.17 (scale), and γ̂ = 0.594 (threshold), shows excellent agreement with
the data. This is confirmed by the gamma probability plot (not shown).

Figure 10 shows that there is a seasonal pattern to the amount of rainfall, with rainfall
amounts highest during the months of May through October. A generalized linear model
(GLM; see Nelder and Wedderburn, 1972, McCullagh and Nelder, 1983) with Gamma
parent distribution and log link function that relates the logarithm of the mean to seasonal
indicators and the amount of rain from the previous day is estimated. The “glm” routine
of the R Statistical Software is used for the estimation. The estimation results in Table
3 confirm the seasonal pattern and a significant carry-over effect of the rainfall amount
(expressed in logs) of the previous day. The estimated shape parameter of the gamma
distribution, 1/Dispersion = 1/2.182 = 0.46, is similar to our earlier estimate of the shape
parameter (0.507) in the model without covariates.

We estimate the same model, but replace the amount of precipitation during the pre-
vious day with an indicator variable that signals the presence of precipitation. The results
in the second part of the table indicate that presence of rainfall during the previous day
increases the mean amount of rainfall by 100[exp(0.204)−1] = 23 percent. The seasonal
pattern is practically unchanged.
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Figure 9: Histogram of the amount of rainfall, with fitted gamma distribution.
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Figure 10: Average rainfall amounts for different months.
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Table 3: Output of the generalized linear model with a logarithmic link function and a
Gamma response distribution (R output): Y ∼ Gamma, with the logarithm of its mean,
log µ = β0 + β1x1 + · · ·+ βpxp, related to the explanatory variables.
(a) Using the log amount of rain during the previous day as covariate

Coefficients:
Est SE(est) t-value Pr(>|t|)

(Intercept) 2.834 0.073 39.041 < 2e-16 ***
{Log(LagAmount) 0.086 0.012 7.109 1.32e-12 ***
FEBRUARY 0.004 0.106 0.039 0.9687
MARCH 0.167 0.100 1.671 0.0947
APRIL 0.231 0.101 2.291 0.0220 *
MAY 0.570 0.099 5.771 8.33e-09 ***
JUNE 0.545 0.095 5.728 1.07e-08 ***
JULY 0.533 0.097 5.482 4.39e-08 ***
AUGUST 0.676 0.101 6.712 2.11e-11 ***
SEPTEMBER 0.656 0.102 6.429 1.40e-10 ***
OCTOBER 0.473 0.104 4.540 5.74e-06 ***
NOVEMBER 0.255 0.097 2.613 0.0090 **
DECEMBER 0.076 0.098 0.772 0.4399
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05
(Dispersion parameter for Gamma family taken to be 2.181875)

(b) Using an indicator for the presence of rain during the previous day
as covariate

Coefficients:
Est SE(est) t-value Pr(>|t|)

(Intercept) 2.846 0.074 38.514 < 2e-16 ***
Ind(LagAmount) 0.204 0.041 4.975 6.74e-07 ***
FEBRUARY 0.008 0.106 0.075 0.94027
MARCH 0.182 0.099 1.825 0.06800
APRIL 0.256 0.100 2.557 0.01058 *
MAY 0.589 0.098 5.989 2.24e-09 ***
JUNE 0.566 0.095 5.977 2.41e-09 ***
JULY 0.563 0.097 5.821 6.19e-09 ***
AUGUST 0.700 0.100 6.981 3.29e-12 ***
SEPTEMBER 0.670 0.102 6.590 4.83e-11 ***
OCTOBER 0.498 0.104 4.791 1.70e-06 ***
NOVEMBER 0.278 0.097 2.867 0.00415 **
DECEMBER 0.092 0.098 0.940 0.34733
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05
(Dispersion parameter for Gamma family taken to be 2.166655)
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