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1 Introduction

Let X, X1, X2, . . . be i.i.d. Rd-valued random vectors and ‖X‖ denotes a Euclidian norm
of vector X . It was shown by Szekely and Mori (2001) that E(‖X1+X2‖−‖X1−X2‖) ≥
0 and that E(‖X1 + X2‖− ‖X1−X2‖) = 0 if and only if X is symmetrically distributed
(i.e., if the distributions of X and −X coincide).

A sequence of statistics

Tn = Tn(X1, . . . , Xn) =

∑
1≤i<j≤n (‖Xi + Xj‖ − ‖Xi −Xj‖)∑

1≤i≤n ‖Xi‖

was proposed by Szekely and Mori (2001) as a base of a consistent test for symmetry
against general alternatives. According to Szekely and Mori (2001) if E(‖X‖) < ∞ and
x(α) = (Φ−1(1− α/2))2 then

sup
H0

lim
n→∞

Pr{1 + Tn ≥ x(α)} = α, (1)

where H0 is the set of all symmetrical distributions in Rd.
Here the equality holds for two-point symmetric distributions where Pr{X1 = a} =

Pr{X1 = −a} = 1/2 for some a ∈ Rd\{0}. Hence,

Pr

{
Tn =

1

n
(n− 2m)2 − 1

}
=

1

2n
Cm

n , m = 0, 1, . . . , n,

and E(Tn) = 0, D(Tn) = 2(n− 1)/n. According to the deMoivre-Laplace theorem

Pr {Tn + 1 ≤ x} → Φ(
√

x)− Φ(−√x), n →∞,

which corresponds to (1).
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2 Main Results
We will consider the case when the distribution of the vector X is concentrated on a vertex
set Vd = {B = (b1, . . . , bd) : bj ∈ {−1, +1}, j = 1, . . . , d} of d-dimensional cube (so
Pr{‖X‖ =

√
d} = 1 and Tn is a U -statistics in this case).

If X = (x1, . . . , xd) is uniformly distributed on Bd then x1, . . . , xd are independent
and Pr{xi = −1} = Pr{xi = 1} = 1/2. If the random vector Y is independent and
identically distributed with X then

E(‖X + Y ‖ − ‖X − Y ‖) = 0. (2)

Theorem 1. If random vectors X = (x1, . . . , xd), Y = (y1, . . . , yd) are independent and
uniformly distributed on Vd, d ≥ 1, then

D(‖X + Y ‖ − ‖X − Y ‖) =
1

2d−3

d∑
m=0

Cm
d

(
d

2
−

√
m(d−m)

)
= 2 +

θd

d
, θd ∈

[
1
2
, 6

]
.

PROOF. In view of (2)

D (‖X + Y ‖ − ‖X − Y ‖) = E

(√∑d

j=1
(xj + yj)2 −

√∑d

j=1
(xj − yj)2

)2

= 2E
(∑d

j=1
(x2

j + y2
j )

)
− 2E

(√∑d

j=1
(xj + yj)2

√∑d

j=1
(xj − yj)2

)
.

In our case E
(∑d

j=1(x
2
j + y2

j )
)

= 2d. Let us consider sets Am = {(B, C) ∈ Vd×Vd :

|{k : bk = ck}| = m} for m = 0, . . . , d. If (B, C) ∈ Am then
√∑d

j=1
(bj + cj)2

√∑d

j=1
(bj − cj)2 = 4

√
m(d−m).

The set Am consists of Cm
d 2d elements, the set of all possible pairs (B,C) consists of 22d

elements. Consequently,

E

(√∑d

j=1
(xj + yj)2

√∑d

j=1
(xj − yj)2

)
=

1

2d−2

d∑
m=0

Cm
d

√
m(d−m)

and

D(‖X1 + X2‖ − ‖X1 −X2‖) = 4d− 1

2d−3

d∑
m=0

Cm
d

√
m(d−m)

=
1

2d−3

d∑
m=0

Cm
d

(
d

2
−

√
m(d−m)

)
= 8E

(
d

2
−

√
ξ(d− ξ)

)
,

where ξ is a random variable with the binomial distribution Bin(d, 1/2).
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It is easy to check that E(ξ − d/2)2 = d/4, E(ξ − d/2)4 = d(3d− 2)/16 and

1− x

2
− x2

2
≤ √

1− x ≤ 1− x

2
− x2

8
for 0 ≤ x ≤ 1.

So

d

2
−

√
x(d− x) =

d

2


1−

√
1−

(
x− d/2

d/2

)2



=
d

2

(
1

2

(x− d/2)2

(d/2)2
+ θ

(x− d/2)4

(d/2)4

)
=

(x− d/2)2

d
+ 8θ

(x− d/2)4

d3
, θ ∈

[
1

8
,
1

2

]
,

and

D(‖X1 + X2‖ − ‖X1 −X2‖) = 8E
(

d
2
−

√
ξ(d− ξ)

)

= 8E

(
(ξ − d/2)2

d
+ 8θ

(ξ − d/2)4

d3

)
= 2 +

θd

d
, θd ∈

[
1

2
, 6

]
.

(The set of possible values of θd was widened to be valid for all d ≥ 1.) Theorem 1 is
proved.
Theorem 2. If random variables X = (x1, . . . , xd), Y = (y1, . . . , yd) are independent
and uniformly distributed on Vd then for all t ∈ (−∞,∞)

Pr{(‖X + Y ‖ − ‖X − Y ‖) ≤ t} → Φ

(
t√
2

)
, d →∞.

PROOF. The distribution of ‖X + Y ‖ − ‖X − Y ‖ coincides with that of η = 2(
√

ξd −√
d− ξd), where ξd has a binomial distribution Bin(d, 1/2).

Notice that the function u(x) =
√

x−√d− x is increasing on [0, d]. Therefore,

Fη(x) = Pr{η ≤ x} =
∑

m:u(m)≤x

pm, where pm = Pr{ξd = m} =
1

2d
Cm

d .

It is easy to check that k(t)
def
= max{x : u(x) ≤ t} = d

2
+ t

2

√
d
2

√
1− t2

8d
. Consequently,

Fη(t) = Pr{η ≤ t} =

k(t)∑
m=0

pm = Pr{ξd ≤ k(t)}

= Pr

{
ξd − d/2√

d/2
≤ t√

2

√
1− t2

8d

}
→ Φ

(
t√
2

)
, d →∞,

for each t ∈ (−∞,∞) due to the deMoivre-Laplace theorem.
By means of Theorem 1 we may find two first moments of the U -statistics Tn for

uniform distribution on Vd. We have

E(Tn) =
(n− 1)

2
√

d
E(‖X1 + X2‖ − ‖X1 −X2‖) = 0.
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Since for independent vectors X1, X2, . . . with symmetrical distribution on Vd for any
a ∈ Vd we have

E(‖a + Xi‖ − ‖a−Xi‖) = 0, (3)
E(‖a + Xi‖ − ‖a−Xi‖)(‖a + Xj‖ − ‖a−Xj‖) = 0, i 6= j,

it follows that

cov(‖Xi + Xj‖ − ‖Xi −Xj‖, ‖Xk + Xl‖ − ‖Xk −Xl‖) = 0

for all 1 ≤ i < j, 1 ≤ k < l, (i, j) 6= (k, l). So

D(Tn) =
1

n2d
D

( ∑
1≤i<j≤n

(‖Xi + Xj‖ − ‖Xi −Xj‖)
)

=
n− 1

2nd
D(‖X1 + X2‖ − ‖X1 −X2‖) → 1

d
, d →∞.

Due to (3) U -statistics Tn are degenerate ones. Applying the results of Gregory (1977)
(see also Korol’uk and Borovskih (1989)) to our case we obtain that if d = const and
n →∞ then distributions of U -statistics Tn converge to the distribution of

∑2d

k=1 ckν
2
k−1,

where ν1, ν2, . . . are independent random variables with standard Gaussian distribution,
ck ≥ 0,

∑
ck = 1 and the coefficients ck are the eigenvalues of operator S : f(x) →

E(‖X1 + x‖ − ‖X1 − x‖)f(X1) in L2(Vd) (see Szekely and Mori, 2001). The exact
formulas for these coefficients in the case of general d are under investigation.

This results may be used to construct a goodness-of-fit test for generators of random
or pseudorandom bits.

Now we consider a class of nonuniform distributions on Vd corresponding to random
vectors with independent components.
Theorem 3. If random vectors X = (x1, . . . , xd), Y = (y1, . . . , yd) with values in Vd are
independent identically distributed with independent components,

Pr{xj = 1} = 1
2

+ ε
(d)
j , Pr{xj = −1} = 1

2
− ε

(d)
j , |ε(d)

j | < 1
2
, j = 1, . . . , d,

if d →∞ and for some δ > 0

ad
def
=

4

d

d∑
j=1

(
ε
(d)
j

)2

< 1− δ for all d,

then the distribution of ‖X + Y ‖ − ‖X − Y ‖ is asymptotically normal with parameters
(

2ad

√
2d√

1− ad +
√

1 + ad

, (1− bd)
1 +

√
1− a2

d

1− a2
d

)
, where bd

def
=

16

d

d∑
j=1

(
ε
(d)
j

)4

< ad.

PROOF. Note that ‖X + Y ‖2 =
∑d

j=1(xj + yj)
2 = 4ξd, ‖X − Y ‖2 = 4d − ‖X + Y ‖2,

where ξd = ξd(ε1, . . . , εd) is the sum of d independent indicators:

ξd =
d∑

j=1

ηj, ηj = I(xj = yj), Pr{ηj = 1} = 1
2

+ 2
(
ε
(d)
j

)2

, j = 1, . . . , d.
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So,

E(ξd) = d
2

+ 2
d∑

j=1

(
ε
(d)
j

)2

= d
2
(1 + ad), D(ξd) = d

4
− 4

d∑
j=1

(
ε
(d)
j

)4

= d
4
(1− bd),

d∑
j=1

E(|ηj − E(ηj)|3) < d
8
.

Therefore

Pr{‖X + Y ‖ − ‖X − Y ‖ ≤ x} = Pr
{√

ξd −
√

d− ξd ≤ x
2

}
(4)

= Pr

{√
1
d
ξd −

√
1− 1

d
ξd ≤ x

2
√

d

}
.

It follows from Lyapunov’s theorem and conditions of Theorem 3 that 1
d
ξd is asymptot-

ically normal with parameters (1
2
(1 + ad),

1
4d

(1 − bd)). Because the derivative of the
function s(x) =

√
x−√1− x is strictly positive and bounded on

[
1
2
, 1− δ

]
, the random

variable s(1
d
ξd) =

√
1
d
ξd −

√
1− 1

d
ξd is asymptotically normal with parameters

(
s(1

d
E(ξd)), (s

′(1
d
E(ξd)))

2D(1
d
ξd)

)
=

(
ad

√
2√

1− ad +
√

1 + ad

,
1 +

√
1− a2

d

1− a2
d

1− bd

4d

)
.

(5)
Consequently, the random variable 2(

√
ξd −

√
d− ξd) is asymptotically normal with pa-

rameters (
2ad

√
2d√

1− ad +
√

1 + ad

,
1 +

√
1− a2

d

1− a2
d

(1− bd)

)
,

and Theorem 3 is proved.
Theorem 2 is a particular case of Theorem 3, but its statement is simpler.

Theorem 4. If the conditions of Theorem 3 are satisfied then there exists a constant
C = C(ad) < ∞ such that

∣∣∣∣∣E(‖X + Y ‖ − ‖X − Y ‖)− 2ad

√
2d√

1− ad +
√

1 + ad

∣∣∣∣∣ <
C√
d
, (6)

and

D(‖X + Y ‖ − ‖X − Y ‖) =
1 +

√
1− a2

d

1− a2
d

(1− bd + o(1)), d →∞. (7)

PROOF. We will use notations introduced in the proof of Theorem 3. According to (4)

E(‖X + Y ‖ − ‖X − Y ‖) = 2
√

dEs(1
d
ξd), s(x) =

√
x−√1− x. (8)

The function s(x), x ∈ [0, 1], has quadratic lower and upper bounds:

s(1
d
E(ξd)) + s′(1

d
E(ξd))(x− 1

d
E(ξd))− C1(x− 1

d
E(ξd))

2 ≤ s(x) ≤
≤ s(1

d
E(ξd)) + s′(1

d
E(ξd))(x− 1

d
E(ξd)) + C2(x− 1

d
E(ξd))

2, (9)
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where

C1 =
1 + s(1

d
E(ξd))− s′(1

d
E(ξd))

1
d
E(ξd)

(1
d
E(ξd))2

,

C2 =
1− s(1

d
E(ξd))− s′(1

d
E(ξd))(1− 1

d
E(ξd))

(1− 1
d
E(ξd))2

.

By means of these estimates we obtain
∣∣E(s(1

d
ξd))− s(1

d
E(ξd))

∣∣ ≤ max{C1, C2}D(1
d
ξd) < max{C1, C2} 1

4d
. (10)

Inequality (6) is a consequence of (8), (10) and E(1
d
ξd) = 1+ad

2
.

It follows from Theorem 3 that there exists a sequence {αd} such that αd → 0 as

d →∞ and D(‖X + Y ‖ − ‖X − Y ‖) = 4dD(s(1
d
ξd)) ≥ (1− αd)(1− bd)

1+
√

1−a2
d

1−a2
d

. To
obtain upper bounds we use (9) as follows:

D(s(1
d
ξd)) ≤ E(s(1

d
ξd)− s(E(1

d
ξd)))

2

= E
(
s′(E(1

d
ξd))(

1
d
ξd − E(1

d
ξd)) + C∗θ(1

d
ξd − E(1

d
ξd))

2
)2

,

where C∗ = max{C1, C2} and θ is a random variable, Pr{|θ| ≤ 1} = 1. Therefore,

D(s(1
d
ξd)) ≤ (s′(E(1

d
ξd)))

2E(1
d
ξd − E(1

d
ξd))

2 + 2C∗s′(E(1
d
ξd))E(|1

d
ξd − E(1

d
ξd)|3)

+C∗2E(1
d
ξd − E(1

d
ξd))

4.

But E(1
d
ξd − E(1

d
ξd))

2 = D(1
d
ξd) = 1−bd

4d
and

E(1
d
ξd − E(1

d
ξd))

4 ≤ 3
(1− bd)

2

16d2
+

1− bd

4d3
= 3

(1− bd)
2

16d2

(
1 +

4

(1− bd)d

)
,

because if Sn = χ1 + · · · + χn is a sum of n independent indicators then (it is easy to
check by induction)

E(Sn − E(Sn))4 = 3(D(Sn))2 + D(Sn)− 6
n∑

k=1

(D(χk))
2.

Further, according to the Lyapunov inequality and condition bd < 1− δ

E(|1
d
ξd − E1

d
ξd|3) ≤

(
E(1

d
ξd − E(1

d
ξd))

4
)3/4 ≤ 3

(1− bd)
3/2

8d3/2

(
1 +

4

δd

)
,

so

D(s(1
d
ξd)) ≤ (s′(E(1

d
ξd)))

2 1−bd

4d
+3

(
1+

4

δd

)(
2C∗s′(E(1

d
ξd))

(1−bd)
3/2

8d3/2
+

(1−bd)
2

16d2

)

=
1 +

√
1− a2

d

1− a2
d

(1− bd + o(1)) as d →∞,



D. O. Menshenin and A. M. Zubkov 143

and equality (7) and Theorem 4 are proven.
If X = (x1, . . . , xd), X1, X2, . . . are independent identically distributed random vec-

tors with values in Vd with independent components,

Pr{xj = 1} = 1
2

+ εj, Pr{xj = −1} = 1
2
− εj, j = 1, . . . , d,

d∑
j=1

ε2
j > 0,

then their distribution is asymmetric, U -statistics

Tn =
1

n
√

d

∑
1≤i<j≤n

(‖Xi + Xj‖ − ‖Xi −Xj‖)

are nondegenerate and according to Hoeffding (1948) distributions of Tn as n → ∞ are
asymptotically normal with parameters

(
n

2
√

d
E(‖X1 + X2‖ − ‖X1 −X2‖), 4n

d
E(D{‖X1 + X2‖ − ‖X1 −X2‖

∣∣X1})
)

.

For finite d and fixed ε1, . . . , εd the parameters of asymptotic normality take concrete
values.

Let the conditions of Theorem 3 be now fulfilled. Then we may use the results of
Mihailov (1975) (in this paper the central limit theorem for U -statistics was proven by the
method of moments under the assumption that the distributions of Xi and the form of the
kernels may depend on n). In this case Tn are asymptotically normal with parameters

(
nad

√
2√

1− ad +
√

1 + ad

,
n(ad − bd)

d

1 +
√

1− a2
d

1− a2
d

)
.

We omit the proofs of these formulas.
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